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Abstract: Itch (or pruritus) is an unpleasant sensation, inducing the desire to scratch. It is also a
major and distressing symptom of many skin and systemic diseases. The involvement of histamine,
which is a major itch mediator, has been extensively examined. Recent studies suggest that histamine-
independent pathways may play roles in chronic itch. Therefore, antihistamines are not always
effective in the treatment of patients with chronic itch. The development of biologics and κ-opioid
receptor (KOR) agonists has contributed to advances in the treatment of itch; however, since biologics
are expensive for patients to purchase, some patients may limit or discontinue their use of these
agents. Furthermore, KOR agonists need to be prescribed with caution due to risks of side effects
in the central nervous system. Janus kinase (JAK) inhibitors are sometimes associated with side
effects, such as infection. In this review, we summarize antidepressants, antineuralgics, cyclosporine
A, antibiotics, crotamiton, phosphodiesterase 4 inhibitor, botulinum toxin type A, herbal medicines,
phototherapy, and acupuncture therapy as itch treatment options other than antihistamines, biologics,
opioids, and JAK inhibitors; we also explain their underlying mechanisms of action.

Keywords: acupuncture therapy; intractable pruritus; itch; itch inhibitory mechanism; oral therapy;
topical medication; troublesome itch; phototherapy

1. Introduction

Itch (or pruritus) is an unpleasant sensation that induces the desire to scratch, which
reduces the quality of life (QOL) of patients [1]. Histamine is one of the major itch mediators
and has been employed as the main agent in antipruritic therapies. However, antihistamines
often lack efficacy in patients with chronic itch [2–4]. Intractable pruritus, for which
antihistamines are ineffective, is a common symptom of skin diseases, such as atopic
dermatitis (AD), psoriasis, and prurigo nodularis. Intractable pruritus also affects some
patients with systemic diseases, including renal diseases [5], cholestasis liver disorder [6],
and bowel diseases [7]. The lack of a response to high-potency antihistamines of different
types in patients with chronic itch suggests the involvement of other mediators.

κ-opioid receptor (KOR) agonists (e.g., nalfurafine) have been shown to suppress
pruritus in patients with chronic renal failure, and in patients with cholestasis [8]. However,
nalfurafine is associated with the development of side effects in the central nervous system
(CNS) [9], and is thus prescribed with caution. Dupilumab, a monoclonal antibody that
specifically binds to the shared alpha chain subunit of the interleukin (IL)-4 and IL-13
receptors, was shown to improve clinical end points, including the attenuation of pruritus
in AD [10]. However, biological products are expensive for patients to purchase, thus some
patients may limit or discontinue their use. JAK inhibitors have also been suggested to
ameliorate itching effectively. However, they are also associated with side effects, such as
infection [11–13]. Although emollients also partly control intraepidermal nerve density,
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they have more of a preventive than a therapeutic effect. Therefore, it is necessary to control
itch from a multifaceted perspective through the development of new treatments and drug
repositioning.

In this review, we summarize alternative treatment options for troublesome itch,
including antidepressants, antineuralgics, cyclosporine A, antibiotics, crotamiton, phospho-
diesterase 4 (PDE4) inhibitor, herbal medicines, phototherapy, and acupuncture therapy
(Table 1). This review may inform physicians seeking treatment options for patients unre-
sponsive to mainstream itch treatments, such as KOR agonists, biological products, and
JAK inhibitors.

Table 1. Therapeutic methods for troublesome itch.

Category Therapeutic Methods Mechanisms of Action

Oral therapy

Antidepressants
• SSRIs (Paroxetine, Fluvoxamine, and Sertraline),

NaSSA (Mirtazapine)

Inhibits reuptake of serotonin.
Activates the descending inhibitory system in CNS.

Analgesics
• Pregabalin, Mirogabalin, Neurotropin

Pregabalin may inhibit calcium influx and the release of
neurotransmitters, such as glutamate.

Mirogabalin may inhibit calcium influx in the peripheral
nervous system and suppress the release of neurotransmitter.

Neurotropin inhibits neuropeptide release and decreases
IENF density.

Calcineurin inhibitor
• Cyclosporine A

Activates T cells and inhibits immune cell infiltration.
Inhibits the release of inflammatory cytokines.

Decreases IENF density.
Suppresses itch mediator receptor expression.

Antibiotics
• Roxithromycin, Clarithromycin, Minomycin

Anti-inflammatory effects.
Immunomodulation.

Minomycin suppresses microglia.

PDE4 inhibitor
• Apremilast Unknown

Herbal remedies
• Yokukansan (YKS), Xiao-Feng-Sang, Pei Tu Qing Xin
(PTQX), and Huanglian Jiedu decoction (HLJDT), leaf

extract of Rhamnus davurica (LERD), Spirodelae
Herba (SH), Osthole, Cnidium monnieri, and Unsei-in

YKS and PTQX inhibit the infiltration of immune cells.
HLJDT regulates DC functions.

LERD inhibits the Fyn/Syk pathway in mast cells.
SH modulates the activation of Orai1 and TPRV4 and inhibits

mast cell degranulation.
Osthole inhibits TRPV1 activation.

Unsei-in inhibits the expression of NO synthase.

Topical medication

Antidepressants
• SNRI (Milnacipran)

Inhibits reuptake of serotonin.
Activates the descending inhibitory system in CNS.

Antibiotics
• Josamycin

Inhibits Staphylococcus aureus colonization.
Inhibits Th2 cell differentiation.
⇒suppresses IL-31 production.

Crotamiton Inhibits TRPV1, TRPA1, and TRPV4 on nerves.

PDE4 inhibitors
• OPA-15406, crisaborole, and E6005

Crisaborole modulates epidermal hyperplasia/proliferation
and Th2 and Th17/Th22 transcriptional profiles.

E6005 increases cAMP.

Botulinum toxin type A

Blocks the release of acetylcholine and neurotransmitters from
the presynaptic vesicle by deactivating SNARE proteins.

Inhibits degranulation of mast cells.
Normalizes the expression of nerve elongation factors and

nerve repulsion factors.
⇒decreases IENF density.

Phototherapy PUVA and NB-UVB
Normalizes the expression of nerve elongation factors and

nerve repulsion factors.
⇒decreases IENF density.

Excimer lamp Decreases IENF density.
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Table 1. Cont.

Category Therapeutic Methods Mechanisms of Action

Acupuncture therapy

Treatment LI11 blocks 5-HT2R and 5-HT7R.
Treatments LI11, PC6, HT7, SP10, ST36 and HT3 decrease

responses in the putamen, pMCC.
Treatments LI4 and LI11 suppress GRPR expression via

KOR activation.
Treatments LI11 and SP10 inhibit the

TLR2/4-MyD88-NF-κB pathway.
Treatments LI4 and LI11 suppress activation of microglia.

SSRIs = selective serotonin reuptake inhibitors, NaSSA = noradrenergic and specific serotonergic antide-
pressant, IENF = intraepidermal nerve fiber, TPRV = transient receptor potential vanilloid, NO = Nitric
oxide, SNRI = serotonin noradrenaline reuptake inhibitors, TRPA = TRP ankyrin, cAMP = cyclic adeno-
sine 3′,5′-monophosphate, SNARE = soluble N-ethylmaleimide sensitive factor attachment protein receptor,
PUVA = psoralen ultraviolet A, NB-UVB = narrowband-ultraviolet B, 5-HT = 5-hydroxytryptamine, pMCC = part
of the midcingulate cortex, GRPR = gastrin-releasing peptide receptor, TLR = Toll-like receptor, MyD88 = myeloid
differentiation factor 88, NF-κB = nuclear factor-κ B.

2. Pharmacotherapeutic Options for Itch
2.1. Antidepressants

Antidepressants include tricyclics, tetracyclics, and serotonin noradrenaline reuptake
inhibitors (SNRIs). Serotonin (5-hydroxytryptamine, 5-HT), which is produced by mast
cells, basophils, and platelets, plays a role in itch in a transient receptor potential vanilloid
4 (TRPV4)-dependent manner via the 5-HT receptor. The antipruritic effects of selective
serotonin reuptake inhibitors (SSRIs) have been investigated. SSRIs are safer than tricyclics
and are currently the most widely used antidepressants [14–16].

Paroxetine (trade names include Aropax (GlaxoSmithKline, London, UK) among
others), an SSRI, has been reported to exert antipruritic effects in cancer patients and on
itch associated with true erythrocytosis and psychogenic diseases [17–19]. Paroxetine
and fluvoxamine (Neuraxpharm, Langenfeld, Germany) were also shown to suppress
itch in patients with severe chronic pruritus [20]. In pediatric patients with pruritus due
to cholestasis, sertraline (Zoloft; Pfizer, NY, USA) attenuated itch and improved sleep
quality [21].

A previous study demonstrated that mirtazapine (Remeron; Organon, NJ, USA), a no-
radrenergic and specific serotonergic antidepressant (NaSSA), significantly attenuated itch
in tumor-associated cutaneous pruritus, and in pruritus at night without depression [22].

The intrathecal administration of milnacipran (Sigma, St. Louis, MO, USA), an SNRI,
suppressed serotonin-induced itch in mice [23]. Therefore, antidepressants, such as SSRIs,
SNRIs, and NaSSAs, may be useful for intractable itch by inhibiting the reuptake of the itch
mediator serotonin; however, their antipruritic mechanisms have not yet been elucidated
in detail. Serotonin binds to serotonin receptors on sensory nerves, which express TRPV4,
inducing itching. However, the endogenous analgesic mechanism is exhibited by activating
the descending inhibitory system in the CNS. A similar inhibitory mechanism may also
reduce itch [24].

However, antidepressants are off-label and take a long time to exert therapeutic effects,
and the risk of side effects (digestive symptoms, such as nausea; psychiatric symptoms,
including anxiety; CNS depression; eye symptoms, such as dry eye and inflammation; and
skin symptoms) needs to be considered [25–28].

2.2. Antineuralgics

A common feature of skin diseases that present with intractable itch is abnormal skin
barrier function. The skin barrier prevents the entry of foreign substances and evaporation
of water; however, when it is compromised by environmental or genetic factors, sensory
nerve fibers penetrate the epidermis, causing hypersensitivity to itch [29]. Neuropathic itch
is considered to involve a similar mechanism to that of neuropathic pain, which involves
peripheral sensory nerve hypersensitivity and decreased capacity to suppress calcium ion
influx and neurotransmitters, such as substance P (SP) and calcitonin gene-related peptide
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(CGRP), release to itch-dedicated interneurons in the spinal dorsal horn [30]. Therefore,
pregabalin, which is effective against neuropathic pain, is also a useful treatment for
neuropathic pruritus [30]. Pregabalin (Lyrica; Pfizer) was previously shown to suppress
itch in patients with uremia, cancer, erythrocytosis, prurigo nodularis, and post-burn [31]. It
has been suggested to exert its analgesic effects in the CNS by inhibiting calcium influx and
N-methyl-D-aspartate (NMDA) receptors through binding to the α2δ subunit, which plays
an auxiliary role in the function of voltage-gated calcium channels, and by suppressing the
release of neurotransmitters, such as noradrenaline, glutamate, glycine, γ-aminobutyric
acid (GABA), SP, CGRP, and acetylcholine [32–34]. Therefore, pregabalin is speculated
to inhibit neurotransmitter release and exert antipruritic effects in the CNS by inhibiting
calcium influx and NMDA receptors via binding to the α2δ subunit.

On the other hand, mirogabalin (Tarlige; Daiichi Sankyo Co., Ltd., Tokyo, Japan)
was found to inhibit calcium influx in the peripheral nervous system and suppress neuro-
transmitter release, resulting in analgesia [35]. Therefore, mirogabalin may be useful for
peripheral itch. However, these antineuralgics are off-label for itch and their application
needs to be explained to patients.

Neurotropin (NTP, Nippon Zoki Pharmaceutical Co., Ltd., Osaka, Japan), a non-
protein extract isolated from the inflamed skin of rabbits inoculated with vaccinia virus, is
widely used in Japan and China to treat various chronic pain conditions. We previously
reported the antipruritic effects of NTP following its intraperitoneal administration to AD
model mice and a control group [36]. The antipruritic mechanism was attributed to the
suppression of neurogenic inflammation via the inhibition of SP release from nerve endings
and reduction in itch hypersensitivity by the prevention of intraepidermal nerve fiber
(IENF) elongation [37,38] (Figure 1).
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Figure 1. Antipruritic mechanism of NTP for intractable itch in AD. NTP inhibits SP release from
nerve endings, which presumably suppresses neurogenic inflammation caused by nerve-SP-mast
cells. In addition, NTP inhibits the elongation of IENFs and reduces itch hypersensitivity.
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2.3. Cyclosporine A

Cyclosporine A (CsA, Neoral; Novartis, Basel, Switzerland), a calcineurin inhibitor,
is an immunosuppressant that is widely used in the treatment of inflammatory diseases.
Its efficacy against AD symptoms, including itch, has been demonstrated and it has been
approved for the treatment of AD [39].

Previous studies have shown that IL-31 receptor A (IL-31RA) and NK-1 receptor (NK-
1R) mRNA expression levels in dorsal root ganglion (DRG) of AD mice are significantly
increased compared to DRG of control mice, and that these increases are significantly
suppressed by CsA treatment. In addition, CsA suppressed epidermal thickness and the
infiltration of immune cells, such as IL-31+ cells, CD4+ T cells, mast cells, and eosinophils,
as well as the proliferation of IENFs [40] (Figure 2).
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Figure 2. Antipruritic mechanism of CsA for intractable itch in AD. CsA down-regulates expressions
of IL-31RA and NK1R in peripheral nerves. CsA also inhibits the infiltration of immune cells, such as
CD4+ T cells, mast cells, and eosinophils. In addition, CsA reduces the perception of itch stimuli by
suppressing the proliferation of IENFs.

Skin lesions and blood IL-31 levels were significantly increased in AD patients and
positively correlated with scores on a tool that assesses severity of AD (Severity SCORing
Atopic Dermatitis; SCORAD), while CsA decreased blood IL-31 levels, which correlated
with reduction in disease severity and the attenuation of itch [41].

CsA effectively reduced disease severity, attenuated itch, and improved QOL in
patients with psoriasis [42]. Based on these findings, CsA may effectively ameliorate itch
and inflammation not only in AD, but also in psoriasis. However, CsA dosing may be
restricted in patients with liver or kidney damage who are taking colchicine, which is
contraindicated.
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2.4. Antibiotics

An abnormal composition of bacterial species, called dysbiosis, was found in AD
skin lesions, and Staphylococcus aureus (S. aureus) was detected [43]. S. aureus colonization
has been shown to enhance Th2 cell differentiation in AD [44]. Macrolide antimicrobials
are known to exhibit not only antibacterial activity but also anti-inflammatory and im-
munomodulating activities and are presumed to be effective against various skin diseases.
A recent study reported that the application of ointment containing josamycin (Adipogen,
Liestal, Switzerland) to the skin of AD mice attenuated dermatitis, reduced the number of
S. aureus by inhibiting S. aureus colonization and Th2 cell differentiation, down-regulated
IL-31 expression, and suppressed itch in skin [45]. Furthermore, roxithromycin (Rulid,
Sanofi, Paris, France) and clarithromycin (Brand name Biaxin, (Abbott Laboratories, IL,
USA) among others) ameliorated itch in antihistamine-resistant AD patients and patients
with psoriasis and chronic pruritus [46].

Itch signals generated in the peripheral skin excite primary sensory nerve fibers, which
relay signals to the brain via spinal dorsal horn neurons [47]. We previously demonstrated
that the number of microglia, a type of glial cell, was increased in the spinal dorsal horn of
AD mice. Furthermore, the intrathecal administration of minocycline (minomycin; Pfizer,
New York, NY, USA), an inhibitor of microglial activation, to AD mice suppressed itch and
attenuated dermatitis [48]. These findings suggest that microglia in the dorsal horn of the
spinal cord are involved in intractable pruritus and may be one of the therapeutic targets
for intractable pruritus (Figure 3). However, these antibiotics are off-label for itch.
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Figure 3. Antipruritic mechanism of minocycline in AD. The number of microglia is increased in
the dorsal horn of the spinal cord of mice with AD. The administration of minocycline decreases the
number of microglia in the spinal dorsal horn and suppresses itch and dermatitis.
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2.5. Crotamiton

Crotamiton is a drug that is applied externally as an antipruritic, as well as an antisca-
bies measure. Crotamiton (Wako Pure Chemical Industries, Ltd., Osaka, Japan) was shown
to be effective against histamine-, serotonin-, SLIGRL-NH2 (Protease activated receptor
(PAR) 2 agonist)-, and chloroquine-induced itch and DRG responses [49,50]. In addition,
it inhibited the responses of DRG neurons to histamine, chloroquine, and GSK1016790A,
a TRPV4-selective agonist [50,51]. Therefore, crotamiton suppresses PAR2, TRPV1, TRP
ankyrin (A) 1, and TRPV4-mediated itch [52].

2.6. PDE4 Inhibitor

PDE4, which catalyzes the conversion of cyclic adenosine 3′,5′-monophosphate (cAMP)
to 5′-AMP, plays a critical role in the pathogenesis of inflammatory disorders [53]. OPA-
15406 ointment (Difamilast, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan), a PDE4 in-
hibitor, ameliorated AD symptoms, including itch, in pediatric and adult AD patients [54–56].
Apremilast (Brand name Otezla (Amgen, CA, USA) among others) attenuated the symp-
toms of AD, hidradenitis suppurativa, and psoriasis, including itch [57–63]. In addition, itch
and other symptoms in AD were mitigated by crisaborole ointment (Eucrisa, Pfizer, New
York, NY, USA) [64–68]. A previous study demonstrated that crisaborole attenuated AD
symptoms by modulating epidermal hyperplasia/proliferation and Th2 and Th17/Th22
transcriptional profiles in AD lesions [66]. E6005 (Roivant Sciences Ltd., Basel, Switzerland)
also suppressed symptoms, including itch, in AD model mice and AD patients, as well as
SLIGRL-NH2-induced symptoms [53,69,70]. The expression of cAMP was up-regulated in
skin and DRG treated with E6005. Furthermore, capsaicin-induced DRG neuron responses
were inhibited by E6005, as well as the cAMP elevator, forskolin. In addition, SLIGRL-NH2-
induced DRG neuron responses were suppressed by E6005 and 8-bromo-cAMP, an analog
of cAMP. Based on these findings, E6005 may increase cAMP levels and suppress itch via
PAR2 [53,71].

There are various types of PDE4 inhibitors, and further studies are warranted to
examine their mechanisms of action and potential applications to the treatment of diseases.
OPA-15406 has been shown to improve AD symptoms, and its use is covered by health
insurance [72], which is applicable for psoriasis vulgaris and psoriatic arthritis.

2.7. Botulinum Toxin A

Acetylcholine has been demonstrated to mediate pruritus in AD. Botulinum toxin
type A (BT-A) blocks the release of acetylcholine and many other neurotransmitters from
the presynaptic vesicle by deactivating soluble N-ethylmaleimide sensitive factor attach-
ment protein receptor (SNARE) proteins. BT-A (trade name Botox (KC Pharmaceuticals,
Pomona, CF, USA)) relieved itching in patients with conditions, such as lichen simplex
chronicus (LSC), brachioradial pruritus, inverse psoriasis, post-burning itch, lichen planus,
hypertrophic lichen planus, and postherpetic neuralgia [73–75]. In addition, there were
statistically significant post-treatment reductions in both the severity strata for eczema
area and severity index (EASI) score in LSC cases and the psoriasis area and severity index
(PASI) score in inverse psoriasis cases [75]. In patients with Fox–Fordyce disease, treatment
with BT-A significantly improved not only pruritus but also hyperhidrosis [76]. BT-A
inhibited degranulation of mast cells and suppressed histaminergic itch [77,78]. Moreover,
BT-A also inhibited mast cell independent chloroquine-induced itch [78]. Triamcinolone
acetonide (TAC) is widely used to treat pathologic scars, but scar itch was significantly
reduced by TAC combined with BT-A than TAC alone. In rat, postburn itch was mitigated
by treatment with TAC, BT-A, and TAC/BT-A. TAC/BT-A treatment significantly decreased
the density of IENFs in burn lesions relative to untreated burn lesions and downregulated
the expressions of nerve growth factor (NGF) and TRPV1 [79].

From the above, we can infer that BT-A is effective for the treatment of histaminergic
and non-histaminergic itch.
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2.8. Herbal Medicines

Herbal medicines have long been used as antipruritics. Byakko-ka-ninjin (Tochimoto
Tenkaido, Osaka, Japan), licorice gel, Yokukansan (YKS; Tsumura & Co., Tokyo, Japan),
Xiao-Feng-Sang (Sheng Chang Pharmaceutical Company, Taipei, Taiwan), Pei Tu Qing Xin
(PTQX; Jiangyin Tian Jiang Pharmaceutical Co., Ltd., Jiangyin, China), and Huanglian Jiedu
decoction (HLJDT) are known to be effective for itch of AD [80–85].

YKS was shown to inhibit the infiltration of immune cells, such as mast cells and
eosinophils, and attenuate itch in AD model mice. Moreover, serum corticosterone levels
were decreased in AD model mice [82]. PTQX inhibited mast cell infiltration into the skin
region in AD model mice, suppressing dermatitis and itch and reducing serum IgE levels.
In addition, CD4+IL-4+ T cell differentiation and regulatory T cell (Treg) infiltration were
found to be inhibited, which suggested that PTQX regulates T cell differentiation and
the Th17/Treg balance [84]. AD model mice treated with HLJDT showed it ameliorated
dermatitis, reduced cytokine production, and decreased expression of molecules required
by dendritic cells (DC) to activate T cells, such as co-stimulatory molecules. Collectively,
these findings indicate that HLJDT suppresses inflammation and itch by regulating the
functions of DC [85].

The leaf extract of Rhamnus davurica (LERD), which is used to treat ich, has been
reported to inhibit the Fyn/Syk pathway in mast cells, suggesting that it suppresses allergic
activity, including itch [86]. Spirodelae Herba (SH; Medicinal Materials Company, Ulsan,
Korea), which is an effective treatment for itch in AD, ameliorated AD symptoms by
modulating the activation of the calcium ion channels Orai1 and TPRV4 and inhibiting
mast cell degranulation [87].

In non-AD itch, Osthole (Sigma-Aldrich Corp., St. Louis, MO, USA), an active
coumarin isolated from Cnidium monnieri (L.) Cusson, suppressed histamine-induced
itch by inhibiting TRPV1 activation [88].

Cnidium monnieri (Cnidii Fructus; Tochimoto Tenkaido Co., Ltd., Osaka, Japan) and
Unsei-in (Kanebo, Tokyo, Japan) are also effective against SP-induced itch. Nitric oxide
(NO) enhanced SP-induced itch and Unsei-in reduced SP-induced itch by suppressing the
expression of NO synthase in lesional skin [89,90].

Therefore, herbal medicines are effective treatments for not only AD, but also various
types of itch.

3. Other Therapeutic Options for Itch
3.1. Phototherapy

Ultraviolet (UV)-based therapies, such as psoralen ultraviolet A (PUVA), narrowband-
ultraviolet B (NB-UVB), and excimer lamps, are effective treatments for chronic pruritus in
patients with AD and psoriasis [91–93]. In the guidelines for AD, phototherapy is indicated
as a treatment for patients who do not respond to or cannot be controlled with steroid
ointments, topical moisturizers, calcineurin inhibitors, and other treatments [94].

NB-UVB is a device with an irradiation range centered at 311 nm, which removes the
harmful wavelengths present in UVB and is a highly effective treatment, while excimer
lamps are local devices that generate rays at 308 nm. UVA (320–400 nm) is subdivided
into UVA2 (320–340 nm) and UVA1 (340–400 nm); PUVA uses UVA1. UVA rays penetrate
deeper than UVB, while UVB is more readily absorbed by DNA than UVA [95].

We previously demonstrated that PUVA therapy exerted anti-pruritic effects by elimi-
nating the hyperplasia of IENFs in AD patients and a dry skin model. Furthermore, the
expression of nerve elongation factor (NGF) was down-regulated in the PUVA-treated
group, whereas that of semaphorin 3A (Sema3A), a nerve repulsive factor, was significantly
up-regulated in the skin of AD patients and slightly elevated in the skin of dry skin model
mice [96,97]. In dry skin model mice, NB-UVB therapy exerted more potent quenching
effects on IENFs than did PUVA, significantly down-regulated NGF expression, and signifi-
cantly up-regulated Sema3A expression in the epidermis [97]. Excimer lamps suppressed
itch more potently than did NB-UVB in AD model mice by suppressing IENFs, the number
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of which was increased in dry skin [97,98]. In contrast to NB-UVB and PUVA, excimer
lamp therapy directly affected IENFs without altering the expression of axon guidance
molecules and induced neurodegeneration, resulting in the disappearance of IENFs [98].
These findings suggest that PUVA and NB-UVB suppress itch by normalizing the balance
of the expression of axon guidance molecules in epidermal keratinocytes, whereas excimer
lamps act directly on nerve fibers to suppress itch (Figure 4).
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Figure 4. Antipruritic mechanism of phototherapy. In dry skin, the up-regulated expression of
NGF and down-regulated expression of Sema3A increase the number of IENFs. When various
types of phototherapy are used for dry skin, they inhibit IENF hyperplasia in the order of PUVA
therapy < NB-UVB < excimer lamps. The inhibitory effects of PUVA and NB-UVB therapy on IENF
proliferation are due to the down-regulated expression of nerve elongation factors and up-regulated
expression of nerve repulsion factors in keratinocytes; however, excimer lamps act directly on IENFs
and induce neurodegeneration without altering the expression of these axon guidance molecules.

Therefore, phototherapy is useful in the treatment of itch, while PUVA therapy requires
the administration of soralen, as described above, and long-term PUVA therapy has been
reported to increase the risk of skin carcinogenesis [99,100]. NB-UVB therapy does not
significantly increase the risk of skin cancer but needs to be avoided in patients with
photosensitivity [100].

3.2. Acupuncture Therapy

Acupuncture is used to treat pruritus. Symptoms, including itch, were attenuated
by acupuncture in AD model animals and patients [101–107] and in uremic pruritus
patients [108,109].

The antipruritic mechanism of acupuncture treatment at LI11 for AD was previously
reported to be mediated by dynorphin in the spinal cord and the blockade of 5-HT2 recep-
tors (R) and 5-HT7R to inhibit serotonin-induced itch [101,107]. Acupuncture treatment at
LI11, PC6, HT7, SP10, ST36, and ear was also shown to be effective for histamine-induced
itch, both therapeutically and prophylactically [110–112]. Brain-focused studies demon-
strated that a decreased response in the putamen, an itch-evoked activation region, and part
of the midcingulate cortex (pMCC) were involved in the suppressive effects of acupuncture
at LI11, PC6, HT7, SP10, ST36, and HT3 on itch [106,112].

Itch in a dry skin model mouse induced by an acetone/diethyl ether and water
treatment was also suppressed by acupuncture at LI4 and LI11. In this model, itch was
inhibited by suppressing gastrin-releasing peptide receptor (GRPR) expression via the
activation of KOR in the dorsal horn of the spinal cord [113].

A previous study reported that morphine-induced itch was ameliorated by acupunc-
ture at LI11 and SP10 through the Toll-like receptor (TLR) 2/4-myeloid differentiation factor
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(MyD) 88-NF-κB pathway of the spinal cord [114]. Moreover, itch induced by one of the
secondary bile acids, deoxycholic acid, was attenuated by acupuncture at LI4 and LI11 via
suppressing the activation of microglia [115]. Thus, acupuncture therapy is useful for the
treatment of itch caused by various factors.

4. Discussion

Itch (pruritus) is a self-defense system against external foreign objects and an alarm
reaction that alerts the whole body, including the skin, of abnormalities. Histamine is
one of the major itch mediators, but recent studies have showed histamine-dependent
and histamine-independent pathways in transmitting itch. Other systems, including
proteases, neuropeptides, cytokines, and opioids, and their cognate receptors, such as
thermoreceptors, PARs, Mas-related G protein-coupled receptors (Mrgprs) and opioid
receptors, are involved in the histamine-independent itch pathway. The sensation of itch is
generated by the binding of itch-inducing substances to specific receptors on peripheral
sensory afferent, such as unmyelinated C-fiber afferents and the myelinated Aδ fiber
afferents. This excitatory information from sensory nerve fibers transmits itch signals by
various neurotransmitters to secondary neurons distributed in the dorsal horn of the spinal
cord. The information from the spinal cord passes through the thalamus and posterior
parietal cortex and is ultimately processed at multiple regions of the brain [47,116,117].
Many kinds of mediators, receptors, and channels are involved in itch signaling among
the skin nervous system, skin cells, and central nervous systems, including Mrgprs, TLR,
cytokines, and TRP channels [47]. Therefore, we need to provide treatment tailored to the
pathology, and treatment guidelines for troublesome itch have not yet been established.

Of the itch treatments described in this review, none are covered by insurance except
for CsA, OPA-15406, and phototherapy. However, the insurance coverage described in this
review has limitations from a global perspective. Moreover, NTP is currently available
only in Japan and China. In addition, emollients also have a certain therapeutic effect,
but patients often find the application of ointments cumbersome, which may reduce
compliance [118]. In light of the above, even with the treatment methods presented
here, topical medication should take into consideration the patient’s compliance with
local preparations. Therefore, it is also important to provide guidance for patients on
treatment methods.

5. Conclusions

This review summarized the antipruritic effects and mechanisms of action of treat-
ment options for itch, such as antidepressants, antineuralgics, cyclosporine, antibiotics,
crotamiton, PDE4 inhibitors, botulinum toxin type A, herbal medicine, phototherapy, and
acupuncture. Itch is an equally or even more distressing sensation than pain and signif-
icantly reduces the QOL of patients. Recent advancements have been achieved in the
establishment of objective assessments of itch and development of animal models, and the
molecular and cellular mechanisms underlying itch are being elucidated. In the future,
the antipruritic mechanisms of the treatments and novel agents introduced here will be
clarified through the development of bidirectional clinical and basic medical research.
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