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The challenge of heart rate monitoring based on wrist photoplethysmography (PPG) during heavy exercise is addressed. PPG is susceptible to
motion artefacts, which have to be mitigated for accurate heart rate estimation. Motion artefacts are particularly apparent for wrist devices, for
example, a smart watch, because of the high mobility of the arms. Proposed is a low complexity highly accurate heart rate estimation method
for continuous heart rate monitoring using wrist PPG. The proposed method achieved 2.57% mean absolute error in a test data set where
subjects ran for a maximum speed of 17 km/h.
1. Introduction: Photoplethysmography (PPG) has been used in
clinical settings for measuring cardiovascular functions such as
heart rate and arterial blood oxygen saturation for decades.
Optical measurement techniques permit patients to be monitored
comfortably and non-invasively without the need for electrodes
and accompanying skin preparation methods. Along with its low
manufacturing cost, these merits of PPG led to its early
integration into mobile devices such as smartphones providing
heart rate measurements for consumers [1]. Despite the ubiquity
of smartphones, wearable devices deliver an even more natural,
non-intrusive and seamless user experience. With the recent
introduction of PPG-equipped wearable devices, such as smart
watches, continuous heart rate monitoring has become feasible,
thereby enabling users to effortlessly achieve personal wellness
goals.

The optical nature of PPG sensors, however, renders the mea-
surements susceptible to motion artefacts from variable and discon-
tinuous contact between the device and skin. Mitigating such
motion artefacts has been one of the major research topics in
PPG-based heart rate monitoring. A number of experiments have
been designed to incorporate mild magnitudes of motion, from in-
voluntary finger motion, to walking or jogging [2–4]. Others have
evaluated the effects of intense exercise such as uphill running at
high speeds (16 km/h) [5]. Methods based on the use of adaptive
noise cancellation [4] or filtering [6], signal decompositions such
as Fourier spectrum [3], heuristic methods [5], singular value de-
composition, independent component analysis (ICA) [7, 8] and
constrained ICA [9] have been proposed. In most methods,
motion information based on accelerometers are used to provide
additional means for separating motion and heart rate signals,
with the exception of the work by Lopez et al. detailing a heuristic
method where motion artefacts were dissociated from cardiac
signals solely on the basis of a single PPG signal without the use
of an accelerometer [6]. Such algorithms have enabled wearable
PPG heart rate monitoring to become realisable. The locations at
which PPG signals are measured range from fingertips, ears and
forehead, while others have looked into obtaining measurements
at the wrist using watch-type devices. However, motion artefacts
are particularly strong and frequently encountered in watch-type
devices due to high mobility associated with the arms. In addition,
for a watch device that may be paired to a smartphone,
low-complexity methods are more desirable and fit the constrained
hardware resources on the wearable device side (e.g. watch) and
also for the paired device (i.e. smartphone) owing to the
multi-tasking features that consumers are liable to utilise.
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Here, a lightweight and robust heart rate monitoring method is
proposed for PPG measurements by means of a watch form-factor
device. The lightweight method achieved a mean absolute error
of 2.57% during heavy exercise. To better simulate the real world
running experience and yet push the technology limits, the experi-
mental protocol entailed intense running exercises with maximum
speeds of 17.5 km/h with additional pacing requirements and arm
movements [10]. The computational complexity [11] per second
of the proposed method is dominated by the complexity O(L log
L) of computing a fast Fourier transform, where the window size
L can be as small as 100 with an error <5%.

In Section 2, the proposed method and algorithms developed are
detailed. The PPG-embedded watch device and the experimental
protocol are introduced in Section 3, followed by the results in
Section 4. Section 5 concludes this paper.

2. Algorithm design: The algorithm takes streaming PPG and
accelerometer data as inputs, as illustrated Fig. 1, and an example
of step-by-step results is shown in Fig. 2. There are four sets of
algorithms as the building blocks of the proposed method:

† preprocessing,
† signal representation using short-time Fourier transform,
† detection and ranking of potential cardiac and motion compo-
nents, and
† robust heart rate estimation.

Except for the preprocessing, which is done continuously, the
other steps operate on each signal segment of L samples, while
two consecutive segments have an overlap of M samples.

2.1. Preprocessing: In the raw PPG signal, a large DC component
and baseline wandering can be observed as shown in Fig. 2a.
Both can be removed continuously by applying an infinite
impulse response bandpass filter. Examples of such filters are
Butterworth filters with an order of <10 with a passband from 0.5
to 30 Hz.

2.2. Signal representation using short-time Fourier transform: The
filtered signal is then processed segment by segment. For each
segment, the Fourier spectrum is computed. Instead of storing the
entire spectrum, only the frequency range within which human
heart rate falls are stored. Motion artefacts corresponding to
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Figure 1 System diagram of proposed method
The proposed method contains four components: preprocessing, signal representation using short-time Fourier transform, detection of PPG and motion peak and
rank PPG peaks as potential cardiac signal which outputs a raw heart rate estimate, and the Robust heart rate estimation
periodic footsteps and arm movements with harmonics can be
recognised by comparing the resulting PPG spectrum and the
motion spectrum as shown in Fig. 2b. Note that in addition, there
are other motion artefacts that appear less dominant in the motion
spectrum, but are strongly represented in the PPG spectrum.
In the PPG spectrum, there is also a trend of baseline energy

gradually decreasing from low frequency to high frequency. Such
baseline trends can be removed using a 1/f q model.

2.3. Detection and ranking of potential cardiac and motion
components: There are a total of Np and Nm peaks detected in
each PPG and motion spectrum, respectively. For each PPG peak
at time t, whose frequency is denoted as HRi(t), three scores are
computed:

† E(HRi(t)) is the normalised energy of the peak relative to the
largest component, peak or total energy, such that all cases are iden-
tical up to a constant scaling. Normalisation by the largest compo-
nent was used in experiments presented in this paper due to it
having the lowest complexity.
† M(HRi(t)) is a measure of the closeness of HRi(t) to a motion
peak of the segment by first computing

M∗(HRi(t)) = min
j

HRi(t)

ARj(t)
− 1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
+ e (1)

where ARj(t) denotes the frequencies of motion peaks at time t and
e is a robustness parameter enforcing M*(HRi(t)) > 0 such that
when motion occupies the same frequency as the heart rate, the
term is not zero. Then

M (HRi(t)) = 1 if M∗(HRi(t)) . Cm

M (HRi(t)) =
M∗(HRi(t))

Cm
otherwise

(2)

where Cm is a parameter reducing the score of a PPG peak whose
frequency is close to a motion peak in the accelerometer channel.
† D(HRi(t)) is a function measuring how close the peak is to pre-
viously estimated heart rates. In particular, D is chosen to be
Gaussian with the median and variance of five preceding heart
rate estimates as the mean and the variance. Note that using the
mean of preceding heart rate estimates as the mean of D may be
less robust to estimation error. For initialisation, baseline heart
rate measured prior to exercise is used.

The final score of the PPG peaks is computed as

S(HRi(t)) = E(HRi(t))M (HRi(t))D(HRi(t)) (3)

Thus, the algorithm favours PPG peaks that are represented with
comparatively high energy and are different from motion
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frequencies while consistent with previous heart rates. The fre-
quency of the selected peak is defined as the raw heart rate estimate,
and denoted as rHR, where r highlights raw estimates.

2.4. Robust heart rate estimation: There are, however, cases where
these raw heart rate estimates, computed in Section 2.3, may be
erroneous owing to the severity of extraneous noise, and the
method should be robust to such raw estimation error. In the final
step, the robust heart rate estimate is updated based on the
difference between rHR(t) and HR(t− 1) denoted as

dHR(t) = rHR(t)− HR(t − 1) (4)

The larger the magnitude of this difference, the smaller the update.
The final heart rate estimate is computed in accordance to a penalty
function or a set of logical rules implementing such a concept,
illustrated in Fig. 3, with the form that if

0 ≤ d+w−1 ≤
dHR(t)

HR(t − 1)
≤ d+w (5)

then

HR(t) = HR(t − 1)+min (dHR(t), h+w ) (6)

and

d−w ≤ dHR(t)

HR(t − 1)
≤ d−w−1 ≤ 0 (7)

then

HR(t) = HR(t − 1)−min (dHR(t), h−w ) (8)

where d∗w, ∗ [ {+ , − } defines regularisation intervals within
which the update from HR(t− 1) to HR(t) is bounded by
h∗w, ∗ [ {+ , − }. The w∈ {1, …, W} is the index of the rules,
and + and− highlight the needs of different rules for increases
and decreases in heart rate estimates, with a special case that
d−0 = d+0 = d0 = 0. It is empirically observed that heart rate may
raise steeply in a rapid manner but slow down more gradually,
and that, for a better result, h+w tends to be larger than h−w , and the
intervals defined by d+w also tend to be wider than intervals
defined by d−w . Also, h

∗
w . h∗w+1, ∗ [ {+ , −} enforces a smaller

update when the difference, dHR(t) gets large.
Computational complexity is lower when converting a penalty

function to logical rules of the aforementioned form.
Note that this step is different from choosing a function D heavily

favouring PPG peaks close to the previous heart rate from the earlier
step. Such a function tends to result in narrower heart rate estimates,
making it less adaptive to heart rate changes and less robust to errors
in earlier heart rate estimates. On the other hand, with a moderate D
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Figure 2 Diagrammatic representation of the algorithmic steps of the motion robust heart rate monitoring algorithm
a There is baseline wandering in raw PPG signal (note that the figure is magnified between 200 and 215 s)
b Baseline wandering is removed by applying bandpass filtering (see text)
c PPG spectra have apparent motion artefacts that can be compared with motion spectra computed from accelerometer signal shown in d
e In each spectra, five peaks with highest energy are shown
f Three motion peaks with highest peak are shown where motion leads to high energy peaks in both channels
g Scores of peaks across PPG spectra are shown
h Frequency, in beats per minute, of peak with highest score is selected as raw heart rate estimate, which contains a few errors
i Robust heart rate leads to highly accurate results
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Figure 3 Illustration of robust heart rate estimation rules
The maximal update allowed is bounded according to the difference of the
current raw estimate and previous heart rate estimates

F
j

and a robust step, the algorithm can still choose the correct PPG
peak despite previous errors and gradually update the final estimates
back to the accurate value.

2.5. Algorithm complexity: The computational complexity of each
step per segment, or per second, is low:

† Preprocessing has a computational complexity of O(K ) per
second, where K is the sampling rate.
† Computing Fourier spectrum has a complexity ofO(L log(L)) per
second, where L = TK is the window size and T is the window
length in seconds, depending on the specific transformation algo-
rithm being used.
† Detection of localised peaks has a complexity that is dominated
by O(μ(Np + Nm)K) per second, where μ is the ratio between the
number of frequency components of interest (typically between
45 and 206 bpm) against the window size where, in most cases,
r < 0.2 for a sampling rate of 100 Hz and segment length L > 500.
Also, (Np + Nm)≤ 10 based on the experimental results in this
study. Thus the complexity of this step can be simplified as being
linear in the sampling rate K.
† The complexity of selection among peaks and the robust heart
rate estimates is negligible compared with other steps, especially
if the robust estimate is obtained by defining a short list of simple
rules. In our empirical case, the number of rules is <8.

It can be concluded that step 2 of computing the FFT with a com-
plexity of O(TK log(TK)) per second dominates the overall com-
plexity, compared with O(K ) in the other steps.

3. Experimental protocol and hardware: In previous studies, the
exercise protocol is rather monotonous, such that the subjects are
asked to exercise while following a simple increase and decrease
in the intensity of the protocol, during which the heart rate tends
to also follow a unimodal pattern.
Here, the running experiment is designed with extra complexity,

during which the heart rate is expected to accelerate and decelerate
at least twice. Additional arm actions are incorporated into the
protocol to simulate real world running experiences.
igure 4 Illustration of the experimental protocol, where half of the sub-
ects ran faster than 17 km/h during the heaviest part of the protocol

F
a
f
b
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3.1. Experimental protocol: The experiments were conducted on a
treadmill, where speed was adjusted and measured according to
the protocol requirements. The protocol consists of seven steps as
shown in Fig. 4:

1. An optional warm-up period being recorded, where a subject
may choose to warm-up offline. This corresponded to different
user preferences as to when to begin the monitoring period.
2. Running at 9 km/h for 150 s, during which a set of actions (e.g.
arm movements) occur for half of the participants:

2.1 At the 30th second, lift the arm and look at the watch device
for 10 s.
2.2 At the 60th second, use the device-wearing arm to adjust
clothing and wipe sweat for 10 s.
2.3 At the 90th second, repeat steps 2.1 and 2.2 for 10 s.

3. Speed up to at least 17 km/h, half of the subjects, or 15 km/h
within 30 s.
4. Maintain such speed for 30 s.
5. Reduce the speed to half of the top speed for 30 s.
6. Speed up again up to 15 km/h or higher within 30 s.
7. Reduce the speed to stop based on the subject’s preferred pacing.

A three-lead one-channel electrocardiogram (ECG) device was
used to collect the reference data for comparing the PPG heart
rate results. A mobile app was designed to simultaneously
record both the ECG and the PPG signal with synchronised
starting and terminating points and POSIX timestamp. Both raw
ECG and PPG signals were transferred without any filtering or
preprocessing.

Ten male volunteers (age range, 29–47 years) participated in the
experiment. Their ethnicities are Caucasian (4), East Asian (2) and
igure 5 Wrist devices used
Watch type form factor devices used in the experiment, see the main text
or specifications
LED sources and sensor of the devices
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Figure 6 Modified BA plot, the histogram of HRppg−HRecg with bin width =5, scatter plot of PPG and ECG, and scatter plot of SNR against absolute error
a Modified BA with reference ECG heart rate as x-axis instead of average of PPG and ECG heart rate
b Histogram of difference between PPG and ECG heart rate
In (a) and (b), red dashed line is mean bias (=1.14 bpm) of estimated PPG heart rate and dashed blue lines are bounds of 95% conference interval
c Scatter plot of PPG and ECG heart rate
The red line is linear regression
d Scatter plot of SNR against absolute error shows negative impact of low SNR on accuracy
The red line is linear regression
Middle Eastern/Indian (4). Four subjects maintained a regular
fitness regimen that entailed marathon training routines. Baseline
heart rate measured in the standing position prior to running
ranged from 54 to 108 beats per minute.

3.2. Hardware configuration: The wrist devices used in this study
are shown in Fig. 5, the body of the watch (Fig. 5a) is 5 cm long,
2.5 cm wide and its thickest part is 0.9 cm while the thinnest part
is 0.3 cm. The watch strap was made of non-stretchable rubber.
The PPG sensor (Fig. 5b) consisted of two different wavelengths
[565 nm (green) and 590 nm (amber yellow)] with two
light-emitting diodes (LEDs) each and one photo-detector, placed
at the centre of the bottom case of the device (5 × 5 mm2) in
order for the sensor to maintain direct contact with the user’s
skin. Three accelerometers measuring orthogonal directions were
built into the device to capture motions. The device is
rechargeable through micro USB and an adapter clipped around
the watch. The sampling rate is 100 Hz, and the data collected by
the wrist device can be transmitted to a recording mobile device
or a laptop via Bluetooth connection. A three-channel ECG
amplifier from Cognionics (San Diego, CA, USA) was used to
collect reference heart rate during the experimental protocol with
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a sampling rate of 500 Hz. The data was transmitted to the same
device as the PPG data.

4. Experimental results: The aforementioned heart rate estimate
method was tested using data from the ten subjects. In this Letter,
the major error measured is defined to be the mean absolute error
percentage as

kk|HRppg(t)− HRecg(t)|
HRecg(t)

l
t
l

s
% (9)

where the average is taken over all time points t of a subject, and
then averaged over all subjects.

The average performance among all ten subjects was 2.57%,
where the segment length, L is set to 2048, with a refreshing rate
of 1 s such that the overlap of consecutive segments was M = 100
samples, and other parameters were chosen such that a 20% vari-
ation in the selection relative to previously reported metrics does
not lead to a performance degradation of >1%. The optimal
choice of LED colour is based on the ethnicity of the subject
such that yellow LED signal was used for Caucasians and East
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Asians, and green LED for Middle Eastern and Indian subjects.
Using the yellow LED led to a 3.29% error compared with green
LED of 2.98%. Matsumura et al. [12] conducted a comparison
among blue, red and green LEDs for PPG and suggested that
using green LEDs leads to better performance. Their choice of
LED colour was not based on ethnicity. To further reduce compu-
tational complexity, the signals were downsampled by 5 and L =
400. The resulting error was 2.76%. With downsampling by ten
and a shorter window of 10 s where L = 100, the error was 4.72%.
The modified Bland–Altman (BA) plot and the histogram of

HRppg −HRecg with bin width = 5 (right) are shown in Figs. 6a
and b. The modified BA plot shows the ECG heart rate HRecg on
the x-axis, as in this context the ECG heart rate serve as the
reference standard, verifying the proposed method using a PPG
watch device. The mean bias is −1.14 beats per minute (bpm),
and the 95% limits of agreement are from −10.6231 to 8.34 bpm.
The histogram indicates that the majority of error is within
±2.5 bpm. Fig. 6c shows the scatter plot of estimated heart rate
against the reference ECG heart rate, with correlation coefficient
r = 0.9889, p < 0.00001.
An important factor of PPG heart rate estimation algorithm perform-

ance lies in the signal properties determined by the form factor, experi-
mental protocol, subjects included and the type of PPG sensor. We
measure the signal quality by defining a signal-to-noise ratio (SNR)
measured where the signal energy is defined as the energy of the fre-
quency component in the PPG spectrum corresponding to the heart
rate frequency obtained from the ECG sensor, and the noise is
defined as the total energy of the rest spectrum within the frequency
range of interest (45–206 bpm). The instantaneous SNR is defined
over each segment. The average SNR is −15.77 dB. Fig. 6d shows
that the algorithm performance is negatively correlated with SNR (r
=−0.21, p < 0.0001). There are a limited number of previously pub-
lished studies that have reported SNR measures, with [5] being one
example, where the SNR is −1.6 dB. Note that in [5], the noise
energy is defined as the sum of all energy of PPG peaks other than
the selected HR peak. As mentioned in their work, the SNR defined
as such is likely to be overestimated. Nonetheless, a 14 dB SNR differ-
ence as we noted continues to highlight the challenges encountered in
heart rate estimation from PPG measurements from a watch device
during heavy exercise.

5. Conclusion: In this Letter, a highly accurate method for
monitoring heart rate based on PPG from a wrist form factor
device is proposed. During a heavy exercise protocol with
running at a maximal speed of 17 km/h, the algorithm performs
at an error of 2.57%, despite a low SNR. The complexity of the
algorithm is low, at an order of O(L log L) per second that an
error of <5% was achieved with L = 100 and a sampling rate of
Healthcare Technology Letters, 2015, Vol. 2, Iss. 1, pp. 6–11
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10 Hz. The results also suggest benefits of optimising different LED
wavelengths for different ethnicities.
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