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Abstract
Speech diagnosis of Parkinson’s disease (PD) as a non-invasive and simple diagnosis method is particularly worth

exploring. However, the number of samples of speech-based PD is relatively small, and there exist discrepancies in the

distribution between subjects. In order to solve the two problems, a novel unsupervised two-step sparse transfer learning is

proposed in this paper to tackle with PD speech diagnosis. In the first step, convolution sparse coding with the coordinate

selection of samples and features is designed to learn speech structure from the source domain to replenish sample

information of the target domain. In the second step, joint local structure distribution alignment is designed to maintain the

neighbor relationship between the respective samples of the training set and test set, and reduce the distribution difference

between the two domains at the same time. Two representative public PD speech datasets and one real-world PD speech

dataset were exploited to verify the proposed method on PD speech diagnosis. Experimental results demonstrate that each

step of the proposed method has a positive effect on the PD speech classification results, and it also delivers superior

performance over the existing relative methods.

Keywords Speech diagnosis � Parkinson’s disease � Two-step sparse transfer learning � Convolution sparse coding �
Domain adaptation

1 Introduction

Parkinson’s disease (PD) is the second most common

degenerative disorder of the nervous system, occurs mostly

in the elderly population, and generally deteriorates over

time [1]. According to the research, more than 5% of PD is

hereditary [2]. With the aging population trend, the number

of cases increased year by year [3]. So far, there is no way

to cure or prevent PD, but this disease can be controlled

through early diagnosis and treatment [4, 5]. Thus, early

diagnosis is critical to improve the patient’s quality of life

and prolong their lives [6].

Speech disorder is one of the typical symptoms of PD

which is commonly called Parkinson’s dysarthria [7–9].

Several studies in the literature have described the speech

impairments of PD patients in terms of phonation, articu-

lation, and prosody [10–12]. Along with these three aspects

of speech, intelligibility is also deteriorated in PD patients

causing loss of communication abilities and social isola-

tion, especially at advanced stages of the disease [13].

Therefore, it is of great scientific value and practical sig-

nificance to further study PD diagnostic ability based on

speech datasets, since utilizing speech data can help

develop a simple, fast, and non-invasive early PD diag-

nostic method. The literature shows that a sizable number

of researchers have made many attempts to classify people

correctly as either PD patients or healthy people based on
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speech data. They are mostly based on different extracted

features, feature selection/transformation methods

[8, 14–29], or classifiers [14–16, 20–22, 27, 30–35] to

maximize the accuracy of classification of Parkinson’s

disease. As for feature extraction, the PD speech feature

data primarily include pitch type, energy type, speed type,

and content type [8, 14, 15]. About feature selec-

tion/transformation, the frequently used algorithms are

neural network (NN) based [16–18], principal component

analysis (PCA) [19–21], serial search based [14, 19, 21],

evolutionary based [18, 22, 23], p value based [15, 24],

relevance based [25–27], entropy based [28], and LDA

based [29] methods. As for classifier design, support vector

machine (SVM) [14–16] and k-nearest neighbor (KNN)

[14, 15, 20] are two most commonly used classifiers.

Others are random forest (RF) [14, 27], Bayesian network

[30, 31], discrimination algorithm (DA) [21, 32], proba-

bilistic neural network (PNN) [33–35], decision tree

[21, 34], non-nested generalized exemplars (NNge) [35],

and so on. Although there are many classification algo-

rithms for PD diagnosis, the predicted results still leave

much room to improve.

It is worth noting that all the methods above are based

on the classification of the original speech dataset and do

not take the small sample problem of the dataset into

consideration. Transfer learning has the potential to address

these problems [36], and the studies [14, 16, 37] confirm

the effectiveness of transfer learning in the diagnosis of

PD. However, these transfer learning methods only pay

attention to the distribution difference between the source

domain and the target domain and ignore the difference

between the data diversity of the target domain. Some

researchers [38–40] have shown that the training set and

test set can be regarded as different domains to reduce data

distribution difference, but there are few studies in the field

of PD speech diagnosis. All the transfer learning methods

mentioned above belong to one-step transfer learning and

do the transfer from different datasets. The two-step

transfer learning methods have achieved significant results

in some areas recently [41–43]. For instance, Sakurai et al.

[41] achieved semantic plant segmentation by two-step

domain adaptation: firstly, adaptation is from a large

amount of labeled data to a major category and then

adapted category adaptation from the major category to a

minor category; An et al. [42] realized age-related macular

degeneration diagnosis based on twice transfer of models:

firstly, a pre-trained VGG16 model was used, and then, the

fine-tuned model in the first step was to transfer learned

again to distinguish the images; Similar to G, Zhang et al.

[43] utilized two-step transfer learning to detect COVID-19

based on model-transfer, but in different models. Specifi-

cally, all the above two-step transfer approaches are based

on images and designed differently for different data

characteristics and tasks, but are not considered in PD

speech recognition. Moreover, there exist discrepancies in

the distribution between subjects of PD within single

dataset, but the existing methods did not considered this

point.

In order to solve the problems above, the unsupervised

two-step sparse transfer learning (TSTL) is proposed in this

paper in PD’s speech diagnosis. In the first step, convolu-

tion sparse coding learning with the coordinate selection of

samples and features (CSC&SF) is proposed to supplement

the structure information of PD speech, as for the small

samples. And in the second step, due to the discrepancies

of subjects, joint local structure distribution alignment

(JLSDA) is designed to realize distribution alignment of

the training set and test set and retain its original structure.

To sum up, the contributions and innovations of this

paper are mainly described as follows:

(1) A novel two-step transfer learning algorithm, called

TSTL is proposed for the classification of PD speech

data. The method can help learn useful information

from large unlabeled speech data, align the distribu-

tion of training set and test set, and retain the original

structure between samples at the same time.

(2) Transfer learning between different datasets and

transfer learning between the training set and test set

are combined to construct an unsupervised two-step

sparse transfer learning algorithm for the first time.

(3) For the first time in the same speech PD dataset, the

problem of individual differences among samples is

considered as the problem of distribution differences

between the training set and test set of PD speech

data.

The rest of this paper is organized as follows. Section 2

reviews prior works that are related to proposed method.

Section 3 introduces the theoretical part of the proposed

algorithm. Section 4 describes the experiments to verify

the effectiveness of TSTL and each step of it. Section 5 is

the discussions and conclusions about this proposed

method and future work.

2 Related works

The proposed method TSTL is a two-step transfer learning

method applied in PD speech diagnosis. Thus, this section

presents the detail of the prior works on two parts of

TLSLT.

The first step transfer learning is related to convolution

sparse coding (CSC) [44–46], which has great unsuper-

vised sparse learning ability and can find out the implicit

structures and patterns in the input data effectively. And

CSC can extract the features reflecting the structures and

9734 Neural Computing and Applications (2021) 33:9733–9750

123



relationship between features and samples, while control-

ling the number of the features. The transfer learning can

be combined with sparse coding [47] to extract more val-

ued information from the public speech datasets, thereby

solving the small sample problem and finding out the

structures and patterns implicit in the input data at the same

time. Due to the small size of PD speech datasets, it is

difficult to expand the amount of data. Then, enrich speech

structure information by CSC become a valid and feasible

way.

The second step transfer learning is concerned with

domain adaptation (DA) which aims at transferring shared

knowledge across different, but related tasks or domains

[48]. The common practice for unsupervised domain

adaptation (UDA) is to minimize the discrepancy between

domains to obtain domain-invariant features [49–53] or

learn more discriminative features, while performing

domain alignment [54–58]. And there are no labeled

instances in the target domain. According to whether the

feature space of the source domain and the target domain

are similar and have the same-dimensionality, UDA can be

divided into homogeneous unsupervised domain adaptation

(HoUDA) and heterogeneous unsupervised domain adap-

tation (HeUDA) [59]. Due to the small size of PD speech

datasets, like most domain adaptation models, TSTL is

focused on HoUDA.

And according to whether generalize deep convolutional

neural network to the domain adaptation scenario, UDA

can be divided into traditional UDA and deep UDA

methods. As for traditional UDA methods, transfer com-

ponent analysis (TCA) [48] and joint distribution adapta-

tion (JDA) [60] are based on maximum mean discrepancy

(MMD), geodesic flow kernel (GFK) [61] proposes to learn

the geodesic flow kernel between domains in manifold

space, manifold embedded distribution alignment (MEDA)

[62] learns a domain-invariant classifier, correlation

alignment (CORAL) [39] adjusts the covariance of differ-

ent domains. As for deep UDA methods, deep adaptation

networks (DAN) [63] applies MK-MMD to adapt multi-

layer feature, joint adaptation network (JAN) [64] adds

joint distribution on the basis of DAN, and inspired by

GANs, the single-adversarial model domain-adversarial

neural network (DANN) [65] and multi-adversarial model

conditional domain adversarial networks (CDANs) [66] are

proposed. Although those UDA show strong robustness

and generalization among datasets in various fields, the

most are applied in image classification and not match the

data characteristics of PD speech datasets. The typical

UDA methods are compared with proposed approach in

Sect. 4.

3 The proposed method

3.1 Problem formulation

The PD speech datasets have the typical characteristics of

small samples, which make the training sample insuffi-

cient, easily lead to overfitting, and worsens the general-

ization ability of the classification model. However, there

are few relevant methods for diagnosis of PD to deal with

the problems above, especially in the field of speech

diagnosis of PD. Besides, most algorithms do not consider

the effect of differences between Parkinson’s subjects. To

solve these problems, a two-step sparse transfer learning

idea is proposed here. In the first transfer step, the goal is to

learn useful information from the public speech data

(source domain) and transfer it to the PD speech dataset

(target domain) to increase the generalization ability of the

PD classification model. The purpose of the second transfer

step is to reduce discrepancies by aligning the Parkinson

data distribution from training subjects and test subjects. So

training subjects are regarded as the source domain, and

test subjects are the target domain in the second transfer

step. Besides, the original structure between samples is also

retained in this transfer step.

In the first transfer step, PD speech dataset is target

domain dataset F ¼ F~1;F~2; . . .;F~G

h iT

, where

F~i ¼ ½fi1; fi2; . . .; fiN �; 1� i�G, partitioned matrix on sub-

jects F ¼ ~F1; ~F2; . . .; ~FM

� �T
,

~Fi ¼

f11 f12 � � � f1N
f21 f22 � � � f2N
� � � � � � � � � � � �
fG01 fG02 � � � fG0N

2
664

3
775; 1� i�M. The total num-

ber of samples is G, number of features per sample is N, all

samples belong to M subject, that is, the number of samples

included in each subject is: G0 ¼ G=M. Before being used

as the source dataset in the first transfer step, the public

speech dataset is extended to a larger scale by injecting

different SNR and different types of noise. Extended data-

set is S0 ¼ S~
0
1; S~

0
2; . . .; S~

0
J

h iT

, and S~
0
j ¼ u S~j;N~j; SNRj

� �
,

where S~j is the original speech signal from the public data

set, N~j are different types of noise signals, uð�Þ is a func-

tion of that adjustment of the types of noise and signal-to-

noise ratio (SNR). Features are extracted from the extended

data sets and form new feature dataset Y¼ Y~1;Y~2;...;Y~L

h iT

,

as the source domain dataset, where Y~i¼ n1 S~
0
i

� �
;n2 S~

0
i

� �
;

h

...;nN S~
0
i

� �
�;1�i�L, the feature extraction method in [15]

was adopted to extract N different features of the signal.

Then, Y can be expressed as Y¼ ~Y1; ~Y2;...; ~YL

� �T
.The total
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number of feature samples is L, ~Y
i

is a two-dimensional

G0�N block matrix, Y~i is a sparse dictionary learning

training sample, and ~Yi is convolution kernels sparse

learning training samples.

In the second transfer step, a domain Q is composed of a

d-dimensional feature space X0 and a marginal probability

distribution Pðx0Þ, the source data is denoted as

X0
S ¼ ½x0S1

; x0S2
; . . .; x0SNS

�T 2 <NS�L, the target data is denoted

as X0
T ¼ ½x0T1

; x0T2
; . . .; x0TNT

�T 2 <NT�L, NS, NT are the num-

ber of samples in the source and target domains, respec-

tively. All subscripts S represent samples from the source

domain or transformed data from the source domain, same

for T . The label vector of data is denoted

Y 0
S ¼ ½y0S1

; y0S2
; . . .; y0SNS

�T 2 <NS . C is the number of classes.

The symbol �k kH is the reproducing kernel Hilbert space

(RKHS) norm. trð�Þ denotes the trace operator and NKð�Þ
denotes the k nearest neighbors operator.

3.2 Brief description of proposed algorithm

The proposed TSTL based on PD speech data consists of

two major steps: CSC&SF and JLSDA. In the first step

(CSC&SF), its purpose is to learn useful information from

public speech data (source domain) and transfer it to the

target domain. First, the public speech dataset is expanded

with noise injection into a larger one. Second, the features

are extracted from the data, thereby constructing a speech

feature dataset as the source domain. Then, the CSC

learning method is carried out on the source domain

datasets, and the kernel matrix is obtained. Based on the

kernels, the target domain dataset is encoded to calculate

the feature maps, and they are normalized to construct the

norm feature map matrix. Row vectors of the same subject

are expanded into a one row vector; and based on the Relief

algorithm [67], the most effective features can be chosen to

reduce the complexity of classification and constitute a new

target dataset. In the second step (JLSDA), its purpose is to

align the learned Parkinson data distribution and retain its

original structure. The training set is looked as the new

source domain, and the test set is looked as the new target

domain. Both parts are mapped into a public manifold

space through the JLSDA method. Finally, the refreshed

training set and test set are put into the subsequent classifier

for prediction.

3.3 First step transfer (FT)—CSC&SF

In CSC, given G training samples xg
� �G

g¼1
, the convolution

kernel group is learned by minimizing the objective func-

tion dkf gKi¼1 as follows.

arg min
e;d

1

2

XM
g¼1

xg �
XK
k¼1

dk � eg;k

�����

�����
2

2

þg
XG
g¼1

XK
k¼1

eg;k
�� ��

1

s.t: dkk k2
2 � 1; 8k ¼ 1; . . .;Kf g

where xg ¼ ~Yg is G0 � N block matrix, eg;k is G0 � N

feature map matrix, approximate the xg by convolving with

the corresponding convolution kernel dk, the notation �
denotes the two-dimensional convolution, and g is the

regularization factor greater than zero, the solution to the

above optimization problems are based on the fundamental

classical framework alternating direction method of mul-

tipliers (ADMM) [68].

The formula (1) may be re-expressed as

arg min
e

1

2
De� xk k2

2þg ek k1; s.t: dkk k2
2 � 1

where
PK

k¼1 dk�eg;k ¼ De, D ¼ D1 D2 . . .DK½ � is the cor-

responding vectorizable convolution operator of

d1 d2 . . . dK½ �, e ¼ eT
1 eT

2 . . .e
T
K

� �T
is feature map vector.

The solution can be divided into the following two

processes:

Fixing convolution kernel to solve the feature maps, the

formula (2) can be expressed as follows.

arg min
e;b

1

2
De� xk k2

2þg bk k1; s.t: e� b ¼ 0

h1ðeÞ ¼
1

2
De� xk k2

2

which can be solved via ADMM iterations

eðjþ1Þ ¼ arg min
e

h1ðeÞ þ
q
2

e� b j þ u j
�� ��2

2

n o

¼ arg min
e

1

2
De� xk k2

2þ
q
2

e� b j þ u j
�� ��2

2

bðjþ1Þ ¼ arg min
b

h2ðbÞ þ
q
2

eðjþ1Þ � bþ u j
�� ��2

2

n o

¼ arg min
b

g bk k1þ
q
2

eðjþ1Þ � bþ u j
�� ��2

2

uðjþ1Þ ¼ u j þ eðjþ1Þ � bðjþ1Þ

Fixing feature map to solve the convolution kernel, the

formula (2) can be expressed as follows.

arg min
d;c

1

2
Ed � xk k2

2; s.t. ckk k2
2 � 1 and d � c ¼ 0

In (5), h1ðdÞ ¼ 1
2

Ed � xk k2
2, h2ðcÞ are the indicator

function of convex set ckk k2
2 � 1, in (6), proxð�Þ compute

proximal operator, which can be solved via ADMM

iterations
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dðjþ1Þ ¼ arg min
d

h1ðdÞ þ
q
2

d � c j þ v j
�� ��2

2

n o

¼ arg min
d

1

2
Ed � xk k2

2þ
q
2

d � c j þ v j
�� ��2

2

cðjþ1Þ ¼ proxh2ðcÞðd
ðjþ1Þ þ v jÞ

vðjþ1Þ ¼ v j þ dðjþ1Þ � cðjþ1Þ

Finally, the set of sparse convolution kernel

½d01; d02; . . .; d0k� is obtained by alternating iteration. In order

to transform the feature matrix E into one row vector, E is

extended to B as follows:

B ¼

B~1

B~2

..

.

B~M

2
66664

3
77775
¼

RESHAPE E1 H0 � N 1 � N 0ð Þ
RESHAPE E2 H0 � N 1 � N 0ð Þ

..

.

RESHAPE EM H0 � N 1 � N 0ð Þ

2
66664

3
77775

¼

c11 c12 � � � c1N0

c21 c22 � � � c2N0

� � � � � � � � � � � �
cM1 cM2 � � � cMN0

2
6664

3
7775

where the feature extension of CSC expands H0 row vec-

tors Ei of the same subject into one row vector; then nor-

malize B to obtain B0 and based on the Relief algorithm,

the weight W~ ¼ w1 w2 . . .wN0
½ � of every features can be

obtained. By setting number R, the most effective features

can be chosen to reduce the complexity of classification

and constitute a new target dataset X0. The pseudo-code

description of the CSC&SF algorithm from Public datasets

shown as follows.

3.4 Second step transfer (ST)—JLSDA

In this section, we propose to adapt distribution and keep

the structure between samples by finding a public manifold

space of source domain (training set) and target domain

(test set):

min
1

nS

XnS
i¼1

/ðxSiÞ �
1

nT

XnT
j¼1

/ðxTjÞ
�����

�����
2

H

2
4

þ 1

2

X
m;n

/ðxSmÞ � /ðxSnÞk k2
HSmn þ

1

2

X
p;q

/ðxTPÞ � /ðxTqÞ
�� ��2

H
Spq

#

According to the key assumption in most unsupervised

domain adaptation methods, P 6¼ Q, but PðYSjXSÞ ¼
QðYT jXTÞ [48]. In fact, this refers to minimizing the dis-

tance, which is the first part of the formula. The rest parts

describe the relationships between samples in source or

target domain. Figure 1 shows the main idea of JLSDA

method. Different colors denote different domains and

different shape denotes different classes. (a) shows the

original data distribution of the source domain (training

set) and target domain (testing set); (b) presents the rela-

tionship between the samples and the domains after the

alignment of the source and target domain distributions, but

the neighborhood structure relationship between samples is

broken by only aligning the distribution, thus affecting the

classification effect of classifier; (c) shows the samples’

relationship and domain’s distribution after JLSDA, all

samples still maintain the original neighborhood relation-

ship, while aligning the domain as (a) and this can be better

for classification. The proposed method is described later.
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3.4.1 Marginal distribution adaptation

Since there are no label in target, using the assumption that

Q1 6¼ Q2 domain in this paper, but there exists a transfor-

mation / such that Pð/ðXSÞÞ � Pð/ðXTÞÞ and

PðYSj/ðXSÞÞ � PðYT j/ðXTÞÞ. A major computational

issue is to reduce the distribution difference by explicitly

minimizing proper distance measure. The distance between

two distributions Q1 and Q2 can be empirically measured

by MMD (Maximum Mean Discrepancy) [48, 60, 69],

being written as:

Dist X0
S;X

0
T

	 

¼ 1

n1

Xn1

i¼1

/ x0Si

� �
� 1

n2

Xn2

j¼1

/ x0
Tj

� ������

�����
2

H

ð9Þ

Thus, a sick nonlinear mapping / can be found by

minimizing the quantity. However, it is extremely difficult

to solve the mapping / and direct optimization of the

quantity can stuck / in poor local minima. According to

the unsupervised dimensionality reduction method MMDE

[70], both the source domain and target domain can be

embedded into a public low-dimensional space by learning

the kernel matrix K. The kernel mapping can be considered

as: X ! /ðXÞ ¼ ½/ðx1Þ;/ðx2Þ; . . .;/ðxnÞ�, and

K ¼ /ðXÞT/ðXÞ. Specifically, after mapping, XS from

source domain and XT from target domain can be written

as:
/ðXSÞ/ðXSÞh i /ðXSÞ/ðXTÞh i
/ðXTÞ/ðXSÞh i /ðXTÞ/ðXTÞh i

� �
, thus,

K ¼ KS;S KS;T

KT ;S KT ;T

� �
. In terms of trace operation trick, the

distance between samples from source domain and target

domain is equivalent to trðKMÞ, and subject to constraints

on K: M is MMD matrices as the formula (10).

Mij ¼

1

nSnS
; xi; xj 2 DS

1

nTnT
; xi; xj 2 DT

� 1

nSnT
; otherwise

8>>>>>><
>>>>>>:

ð10Þ

3.4.2 Local structure preservation

However, reducing the difference in the marginal distri-

butions may destroy the relationship structure between

samples, leading to the loss of useful information. There-

fore, the affinity matrix here is to preserve the neighbor-

hood structure. First, revisit a dimensionality reduction

method called LPP [71]. With the manifold assumption,

LPP aims to preserve optimally the neighborhood structure

of data. The objective function of LPP can be formulated asX
i;j

ðyi � yjÞ2Sij ð11Þ

where Y ¼ ½y1; y2; . . .; yn�T is the map of

X ¼ ½x1; x2; . . .; xn�T, S is the affinity matrix, calculated in

the following two manners [72].

a. Simple-minded:

Sij ¼
1; if xi 2 NKðxjÞjjxj 2 NKðxiÞ
0; others



ð12Þ

b. Heat-kernel:

Sij ¼ e�
xi�xjk k2

t ; if xi 2 NKðxjÞjjxj 2 NKðxiÞ
0; others

(
ð13Þ

where t is the kernel parameter. Sij will be assigned a

large value if xi is the neighborhood of xj. Based on this

important idea, to remain the neighbor relationship of

(a) (b) (c)

Fig. 1 Illustration of the proposed JLSDA method. a The data

distribution of the original source domain (training set) and target

domain (testing set); b the relationship between the samples and the

domains only after the alignment of the source and target domain

distributions; c the data distribution after aligning the distribution of

the source domain and the target domain and keeping the neighbor-

hood structure relationship
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samples from source and target domain, neighborhood

structure preservation of this paper can be defined as

1

2

X
m;n

/ðx0SmÞ � /ðx0SnÞ
�� ��2

H
Smn þ

1

2

X
p;q

/ðx0TpÞ � /ðx0TqÞ
���

���
2

H
Spq

ð14Þ

where /ðX0
SÞ ¼ ½/ðx0S1

Þ;/ðx0S2
Þ; . . .;/ðx0SmÞ�

T
is the map

of samples from source domain, and /ðX0
TÞ ¼

½/ðx0T1
Þ;/ðx0T2

Þ; . . .;/ðx0TpÞ�
T

is the map of samples

from target domain. Smn and Spq are the affinity matrix

for source and target domains.

3.4.3 Joint optimization

The proposed JLSDA pursues aligning the distribution of

the source and target domains and preserving neighborhood

structure. The former reduces the distribution differences

between the source domain and the target domain from a

large range so that the classifier can match the data better.

The latter retains the structure between samples in each

domain from a local range, making the original effective

information not affected. Therefore, the distribution of

alignment is combined with local structure preservation

which is important for the small size of PD speech data.

Additionally, manifold regularization is also used for local

similarity preservation. The main idea of the model is

shown in Fig. 1 to reduce distribution differences, while

preserving the structure of each domain which may be

conducive to classifier classification. Besides the (8), the

joint local structure distribution alignment term can be

shown as follows.

min tr
1

n2
S

/ðXSÞIIT/TðXSÞ þ
1

n2
T

/ðXTÞIIT/TðXTÞ
�

� 1

nSnT
/ðXSÞIIT/TðXTÞ �

1

nSnT
/TðXSÞITI/ðXTÞ

�

þ 1

2

X
m;n

trð/ðxSmÞ/TðxSmÞ þ /ðxSnÞ/TðxSnÞ

�/ðxSmÞ/TðxSnÞ � /ðxSnÞ/TðxSmÞÞSmn

þ 1

2

X
p;q

trð/ðxTpÞ/TðxTpÞ þ /ðxTqÞ/TðxTqÞ

�/ðxTpÞ/TðxTpÞ � /ðxTqÞ/TðxTpÞÞSpq
ð15Þ

According to the properties of matrix trace and our

previous definition, the formula (15) can be simplified into

the following formula.

min trðK̂M̂Þ þ trð/ðX0
SÞ/

TðX0
SÞL̂SÞ þ trð/ðX0

TÞ/
TðX0

TÞL̂TÞ
ð16Þ

It is clear that the first part of (15) is similar to the result

that discussed in Sect. 2.4.1. where K̂ is the kernel matrix

and M̂ is the MMD matrices, both are obtained from

samples after first transfer step. /ðX0
SÞ/

TðX0
SÞ is K̂S and

/ðX0
TÞ/

TðX0
TÞ is K̂T .L̂S ¼ D̂S � ŜS and L̂T ¼ D̂T � ŜT are

the Laplacian matrixes of source domain and target

domain, D̂mm ¼
P

n Ŝmn and D̂qq ¼
P

p Ŝpq are both diag-

onal matrixes, Ŝ is affinity matrix. For convenience, (16)

can be simplified to formula (17)

min trðK̂M̂Þ þ trðK̂ � L̂Þ ð17Þ

ð�Þ denotes dot multiplication of K̂ and L̂,

L̂ ¼ L̂S 0
0 L̂T

� �
2 <N�N .

Due to high computational cost of MMDE, a unified

kernel learning method is adopted which utilizes an explicit

low-rank representation [67, 73]. Hence, formula (18) can

be acquired.

min
W

trðWTK̂M̂K̂WÞ þ trðWTL̂
�
WÞ þ ktrðWTWÞ

s.t: WTK̂D̂K̂W ¼ Im

ð18Þ

In order to make the problem solution unique, constrain

is introduced. W is the mapping matrix, L̂
�

is dot multi-

plication of K̂ and L̂, ktrðWTWÞ is the regularization term.

On the basis of Lagrange multipliers method, problem (18)

can be reformulated as

trðWTðK̂M̂K̂ þ L̂
� þ kIÞWÞ � trððWTK̂ĤK̂W � IÞZÞ

ð19Þ

where Z is a diagonal matrix containing Lagrange

multiplier, Setting the derivative of (19) w.r.t. W to zero,

then

ðK̂M̂K̂ þ L̂
� þ kIÞW ¼ K̂ĤK̂WZ ð20Þ

The W solutions in (20) are the d leading eigenvectors

of ðK̂M̂K̂ þ L̂
� þ kIÞ�1K̂ĤK̂, d� n1 þ n2.

The pseudo-code description of the joint local structure

distribution alignment algorithm (JLSDA) is shown as

follows.
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4 Experimental results and analysis

This section describes the experiments conducted to test

the proposed method’s effectiveness for PD diagnosis,

mainly including the following experiments: verify the

validity of each step of the transfers; explore the impact of

import parameters on classification results; compare the

representative relevant methods and analyze the computa-

tional time.

4.1 Experimental condition

4.1.1 Data

Four speech datasets are adopted for verification: The

DARPA TIMIT Acoustic–Phonetic Continuous Speech

Corpus (TIMIT), Sakar [15], MaxLittle [3, 74], and DNSH

dataset.

The first dataset is used for source domain in the first

transfer learning. This standard speech dataset TIMIT

contains a total of 6300 sentences, 10 sentences spoken by

each of 630 speakers, but there are only 240 samples

available for us, including 40 men and 40 women speakers,

each one with 3 sentences. The dataset is added with noise

(from NOISEX-92 noise dataset) and expansion.

As for PD speech datasets, Little et al. [74] and Sakar

et al. [15] provided a speech data set for Parkinson’s dis-

ease, respectively. The Sakar dataset is the second dataset.

There are 40 subjects in Sakar Data, including 20 patients

with Parkinson’s disease (6 women, 14 men), 20 healthy

people (10 women, 10 men). Each subject contains 26

Speech sample segments, and each speech segment con-

tains a variety of pronunciation content, including contin-

uous vowel letter pronunciation, number pronunciation,

word pronunciation, and short sentence pronunciation. As

for each speech sample, 26-dimensional linear and non-

linear features are extracted to form a feature vector.

MaxLittle dataset is the third dataset. The dataset is

composed of a range of biomedical voice measurements

from 31 people, 23 with Parkinson’s disease (PD). For

more detailed information on the second and third datasets,

please visit the website (https://archive.ics.uci.edu/ml/

index.php).

The fourth dataset was collected by the authors and the

subjects are collected from the First Affiliated Hospital of

the Army Military Medical University, Chongqing, China.

The dataset contains recordings of 36 PD patients (16

female (mean ± standard deviation (std): 57.9 ± 9.0) and

20 male (mean ± std: 60.8 ± 10.6)) without receiving

treatment (the average and standard deviation age of illness

are 7.38 years and 3.58 years, respectively) and 54 PD

patients (27 female (mean ± std: 59.7 ± 8.1) and 27 male

(mean ± std: 63.2 ± 10.8)) after receiving medication (the

average and standard deviation age of illness are 6.82 years

and 3.50 years, respectively). Thirteen speech samples

were recorded for each person and each speech sample

contains 26 features. The recordings were recorded by a

microphone (SONY ICD-SX2000) placed at 15 cm away

from the participants. The anticipants were asked to read

13 specific characters including ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’,

‘7’, ‘8’, ‘9’, ‘10’, ‘a’, ‘o’, and ‘u’. The speech extraction

software was Praat, sampled at 44.1 kHz, with 16-bit

resolution.

4.1.2 Experimental criteria

The classification accuracy, sensitivity, and specificity are

adopted as the evaluation criteria of experimental results to

verify the effectiveness of the proposed algorithm in this

paper. The accuracy rate refers to the percentage of the

samples that are judged correctly to the total number of

samples. Sensitivity and specificity are two commonly used

indicators to explain the accuracy of medical diagnostic

tests. Since PD speech diagnosis is a binary classification

task in this paper, the confusion matrix can be used to
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describe the composition of sensitivity and specificity

clearly as shown in Fig. 2.

From the confusing matrix, the indicators used in this

paper can be expressed as:

accuracy ðACCÞ ¼ TP þ TN

TP þ FP þ TN þ FN

sensitivity ðTPRÞ ¼ TP

TP þ FN

specificity ðTNRÞ ¼ TN

FP þ TN

The leave-one-subject-out (LOSO) method is applied

here, according to the characteristics that multiple samples

correspond to one subject in the dataset. This verification

method can maximize the number of training samples in

small samples case, thus can better reflect the potential of

the classification algorithm. Moreover, all samples were

sufficiently tested, so the test accuracy was closer to the

results in the actual application scenario. Most of the

existing algorithms are based on k-fold and holdout cross-

validation methods, the training samples and test samples

are possibly from the same subject, thereby leading to the

classification accuracy is not realistic. Different from the

two algorithms, the LOSO can guarantee that training

samples and test samples are from different subjects, which

can ensure that the classification accuracy is not unrealistic

and consistent with the actual diagnosis.

4.1.3 Experimental configuration

The experiments use a 64-bit Windows 7 computer and the

hardware parameters of the experiment platform are CPU

(Intel i3-4170 M), 6 GB memory. The experiments run on

Matlab R2018b. The set of parameters in this paper is as

follows. In the first step transfer, the random seeds number

is 10, the number of main training iterations, feature map

iterations, and convolution kernel iterations are 100, 10,

and 10, respectively. The number of convolution kernel is

from 2 to 8, the size of convolution kernel is 8 * 8. In the

second transfer step, the regularization parameter lambda is

0.01, kernel type is ‘rbf’, the bandwidth for rbf kernel

gamma is 100, affinity matrix mode is ‘‘simple’’ mode and

the number of nearest neighbors is 1.

4.2 Verification of different steps transfer
learning

4.2.1 Performance of first step transfer learning

For convenience, the Sakar dataset is used as the target

domain here. In the FT, the main achievement is to transfer

the knowledge from TIMIT to Sakar dataset through CSC.

The difference between the target domain transformations

is shown in Fig. 3. The figure manifests that the informa-

tion of target domain has increased significantly after

transfer learning. Here, whether the information obtained

from the source domain contributes to the classification

accuracy of the target domain or not is still unknown. By

using the Sakar dataset as an example, the data before and

after the first step of transfer learning will be handled. The

classification algorithms are KNN and SVM. The classifi-

cation results are shown in Table 1.
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Fig. 2 Confusion matrix for two-class diagnosis of PD

Fig. 3 a Sonograms of source domain; b feature kernels extracted

from source domain; c original target domain; d target domain after

first step transfer

Table 1 First transfer classification accuracy for Sakar dataset

Method ACC (%) TPR (%) TNR (%)

KNN 52.5 (LOSO) 55.0 50.0

SVM (linear) 50.0 (LOSO) 50.0 50.0

FT&KNN 90.0 (LOSO) 85.0 95.0

FT&SVM (linear) 92.5 (LOSO) 95.0 90.0
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The results are showed in Table 1. Direct classification

accuracy on the Sakar dataset is bad. KNN shows a better

result than SVM, with an accuracy of 52.5% and 50.0%,

respectively. However, it demonstrates a remarkable

improvement in classification accuracy with first step

transfer from TIMIT. The accuracy reached 90% for KNN

and even achieved 92.5% for SVM. The sensitivity and

specificity also are improved for the two classifiers after

FT. This result fully illustrates that the information learned

from public speech data is conducive to the classification of

the target domain that is the first step transfer learning is

effective.

4.2.2 Performance of second step transfer learning

In the ST, the JLSDA method is used to diminish the

distribution difference between training data and test data,

enabling them to keep original local structure. Like the first

step transfer experiments, the effectiveness of the method

is validated by comparing classification accuracy of

untransferred data and transferred data.

Table 2 presents the experimental outcome of ST.

Although the experimental results do not improve as sig-

nificantly as FT, it still worked. The classification accura-

cies on the KNN classifier and the SVM classifier are

increased by 15% and 12.5%, respectively.

4.2.3 Performance of TSTL

The TSTL&KNN means with TSTL with KNN classifier.

The TSTL&SVM means TSTL with SVM classifier. The

first two experiments proved that every single step of

transfer learning is helpful to classification results. In this

part, FT is combined with ST algorithms into the two-step

sparse transfer learning algorithm. The experimental results

are further improved as shown in Table 3. KNN achieved

an accuracy of 94.5%, and SVM reached even more about

97.5%, similar to its sensitivity and specificity. The TSTL

method has a great effect on the classification accuracy of

the final results.

Figure 4 shows that t-SNE visualizations of the effect of

the proposed method. Different colors represent samples of

different domains. (a), (c), (e) represent the data distribu-

tion of the Sakar dataset, MaxLittle dataset, and DNSH

dataset before TSTL, and (b), (d), (f) represent the data

distribution of the Sakar dataset, MaxLittle dataset, and

DNSH dataset after TSTL. It is manifest that data distri-

bution is more compact and even than before TSTL.

4.2.4 Comparison with unsupervised domain adaptation
algorithms

Although there are many studies on Parkinson’s classifi-

cation, there is almost no UDA for Parkinson’s speech.

Table 4 shows the comparison of the proposed method and

four typical UDA methods: two traditional UDA and two

deep UDA methods (DAN, DANN). Each method was

tested on the Sakar dataset, MaxLittle dataset and DNSH

dataset, under LOSO cross-validation.

Compared with other four UDA methods, the ACC of

TSTL presents the best results on the three PD datasets. It

is noticeable that the effects of the four comparison

methods are not ideal, even not reach 50% in the real-world

dataset. Moreover, there is no obvious difference in these

PD datasets regardless of whether it is deep or non-deep

methods. To a certain extent, although these UDA methods

have relatively strong versatility, for relatively special

datasets such as Parkinson’s speech data, to achieve high

ACC, it is necessary to design corresponding algorithms

according to its data characteristics. Due to the imbalance

of positive and negative samples in the MaxLittle, TPR and

TNR have a great difference in the four compared methods.

However, the proposed method learned speech structure to

enhance the generalization ability of the classifier. In

general, the proposed algorithm is better than the popular

domain adaptation algorithms.

4.3 Effect of parameters on the proposed
algorithm’s performance

4.3.1 Effect of convolution kernel number

Convolution kernel is one of the main parameters of TSTL,

therefore, it is necessary to study its effect on the perfor-

mance of algorithm. For the Sakar dataset, when the

Table 2 Second transfer classification accuracy for Sakar dataset

Method ACC (%) TPR (%) TNR (%)

KNN 52.5 (LOSO) 55.0 50.0

SVM (linear) 50.0 (LOSO) 50.0 50.0

ST&KNN 67.5 (LOSO) 65.0 70.0

ST&SVM (linear) 62.5 (LOSO) 80.0 45.0

Table 3 Two-step sparse transfer classification accuracy for Sakar

dataset

Method ACC (%) TPR (%) TNR (%)

KNN 52.5 (LOSO) 55.0 50.0

SVM (linear) 50.0 (LOSO) 50.0 50.0

TSTL&KNN 94.5 (LOSO) 94.5 94.5

TSTL&SVM (linear) 97.5 (LOSO) 97.5 97.5
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convolution kernel number is taken from 2 to 8, after 10

repetitions, the relationship between the number of the

convolution kernels and the classification accuracy is

shown in Fig. 5. The abscissa represents the number of

convolution kernels. With different numbers of convolu-

tion kernels, each convolution kernel corresponds to a

Fig. 4 The t-SNE visualizations of TSTL on three PD speech datasets. a Non-TSTL on Sakar; b TSTL on Sakar; c non-TSTL on MaxLittle;

d TSTL on MaxLittle; e Non-TSTL on DNSH; f TSTL on DNSH
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result. The ordinate is the classification accuracy. Each

convolution kernel will produce a corresponding result.

All convolution results are more than 90% of the bar

graph. Comparing all the results, the classification accuracy

rate has a minimum value when the kernel number is 4, and

a maximum value when the kernel number is 6. Therefore,

the feature kernel leading high classification result can be

chosen to obtain a suitable feature map in actual operation.

Overall, the results are relatively satisfactory.

4.3.2 Effect of neighbor sample number

The nearest neighbor sample number plays a critical role in

preserving the neighborhood structure of TSTL. According

to the characteristics of Sakar PD speech datasets, nearest

neighbor sample number K from 1 to 8 is selected for

experiments. Relative accuracy is adopted here to intu-

itively explore the effect of the number of neighbors on the

results. Figure 6 depicts the relative accuracy of maximum

accuracy, average accuracy, and minimum accuracy for

different numbers of neighbor samples. The results show

that average accuracy reaches the maximum value when

K is 5. The maximum accuracy and average accuracy is

with the same case. The slope linear regression through the

data point is adopted to show the relationship between

three relative accuracies and neighbor samples. When K is

less than 5, the relative accuracy of maximum accuracy,

average accuracy, minimum accuracy increase with

neighbor samples at the rate of 0.027778, 0.040506, and

0.38462. While K is greater than 5, the relative accuracy of

maximum accuracy, average accuracy, minimum accuracy

decreases with neighbor samples at the rate of - 0.04444,

- 0.0481, - 0.06923, respectively. So it seems that too

many or too few neighbor samples will not have a positive

effect on classifier classification. Therefore, it is necessary

to find a suitable neighbor sample number for

classification.

4.4 Comparison with representative PD
algorithms

On the Sakar dataset, the comparison results of the pro-

posed algorithm with other representative algorithms are

presented in Table 5. Excepting the relevant published

algorithms of PD speech diagnosis, the proposed algorithm

Table 4 The comparison of the UDA classification result of the

proposed algorithm based on three datasets

Method Dataset ACC (%) TPR (%) TNR (%)

TCA (LOSO) Sakar 55.00 65.00 45.00

MaxLittle 75.00 100.00 0.00

DNSH 46.88 59.38 34.38

CORAL (LOSO) Sakar 52.50 50.00 55.00

MaxLittle 75.00 100.00 0.00

DNSH 48.44 56.52 40.63

Sakar 62.50 65.00 60.00

DAN (LOSO) MaxLittle 66.88 84.17 15.00

DNSH 45.94 45.66 46.25

Sakar 54.25 54.50 54.00

DANN (LOSO) MaxLittle 72.81 93.75 10.00

DNSH 47.67 54.06 41.25

TSTL (LOSO) Sakar 97.50 97.50 97.50

MaxLittle 96.87 100.00 87.50

DNSH 90.63 90.63 90.63

ACC accuracy; TPR true positive rate; TNR true negative rate
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Table 5 The comparison of the classification result of the proposed algorithm based on Sakar dataset

Study Method ACC (%) TPR (%) TNR (%)

Canturk and Karabiber [75] 4 Feature Selection Methods & 6 Classifiers 57.50 54.28 80.00

Eskidere et al. [76] Random Subspace Classifier Ensemble 74.17 – –

Zhang et al. [77] MENN&RF 81.50 92.50 70.50

Benba et al. [78] HFCC ? SVM 87.50 90.00 85.00

Li et al. [79] Hybrid feature learning&SVM 82.50 85.00 80.00

Vadovsk and Parali [80] C4.5&C5.0&RF &CART 66.50 – –

Zhang[81] LSVM&MSVM &RSVM&CART &KNN&LDA&NB 94.17 50.00 94.92

Benba et al. [82] MFCC&SVM 82.50 80.00 85.00

Kraipeerapun and Amornsamanku [83] Stacking&CMTNN 75.00 – –

Khan et al. [84] Evolutionary neural network ensembles 90.00 93.00 97.00

Ali et al. [85] LDA-NN-GA 95.00 95.00 95.00

– DBN 54.60 52.40 56.80

– CNN 60.00 63.00 57.00

– DBN&SVM 50.50 53.00 48.00

– Autoencoder&SVM 67.50 65.00 70.00

Proposed algorithm TSTL&SVM 97.50 97.50 97.50

ACC accuracy; TPR true positive rate; TNR true negative rate

Table 6 The comparison of the classification result of the proposed algorithm based on MaxLittle dataset

Study Method ACC (%) TPR (%) TNR (%)

Little et al. [74] Preselection filter ? exhaustive search ? SVM 91.40 – –

Shahbaba and Neal [86] Dirichlet process mixtures 87.70 – –

Psorakis et al. [87] mRVMs 89.47 – –

Guo et al. [88] GA-EM 93.10 – –

Sakar and Kursun [27] Mutual information ? SVM 92.75 – –

Das [89] ANN decision tree 92.90 – –

Ozcift and Gulten [90] Correlation-based feature selection-rotation forest 87.10 – –

Luukka [91] Fuzzy entropy measures ? similarity 85.03 – –

Li et al. [92] Fuzzy-based nonlinear transformation ? SVM 93.47 – –

Spadoto et al. [93] PSO ? OPF harmony search ? OPF gravitational search ? OPF 84.01 – –

Polat [94] FCMFW ? KNN 97.93 – –

Chen et al. [95] PCA-fuzzy KNN 96.07 – –

Ali et al. [17] DBN 94.00 – –

Åström and Koker [96] Parallel ANN 91.20 90.50 93.00

Daliri [97] SVM with Chi-square distance kernel 91.20 91.71 89.92

Zuo et al. [98] PSO-fuzzy KNN 97.47 98.16 96.57

Kadam and Jadhav [99] FESA-DNN 93.84 95.23 90.00

Ma et al. [100] SVM-RFE 96.29 95.00 97.50

Cai et al. [19] RF-BFO-SVM 97.42 99.29 91.50

Dash et al. [101] ECFA-SVM 97.95 97.90 –

Gürüler [102] KMCFW-CVANN 99.52 100.00 99.47

– SVM (linear kernel) 75.00 100.00 0.00

– SVM (RBF kernel) 75.00 100.00 0.00

Proposed algorithm TSTL&SVM 96.87 100.00 87.50

ACC accuracy; TPR true positive rate; TNR true negative rate
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is also compared with the relevant deep learning algo-

rithms, including the DBN, CNN, and deep autoencoder

algorithm.

As shown in Table 5, for the Sakar dataset, it is difficult

to achieve an excellent result, and only a handful of

algorithms can reach an accuracy of 90%. From the

methodological point, it is evident that deep learning

methods are not better than traditional machine learning

methods and most traditional methods have higher accu-

racy than the former. This also confirmed that the deep

learning method is not suitable for the datasets of the small

sample such as the Parkinson’s speech dataset since it

requires a large number of samples to train a good model.

Holdout, K-fold, and LOSO three different cross-validation

methods are used in different algorithms above. But strictly

speaking, the LOSO method is more suitable for the

evaluation of Parkinson’s speech data model, because one

subject contains more than one speech sample and the

LOSO method can ensure samples of the training set and

test set are from the different subject. Not the same as

LOSO, the training set and test set of K-fold and Holdout

may contain samples from the same subject, make the

prediction results in the experiment better than the pre-

diction results in the real application scenario. As to the

Holdout method, the final evaluation result has a great

relationship with the order of the original data. In terms of

accuracy, the average accuracy rate of the proposed algo-

rithm (TSTL&SVM) reached 97.5% and achieved better

results than other methods.

Table 6 shows the classification and comparison results

of this proposed algorithm and the representative algo-

rithms on the MaxLittle dataset. The proposed algorithm is

compared with the other representative algorithms on this

dataset. Besides, the proposed algorithm is compared with

the most relevant algorithms, including the SVM with

linear and radial kernels, DBN, CNN and the deep

autoencoder algorithm.

As shown in Table 6, the compared methods on the

MaxLittle dataset are based on hold-one-out and tenfold.

The holdout is more contingent, and even when tenfold is

adopted, there is still no deliberate effort to avoid the fact

that the training samples and test samples come from the

same subject. Therefore, the accuracies of the methods are

unreliable since they are perhaps higher than they would be

in practice. As Table 6 shows under LOSO, the proposed

algorithm achieves 96.87%. Although the accuracy is

lower than some comparison algorithms, the accuracy is

based on LOSO and reliable since it more reflects the real

accuracy.

It can also be found from Table 7 that the proposed

algorithm achieves the best results on the DNSH dataset.

The SVM and KNN are adopted as popular classifiers.

Outperforming the SVM, the average classification accu-

racy of the proposed algorithm reaches 90.63%, proving

that it is quite effective even on the DNSH dataset of

Chinese PD patients.

4.5 Analysis of computational time

First, the Table 8 presents the run time of the proposed

algorithm on Sakar, MaxLittle, DNSH datasets, respec-

tively. The computation time of the proposed algorithm on

the Sakar dataset under different subject size is provided in

Fig. 7. The subject size means the size of features * seg-

ments. For example, there are 16 features and 16 segments,

so the subject size is. The run time includes the total time

cost for dealing with the training set and test set. Notably,

all the procedures are implemented in the computer of Intel

Core i3CPU, 3.7 GHz, and 6 GB RAM.

Seeing from Table 8, the time costs of the proposed

algorithm on the three PD datasets are acceptable in

practical applications. Seeing from Fig. 6, the computa-

tional time and the slope increase as the subject size

increases. But the more the subject size is, the better

accuracy will be. Therefore, it is necessary to find the

suitable subject size for a satisfactory balance. As descri-

bed above, the apt feature extraction and the coordinate

selection of samples and features are needed.

Table 7 The comparison of the

classification result of the

proposed algorithm based on

DNSH dataset

Study Method ACC (%) TPR (%) TNR (%)

– KNN 52.5 (LOSO) 55.0 50.0

– SVM (linear kernel) 50.0 (LOSO) 50.0 50.0

Proposed algorithm TSTL&SVM 90.63 (LOSO) 90.63 90.63

Table 8 The time cost of the proposed algorithm on PD speech

datasets

Dataset Sakar MaxLittle DNSH

Time cost (s) 25.188 3.269 18.133
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5 Conclusions

This paper presents unsupervised two-step sparse transfer

learning method (TSTL), an efficient approach to replenish

information of PD speech samples and reduce the distri-

bution differences between the source domain and target

domain. The TSTL method works well on various repre-

sentative PD speech datasets. Unlike previous PD classi-

fication methods, the proposed method used CSC to learn

efficient speech structure and designed JLSDA to eliminate

discrepancy between training set and test set. The TSTL

shows effective results not only on two public datasets but

also on the real-world dataset collected by the authors. In

the future study, the proposed method will be applied into

the PD speech data and motion sensor data together.

Besides, the method will be considered for other neuro-

logical diseases diagnosis with small sample size.
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