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Abstract: Deamidation of asparagine (Asn) residues is a nonenzymatic post-translational modification
of proteins. Asn deamidation is associated with pathogenesis of age-related diseases and hypofunction
of monoclonal antibodies. Deamidation rate is known to be affected by the residue following Asn on
the carboxyl side and by secondary structure. Information about main-chain conformation of Asn
residues is necessary to accurately predict deamidation rate. In this study, the effect of main-chain
conformation of Asn residues on deamidation rate was computationally investigated using molecular
dynamics (MD) simulations and quantum chemical calculations. The results of MD simulations
for γS-crystallin suggested that frequently deamidated Asn residues have common main-chain
conformations on the N-terminal side. Based on the simulated structure, initial structures for the
quantum chemical calculations were constructed and optimized geometries were obtained using
the B3LYP density functional method. Structures that were frequently deamidated had a lower
activation energy barrier than that of the little deamidated structure. We also showed that dihydrogen
phosphate and bicarbonate ions are important catalysts for deamidation of Asn residues.

Keywords: deamidation; molecular dynamics simulation; quantum chemical calculation;
post-translational modification; age-related diseases

1. Introduction

Deamidation of asparagine (Asn) residue is a post-translational modification observed in various
proteins and has been reported to spontaneously and nonenzymatically occur in vivo and in vitro
under physiological conditions [1–6]. This reaction typically proceeds through the cyclic succinimide
intermediate, resulting in the production of Asp and biologically uncommon isoAsp residues in an
approximately 1:3 molar ratio (Figure 1) [7]. These conversions from Asn residues to acidic residues
by deamidation affect the structural stability of proteins and are seriously disruptive to biologically
important functions [5,8–12]. Some of the deamidated proteins are targeted for degradation by the
ubiquitin–proteasome system [13]. Therefore, deamidation is hypothesized to serve as a molecular
clock for biological processes such as protein turnover. In addition, because deamidation can result in
protein denaturation and aggregation, it is suggested to trigger several age-related diseases [14–18].
In fact, deamidated residues are frequently detected in crystallins isolated from the eye lens of patients
suffering from age-related nuclear cataracts [16–18]. Furthermore, isoAsp formation in vivo is involved
in autoimmune diseases [19–22]. An isoAsp-containing peptide triggers an autoimmune response to the
native peptide containing the original Asn residue. For instance, isoAsp formation in histone H2B has
been suggested to be involved in systemic lupus erythematosus [21,22]. Furthermore, Asn deamidation
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plays a key role in quality control of antibody drugs. Deamidations have been reported to occur in
complementarity-determining regions (CDRs) and Fc regions of recombinant monoclonal antibodies
and human endogenous IgG in vivo [23–27]. In particular, antigen-binding affinities are reduced
by Asn deamidation in CDRs. Therefore, Asn deamidation is an important reaction for not only
pathological analysis but also development of peptide/protein-based drugs.
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Figure 1. Succinimide-mediated deamidation pathways of asparagine (Asn) residues.

Asn deamidation rate is affected by various factors, especially adjacent residues on the C-terminal
side ((N + 1) residue) [28–30]. For instance, the deamidation half-time for the Asn–Gly sequence is
approximately 300-fold smaller than that for the Asn–Ile sequence in a pentapeptide [29]. In contrast,
the half-time for the Asn–His sequence is approximately 9-fold longer than that for the Asn–Gly
sequence. In the Asn–Pro sequence, for which succinimide cannot be formed, the half-time is 7000-fold
longer than that for the Asn–Gly sequence in a pentapeptide. Other important factors reported to affect
Asn-deamidation rates are secondary structure, tertiary structure, quaternary structure, hydrogen-bond
formation, surface exposure, and solvent molecules [5,7,10,31,32]. Based on this information,
some predictive methods for Asn-deamidation rates in proteins have been proposed [33–38].
A predictive method produced by Robinson and Robinson is currently considered to be the most reliable
method [33,34]. In this method, amino acid sequence, secondary structures, and hydrogen bonds
with other residues are used for the prediction. These factors are involved in succinimide formation
from Asn residues. Succinimide formation is considered to be caused by nucleophilic attack of the
amide nitrogen of the (N + 1) residue to the amide carbon of the Asn side chain, and proceeds via the
tetrahedral intermediate that includes gem-hydroxylamine (Figure 2). Structural parameters involved
in the above nucleophilic attack are expected to be important factors for deamidation rates [35–38].
The distance between the main-chain nitrogen of the (N + 1) residue and amide carbon of the Asn
side chain (NN+1–Cγ distance) in crystal structures is used to predict deamidation rate in monoclonal
antibodies [35,37,38]. Furthermore, these methods use dihedral angles of Asn residues in crystal
structures as a parameter for predicting deamidation rates. In cyclic peptides containing the Asn–Gly
sequence, the deamidation rate is higher in the peptide with the shorter NN+1–Cγ distance [39,40].
In addition, deamidation is facilitated when the NN+1–Cγ–Oγ angle is <128◦. However, deamidation
rate is low in a cyclic peptide satisfying these parameters (Lys–Asn–Gly–Arg–Glu–NH2). Therefore,
although these parameters are key in determining deamidation rate, other factors are also important.
Those parameters might be difficult to apply to the flexible side chain of Asn residues in protein
structures. Therefore, the relevance for deamidation rate of the NN+1–Cγ distance and dihedral angles
in crystal structures is unclear for calculations of protein dynamics.
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Some computational studies have reported the succinimide formation mechanism of Asn and the
changes of dihedral angles with the deamidation reaction using quantum chemical calculations [41–44].
The structural changes with succinimide formation from Asn are relatively small (change of N-Cα-C-N
and N-Cα-Cβ-Cγ: 35–50◦, C-N-Cα-C: nearly constant) in comparison with other nonenzymatic
modifications in some previous studies (the maximum change of dihedral angles: 214◦) [45–49].
Therefore, the flexibilities of the main chain are assumed not to be a primary factor in determining
deamidation rate. However, previous computational studies of nonenzymatic modification of amino
acids have not considered protein structure. In this study, conformations of Asn residues in a
protein were first investigated to analyze the influence of three-dimensional (3D) structure on the Asn
deamidation rate. We focused on the 3D structure of γS-crystallin, which is targeted for deamidation
analysis in some previous studies [32,50–52]. The experimental structure registered in the protein data
bank (PDB) was obtained, and Asn conformations in γS-crystallin were investigated. Furthermore,
molecular dynamics (MD) simulations were performed to evaluate conformational flexibilities of Asn
residues. Second, the reaction mechanisms and activation energy barriers in succinimide formation
from Asn residues were investigated using quantum chemical calculations. Two different initial
structures were constructed based on the Asn conformations in the experimental and calculated
structures. As the deamidation rate in the phosphate buffer is higher than that in Tris–HCl buffer [34],
a dihydrogen phosphate ion was employed as the catalyst. To compare mechanisms and activation
energy barriers, water-catalyzed and carbonate-catalyzed reactions were also analyzed.

2. Results and Discussion

2.1. Structural Features of Frequently Deamidated Asn Residues

To investigate the effects of Asn conformation on deamidation rate, all Asn residues in the
γS-crystallin structure were examined (Figure 3). The level of deamidation at Asn14, Asn53 and Asn143
is high [32]. Notably, approximately 60% of Asn14 is reported to be deamidated in water-insoluble
γS-crystallin extracted from eye lenses of patients with age-related nuclear cataracts. Namely, these Asn
residues are frequently deamidated residues. In contrast, Asn37 and Asn76 are infrequently deamidated:
their deamidation ratios are 15% and 8%, respectively. Dihedral angles of all Asn residues (Figure 4) in
γS-crystallin are shown in Table 1. The dihedral angles for H–N–Cα–H, defined as ϕH, of frequently
deamidated residues were −13.2◦, 19.4◦ and 10.4◦, respectively. They are therefore syn periplanar.
On the other hand, Asn37 was anti periplanar, and Asn76 was neither. Here, the conformations of
Asn14, Asn53 and Asn143 were defined as syn conformations, and that of Asn37 was defined as anti
conformation. Asn residues with syn conformations are considered to have extensive deamidation.
The main-chain conformations of Asn residues may be important for the deamidation rate. To analyze
protein dynamics, a 2000-ns MD simulation was performed for the γS-crystallin structure. The root
mean square deviation (RMSD) plot is shown in Figure 5. The RMSD value at the end of the simulation
was approximately 3.0 Å, and a large structural change was not observed. The dihedral angles of all
Asn residues in the final structure of the simulation are shown in Table 2. Asn14 and Asn143 formed
syn conformations, and Asn37 and Asn76 formed anti conformations in the final structure. Although
Asn53 was not a syn conformation in the final structure, all frequently deamidated Asn residues were
syn conformations for most of the final 10 ns of simulation (Table 3). Asn37 and Asn76 formed anti
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conformations throughout the simulation. Dihedral angles ϕ in the frequently deamidated residues
were about 55◦ throughout the simulation (Figure S1). The values of χ were not constant through
the last 10 ns of the trajectories for all Asn residues. The dihedral angles ψ of frequently deamidated
residues were about 40◦. Those of the infrequently deamidated residues Asn37 and Asn76 were
about 20◦ and 150◦, respectively. Therefore, dihedral angles ϕ, ψ, and ϕH were common in frequently
deamidated residues; however, only ϕH was common in infrequently deamidated residues.
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Table 1. Dihedral angles (degrees) of Asn residues in the experimentally determined structure.

Dihedral Angle/Degree

Residue ϕ ψ χ ϕH

Asn14 49.8 26.1 −41.9 −13.2
Asn37 −125 155 −68.8 173
Asn53 79.8 −4.29 −59.9 19.4
Asn76 107 160 −166 43.6

Asn143 70.9 19.5 −54.4 10.4

Table 2. Dihedral angles (degrees) of Asn residues in the final structure of the molecular dynamics
(MD) simulation.

Dihedral Angle/Degree

Residue ϕ ψ χ ϕH

Asn14 65.49 31.47 −52.05 −7.31
Asn37 −76.63 −17.67 −79.28 −154.86
Asn53 46.48 44.84 −171.13 −38.94
Asn76 −152.31 154.04 55.14 155.48
Asn143 59.88 43.14 −43.95 −13.20

Table 3. Percent of syn/anti conformation for the last 10 ns of the MD simulation.

Asn14 Asn37 Asn53 Asn76 Asn143

syn 95.8 0 96.9 0 99.1
anti 0 50.4 0 70.8 0

To evaluate the influence of backbone flexibility on the deamidation rate, the root mean square
fluctuation (RMSF) values of the final 10 ns trajectories were calculated (Figure 6A). As the highest
RMSF value was 1.60 Å at Ile160, the main chain of γS-crystallin was not highly flexible. Relatively
flexible regions (RMSF > 1.00 Å) are indicated in the whole structure after MD simulations (Figure 6B).
No Asn residues were located on the flexible regions. Although Asn76 was the most flexible Asn
residue, it is infrequently deamidated. Therefore, the flexibility of the main chain is considered to have
little effect on Asn deamidation.
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backbone where RMSF values are >1.0 Å are shown in red.

2.2. Deamidation Mechanism in the Syn Conformation

To investigate the reaction mechanism and activation energy barrier, quantum chemical calculations
were performed. The model compound used in this study was Asn capped with acetyl (Ac) and
methylamino (NMe) groups on the N- and C-termini, respectively (Figure 7). Two H2O molecules
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and one dihydrogen phosphate (H2PO4
−) ion or one bicarbonate (HCO3

−) ion was included in the
calculations as catalysts. These molecules and ions abundantly exist in vivo and have been suggested
to catalyze post-translational modification of proteins [41–49]. The optimized geometries of the
cyclization step, which occur by nucleophilic attack by the (N + 1) amide nitrogen to carbonyl carbon
of the side chain, for the syn conformation in the phosphate-catalyzed reaction are shown in Figure 8.
Those of water-catalyzed and carbonate-catalyzed reactions are shown in Figures S2 and S3. In the
reactant complex (RC), three hydrogen bonds were formed between the Asn residue and the H2PO4

−

ion (Figure 8). A hydrogen bond between the amide oxygen of the (N − 1) residue and the H2PO4
− ion

was not involved in the cyclization reaction, while it might stabilize the conformation of RC. In addition
to this hydrogen bond, the amide NH hydrogen of (N + 1) residue, and amide oxygen of the side chain
formed hydrogen bonds with the H2PO4

− ion. The cyclization step was started by proton transfer
between these hydrogen-bonding atoms. Proton transfer between the (N + 1) amide nitrogen and the
H2PO4

− ion was almost completed in the transition state 1 (TS1). In contrast, the proton migrating from
the H2PO4

− ion to amide oxygen of side chain was located between those atoms. Therefore, the (N + 1)
amide hydrogen is considered to be abstracted by the H2PO4

− ion early in the cyclization step, and
this proton abstraction is expected to enhance the nucleophilicity of amide nitrogen. Along with those
proton transfers, the distance between the (N + 1) amide nitrogen and the amide carbon of side chain
was shortened in TS1 (2.20 Å). The completion of those proton transfers and the five-membered ring
formation resulted in a tetrahedral intermediate 1 (INT1) formation. The nitrogen of the (N + 1) amide
formed no hydrogen bond with the H2PO4

− ion. In contrast, the H2PO4
− ion formed two hydrogen

bonds with the (N − 1) amide oxygen and OH hydrogen of the gem-hydroxylamine moiety. A hydrogen
bond between the (N − 1) amide oxygen and the H2PO4

− ion was maintained throughout the reaction.
Proton transfer for the cyclization step in the water- and carbonate-catalytic reactions was similar to
that in the phosphate-catalytic reaction (Figures S2 and S3). Although the hydrogen bond between
the HCO3

− ion and (N − 1) amide oxygen was formed in INT1, it was not observed in RC and TS1.
In the carbonate-catalyzed reaction, stabilization of the complexes by their interaction between the Asn
residue and the HCO3

− ion was relatively weak.
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The optimized geometries in the deammoniation step of the phosphate-catalyzed reaction are
shown in Figure 9. A tetrahedral intermediate 2 (INT2) was formed by rearrangement of the H2PO4

−

ion. The position of the H2PO4
− ion and the conformation of the gem-hydroxylamine moiety were

considered to be easily changed because these ions are abundant under physiological conditions.
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In INT2, the H2PO4
− ion formed two hydrogen bonds with the nitrogen and OH hydrogen atoms

of the gem-hydroxylamine moiety (1.77 Å and 1.63 Å, respectively). The proton transfers between
these hydrogen-bonded atoms resulted in TS2 formation (Figure 9). In TS2, these proton transfers
were almost completed, and the C-N distance in gem-hydroxylamine moiety was stretched by 0.37 Å.
In the product complex (PC), the C-N distance was 4.26 Å. Therefore, the C-N bond was cleaved after
completion of proton transfer. Proton transfers in the water-catalyzed reaction are not completed in
the TS of the deammoniation step (Figure S4). In contrast, the C-N bond was cleaved after completion
of proton transfer in the carbonate-catalyzed reaction (Figure S5). The protonation of the nitrogen
atom of gem-hydroxylamine has been suggested to occur in the INT2 [43,44], and its proton transfer is
considered to precede the C–N bond cleavage. Our results of the intrinsic reaction coordinate (IRC)
calculation also suggested that the nitrogen atom of gem-hydroxylamine is protonated in the early
stage of TS2 formation in the reaction catalyzed by water, H2PO4

− and HCO3
− ions.
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Figure 9. Optimized geometries of the deammoniation step for the syn conformation in
phosphate-catalyzed reaction. The carbon, nitrogen, oxygen, and phosphorus atoms are illustrated in
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The changes of dihedral angles through the cyclization step in the phosphate-catalyzed reaction are
shown in Table 4. There were no significant changes ofϕ in all steps, andϕ remained around 55◦ from TS1
to PC. The change of ψ in conversion from RC to TS1 was the largest change during the reaction (31.2◦).
These changes of dihedral angles were relatively smaller than that for succinimide formation from
Asp [46,47,49]. Succinimide formation from Asn causes small conformational changes in comparison
with its formation from Asp. As ϕH was constant, the syn conformation was maintained throughout
the cyclization and deammoniation steps. The changes of dihedral angles in the water-catalyzed
reaction were similar to those in the phosphate-catalyzed reaction (Table S1). In contrast, the alteration
of the dihedral angle ψ in the carbonate-catalyzed reaction was relatively small in TS1 formation from
RC (17.1◦). In the PC of all reactions, ϕ and ψ are approximately 55◦ and 140◦, respectively. Dihedral
angles of ϕ and ϕH in the optimized geometries for the succinimide formation were consistent with
those in the Asn residues in the structure of γS-crystallin obtained by the MD simulation. Therefore,
dihedral angles of ϕ and ϕH can be used to predict the Asn deamidation rate. On the other hand,
ψ and χ were different from those of frequently deamidated residues in the PDB and MD simulations.
These dihedral angles are assumed to not be important for deamidation rate.

Table 4. Dihedral angles (degrees) of the optimized geometries for the syn conformation in the
phosphate-catalyzed reaction.

Dihedral Angle/Degree

ϕ ψ χ ϕH

RC 71.04 −105.2 −174.0 4.917
TS1 57.74 −136.4 168.6 −7.248
INT1 55.41 −142.0 149.5 −9.097
INT2 54.72 −141.2 146.0 −7.442
TS2 54.95 −141.6 146.2 −6.697
PC 54.74 −140.5 139.3 −6.901
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2.3. Deamidation Mechanism in the Anti Conformation

For comparison of the Asn deamidation mechanism between syn and anti conformation, quantum
chemical calculations for the anti conformation were also performed. The optimized geometries of the
cyclization step in the phosphate-catalyzed reaction are shown in Figure 10. Overall, proton transfer
and nucleophilic attack for cyclization were similar to those in the syn conformation. In addition,
proton abstraction by the H2PO4

− ion from the (N+1) amide nitrogen occurred at an early stage of the
cyclization step. However, the H2PO4

− ion formed a hydrogen bond with the amide NH proton of the
N-terminal side. The reaction mechanism of the anti conformation in water- and carbonate-catalyzed
reactions was also similar to those of the syn conformation (Figures S6 and S7). H2O molecules formed
no hydrogen bond with the N-terminal main chain atoms in the water-catalyzed reaction. On the other
hand, differences in hydrogen bonds between optimized geometries of syn and anti conformations
were not observed in the carbonate-catalyzed reaction. Differences in hydrogen-bond formation might
affect the activation energy barrier.
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phosphate-catalyzed reaction. The carbon, nitrogen, oxygen, and phosphorus atoms are illustrated in
gray, blue, red, and orange, respectively. Selected interatomic distances are in units of Å.

The optimized geometries for the deammoniation step in the phosphate-catalyzed reaction are
shown in Figure 11. As in the cyclization step, the reaction mechanism of the deammoniation step in the
anti conformation was similar to that in the syn conformation. There are no differences in hydrogen-bond
formation in the deammoniation step between the syn and anti conformations. In addition, distances
between the atoms related to reactions in the anti conformation were almost the same as those of the syn
conformation. Therefore, the syn/anti conformations do not affect the mechanism of the deammoniation
step. In the water- and carbonate-catalyzed reactions, the deammoniation mechanisms for the anti
conformation are considered to be similar to those for the syn conformation (Figures S8 and S9).
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The changes in dihedral angles of the main chain in the anti conformation were larger than those
of the syn conformation (Table 5). The amount of alteration for ϕ and ψ from RC to TS1 was 28.1◦ and
86.8◦, respectively. χ was nearly constant throughout the whole reaction. Therefore, large structural
changes of the main chain were required for succinimide formation in the anti conformation compared
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with those in the syn conformation. This is considered to be one of the reasons for the low frequency of
deamidation in the anti conformation. In addition, Asn37 and Asn76 of γS-crystallin rarely formed
suitable conformations for succinimide formation (Figure S1). Therefore, structural constraints are
considered to result in Asn37 and Asn76 rarely being deamidated.

Table 5. Dihedral angles (degrees) of the optimized geometries for the anti conformation in the
phosphate-catalyzed reaction.

Dihedral Angle/Degree

ϕ ψ χ ϕH

RC −83.20 −22.74 138.2 −151.8
TS1 −111.3 −109.5 144.8 −171.0
INT1 −117.0 −133.4 137.1 178.6
INT2 −114.2 −140.1 145.9 −179.0
TS2 −113.7 −142.7 147.2 −179.1
PC −113.6 −139.6 140.0 −178.6

2.4. Activation Energy for Succinimide Formation from the Asn Syn/Anti Conformation

To evaluate the differences in activation energy barrier between the syn and anti conformations,
the deamidation pathways of Asn residues were investigated for syn and anti conformations using
quantum chemical calculations. The relative energies were calculated using the MP2/6-311+G(2d,2p)//
B3LYP/6-31+G(d,p) level (Figure 12 and Figure S10). The energy profiles for two-step succinimide
formation from an Asn residue in the phosphate-catalyzed reaction are shown in Figure 12A, B. In both
conformations, the relative energy of TS1 was higher than that of TS2. Therefore, the cyclization
steps are considered to be the rate-determining steps. The overall activation energies in the syn
and anti conformations were 89.3 and 111 kJ·mol−1, respectively. Although the activation energy
barriers in both conformations were significantly low to allow the deamidation reaction to occur
under physiological conditions, the barrier of the syn conformation was lower than that of the
anti conformation. The activation energy barriers of the syn conformation were in agreement
with those experimentally determined for deamidation of model peptides in phosphate buffer at
pH 7.5 (90.7 kJ·mol−1) [7]. This result suggests that succinimide formation from Asn in the syn
conformation occurs more easily than in the anti conformation, consistent with experimental data for
the deamidation level in γS-crystallin [32]. Furthermore, the activation energies of the syn conformation
in carbonate-catalyzed deamidation was 82.7 kJ·mol−1 (Figure 12C, D). This value was also consistent
with activation barriers obtained by experimental methods in various buffers (80–100 kJ·mol−1) [6,7].
Therefore, H2PO4

− and HCO3
− ions are considered to be major catalysts for Asn deamidation.
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Figure 12. Relative energy profiles of the phosphate- and carbonate-catalyzed reaction calculated using
the MP2/6-311+G(2d,2p)//B3LYP/6-31+G(d,p) level. Entire energy profiles of (A) syn conformation in
the phosphate-catalyzed reaction, (B) anti conformation in the phosphate-catalyzed reaction, (C) syn
conformation in the carbonate-catalyzed reaction, and (D) anti conformation in the carbonate-catalyzed
reaction are shown.

3. Methods

3.1. Investigation of Asn Conformation in the Experimental Structure

To investigate the influence of the 3D structure on Asn deamidation rates, an experimental
structure of γS-crystallin [53] was obtained from the PDB (PDB ID: 2M3T). To retrieve common
structural features of frequently deamidated Asn residues, the Asn conformations were observed using
the PyMOL molecular viewer (http://pymol.sourceforgen.net/).

3.2. Molecular Dynamics Simulations

To consider structural flexibility, the MD simulation was performed for the γS-crystallin structure.
The system was solvated with the TIP3P model [54], neutralized by adding Cl− ion, and calculated
under the periodic condition. The cutoff distance of van der Waals interactions was set at 10 Å, and the
particle mesh Ewald method [55] was used for calculating electrostatic interactions. The SHAKE
algorithm [56] was applied to constrain the lengths of bonds containing hydrogen atoms. Before MD
simulations, 1000-step structural minimizations of water and counter ion were performed, and 2500-step
minimizations of whole systems were performed, followed by temperature-increasing MD simulation
of 20 ps with the temperature raised from 0 to 300 K. After these simulations, equilibrating MD
simulation was carried out under constant temperature and pressure for 2000 ns. The time steps of
temperature-increasing and equilibrating MD simulations were 2 fs. These MD simulations were
accomplished using AMBER16 [57]. AMBER ff14SB force field [58] was used for the parameters of
amino acids. The cpptraj module of AmberTools17 was used for analysis of the results. The root
mean square deviations (RMSDs) for main-chain atoms are calculated using the 3D structures after
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temperature-increasing MD simulations. The root mean square fluctuations (RMSFs) were calculated
for all Cα atoms using the MD trajectories for the last 10 ns to evaluate the structural flexibilities. As a
reference structure for RMSF calculations, the average structures of the last 10 ns trajectories were used.
The dihedral angles ϕ, ψ, χ, and ϕH were investigated using the last 10 ns trajectories.

3.3. Quantum Chemical Calculations

Based on the experimental data and the calculated structures of Asn residues in γS-crystallin,
the conformations of the initial structure for quantum chemical calculations were constructed.
Catalyst molecules and ions used in this study abundantly exist in vivo and have been suggested to
catalyze post-translational modification of proteins [41–49]. Energy minima and transitional state (TS)
geometries were optimized without any constrains by the density functional theory (DFT) with B3LYP
functional and 6-31+G(d,p) basis set in the polarized continuum model (PCM). This method was used
in many studies for the reaction mechanisms of post-translational modifications [41–49]. Vibrational
frequency calculations were performed for all the optimized geometries to obtain the zero-point energy
and to confirm them with no imaginary frequency (for energy minima) or a single imaginary frequency
(for TSs). IRC calculations from the TSs to confirm the energy minima connected by each TS. In addition,
the single-point energies of all optimized geometries were calculated by MP2/6-311+G(2d,2p) level.
All of the quantum chemical calculations were performed using Gaussian16 [59].

4. Conclusions

In this study, we computationally investigated the effects of main-chain conformations of
Asn residues on the deamidation reaction. MD simulations and quantum chemical calculations
demonstrated that Asn deamidation more easily occurs in the syn conformation than in the anti
conformation. The activation energy in the phosphate-catalyzed reaction of the syn conformation
(89.3 kJ·mol−1) was significantly lower than that of the anti conformation (111 kJ·mol−1). Therefore,
main-chain conformation is considered to be one of the important factors determining deamidation
rate. There is no need for flexibility of the main chain as long as the main-chain conformation is suitable
for succinimide formation. Specifically, the dihedral angles ϕ and ϕH are important for determining
the deamidation rate of Asn residues. These dihedral angles may be available for prediction of the
deamidation rate. On the other hand, common features for χ of frequently or infrequently deamidated
Asn residues were not discovered in this study. As side chains exposed to the surface of protein
structures are more flexible than the main chains, χ is assumed to be difficult to use as a parameter
for predicting Asn deamidation rate. Our results suggest the lifetime of peptide/protein drugs can be
extended by excluding syn-conformation Asn residues. In a previous study, the activation barriers of
Asp and isoAsp formation from succinimide were shown to be 22.4 kcal·mol−1 (93.6 kJ·mol−1) and
22.5 kcal mol−1 (94.1 kJ·mol−1), respectively [1]. These values are higher than that of succinimide
formation from the syn conformation, and lower than from the anti conformation. Therefore, in the syn
conformation, succinimide formation might not be the rate-determining step of Asp/isoAsp formation
from Asn residues.

Our results also suggest that H2PO4
− and HCO3

− ions are the principle catalysts for Asn
deamidation in vivo, and that an increase in concentration of these anions in cells can accelerate Asn
deamidation in proteins. Therefore, computational results in this study suggest the possibility of
mitigating age-related diseases by regulating the concentration of H2PO4

− and HCO3
− ions.
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