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Abstract

An integrated model assessing the status and productivity of Antarctic krill (Euphausia

superba, hereafter krill) was configured to estimate different subsets of 118 potentially esti-

mable parameters in alternative configurations. We fixed the parameters that were not esti-

mated in any given configuration at pre-specified values. The model was fitted to over forty

years of fisheries and survey data for krill in Subarea 48.1, a statistical reporting area around

the Antarctic Peninsula used by the Commission for the Conservation of Antarctic Marine Liv-

ing Resources (CCAMLR). The number of estimated parameters was gradually increased

across model configurations. Configurations that estimated more parameters fitted the data

better, but the order in which the parameters were estimated became more important in find-

ing the best fit. Twenty-two configurations estimating from 48 to 107 parameters were able to

obtain an invertible Hessian matrix that was subsequently used to estimate parameter uncer-

tainty. Parameter uncertainties calculated using asymptotic approximation around the maxi-

mum likelihood estimates were often larger than uncertainties based on Markov chain Monte

Carlo sampling for the same parameters. Diagnostics applied to MCMC samples in the best

model of each configuration that obtained an invertible Hessian indicated that the most highly

parameterized configurations did not reach stationary distributions. A 96-parameter configu-

ration was the best fitting model of those that passed the MCMC diagnostics. The ΔAIC and

ΔBIC scores indicated essentially no support relative to the best model for the alternative

models that also passed MCMC diagnostics. Simulated data using the configurations as

operating models showed that while all configurations passed "self-tests" for spawning bio-

mass and recruitment, there was a small negative bias due to model penalties in the fishing

mortality estimates for years with the highest fishing mortalities. "Cross-tests" of configura-

tions that estimated different parameters often differed from the operating model values.

Introduction

Integrated models in fisheries stock assessment are fitted to multiple data sources and may

combine different probability models for different types of data in the likelihood function. For

PLOS ONE | https://doi.org/10.1371/journal.pone.0202545 August 17, 2018 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Kinzey D, Watters GM, Reiss CS (2018)

Parameter estimation using randomized phases in

an integrated assessment model for Antarctic krill.

PLoS ONE 13(8): e0202545. https://doi.org/

10.1371/journal.pone.0202545

Editor: Masami Fujiwara, Texas A&M University,

UNITED STATES

Received: May 3, 2018

Accepted: August 6, 2018

Published: August 17, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: The data used in this

study are available from the data repository at

https://swfsc.noaa.gov/AERD-Data/.

Funding: This project was funded by the NOAA U.

S. Antarctic Marine Living Resources (AMLR)

program. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0202545
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202545&domain=pdf&date_stamp=2018-08-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202545&domain=pdf&date_stamp=2018-08-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202545&domain=pdf&date_stamp=2018-08-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202545&domain=pdf&date_stamp=2018-08-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202545&domain=pdf&date_stamp=2018-08-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202545&domain=pdf&date_stamp=2018-08-17
https://doi.org/10.1371/journal.pone.0202545
https://doi.org/10.1371/journal.pone.0202545
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://swfsc.noaa.gov/AERD-Data/


example, one type of data might have errors distributed following a lognormal distribution

and another type might be distributed as a multinomial. The model parameters are shared

between the different likelihood components to minimize the deviance between the model

predictions and all the types of data the model is fitted to [1, 2, 3]. These models can be highly

parameterized, incorporating individual parameters in multiple nonlinear relationships

reflecting the underlying population dynamics. They are used to infer the current status and

productivity of a fished stock in comparison to a reference state, and to predict future states of

the stock at alternative proposed levels of future harvest. The proposed harvests are removed

from the model population described by the parameters as it is projected into the future. These

projections can then be compared to management objectives.

The fits of different sets of potential parameter values to the data can be conceptualized as a

"likelihood surface", analogous to a three-dimensional topographic map with ridges and val-

leys. In the case of statistical modeling, instead of three dimensions the likelihood surface has

as many dimensions as the model has parameters. The best point on this multidimensional

surface (the maximum likelihood) is its highest peak. This represents the combination of

parameter values that produce the closest fit to the data. For computational efficiency, the

equivalent value of the lowest negative log-likelihood is commonly used to identify the best

parameter estimates, so that the lowest point in the negative log-likelihood surface (hereafter

the likelihood surface) represents the best fitting parameter values. When this likelihood sur-

face is very uneven, analogous to a rugged topographic map with multiple valleys, numerical

optimizers attempting to find the best fitting parameters can sometimes get "stuck" in a local

minimum instead of finding the best, global minimum.

In this paper the model equations, likelihood components and pre-specified (fixed) quanti-

ties of a model are called its structure. This structure, along with the other parameter values,

provides information for each individual parameter estimate. The deviance between the pre-

dicted values for the data and the actual data is calculated for each likelihood component using

a "loss function", which for example could be sum of squares for Gaussian data, or the sum of

the products of bin proportions and the log of bin proportions for multinomial data. The sen-

sitivity of the deviance to changes in individual parameter values allows parameter uncertainty

to be measured for a given combination of model and data. A parameter with little impact on

model fit as its value is changed has more uncertainty associated with it than a parameter in

which small changes produce larger effects on the fit.

Various approaches to statistical inference may be employed in integrated modeling. One is

maximum likelihood, in which all the information about the parameters comes from the fit of

the model to the data, and "prior" probabilities of parameter values are not specified. A second

is Bayesian inference, in which parameters are treated as random variables with prior distribu-

tions. Penalized likelihood is a third approach in which penalties in the likelihood on some

parameter values are analogous to Bayesian priors, although not all parameters are constrained

by priors as would be the case in a fully Bayesian model [4, 5, 6]. Model fitting and evaluation

of the model predictions compared to data are central to using such models for inference [7].

The model structure can include some quantities fixed at pre-specified values [8, 9]. As the

number of estimated parameters instead of fixed quantities increase, finding unique solutions

for them (model convergence) can become increasingly difficult. In this study, models with

the same data and likelihood equations but differing combinations of estimated parameters

and pre-specified quantities are called "configurations". The pre-specified quantities in a sim-

ple configuration may be estimated as parameters in another configuration.

Some parameters, such as natural mortality M [10, 11], "steepness" h (spawner-recruit produc-

tivity) [12, 13], and the standard deviation of recruitment residuals σR [14] are commonly pre-

specified in fisheries stock assessments. In a compilation of 80 stock assessments conducted by
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NOAA between 2005 and 2012 [15], M was pre-specified in 60 assessments, estimated in 8 assess-

ments, no M value was used in 9 assessments, and 3 assessments included some configurations

that estimated M and others that did not. Steepness was fixed in 29 assessments, estimated in 10,

not applicable in 30 assessments, and either not used or estimated externally in 11 assessments.

Fixing parameters at assumed values may facilitate finding unique solutions for the remain-

ing parameters but at the potential costs of prediction bias and poor fit to the data if the pre-

specified values supplied to the model are wrong. Fixing parameters to pre-specified values

can also predetermine key management reference points, e.g., pre-specifying a value for steep-

ness affects the values of biomass, rate of fishing mortality, and spawners-per-recruit predicted

to produce maximum sustainable yield [16, 9].

A second technique for facilitating model convergence in integrated modeling is to use nar-

row priors, penalty functions, or possibly absolute bounds on the parameter estimates to

reduce the range of parameter combinations over which the minimizing algorithm searches

[17, 9]. A potential drawback to this method is that these prior assumptions might not include

the values that would best fit the data, especially if the priors or bounds have been chosen to

facilitate convergence rather than representing pre-existing information about the possible

ranges for these parameters.

When the likelihood surface of a model with nonlinear components displays multiple local

minima, estimating the parameters in phases can facilitate convergence [18]. A phased

approach involves initially estimating only a few parameters in the earliest iterations of the

numerical optimizer, while holding the others at pre-specified values, then estimating the

remaining parameters in later phases. Once activated, the parameters continue to be re-esti-

mated in each subsequent phase.

Various suggestions for the order in which parameters are estimated in fisheries stock assess-

ment have been proposed. Estimating the parameters that scale the biomass first, followed by

other parameters such as those for selectivity, for which reasonable guesses can be pre-specified

during the early phases, has been recommended [2]. Similarly, it has been suggested that parame-

ters should be estimated in phases once nonlinear models exceed about 20 parameters, with the

least certain parameters estimated early, and then better known parameters estimated in subse-

quent phases [18]. Estimating parameter values in phases is commonly employed in fisheries

assessment models such as Stock Synthesis, an assessment framework used on the U.S. west coast

and elsewhere [19, 3]. CASAL, an alternative integrated modeling framework used to assess New

Zealand and Antarctic fisheries, also allows the use of phases in parameter estimation [20].

Here we aim to identify trade-offs between supplying pre-specified quantities to an inte-

grated assessment versus estimating them in the assessment model, and to explore the parame-

ter estimation performance associated with these trade-offs. We use a length-based, age-

structured population assessment model for Antarctic krill to explore the effects of estimating

increasing numbers of parameters. We evaluate the performance using a variety of Bayesian

and maximum likelihood metrics, including the fits of the configurations to the data (the nega-

tive log-likelihoods), the proportion of replicates estimating the same parameters but in differ-

ent sequential orders that found the best fitting parameter values, information-theoretic

measures (ΔAIC and ΔBIC), and Markov chain Monte Carlo (MCMC) diagnostics of conver-

gence. The overall question is, what combination of potential parameters are estimable with

the data available for krill that provide the best fit?

Materials and methods

The krill model uses penalized likelihood. The model was developed in AD Model Builder

(ADMB) [18] and fitted to hydroacoustic indices of krill biomass, research-trawl indices of
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krill biomass, length-compositions of krill in the research-trawl and fishery-observer samples

during 1982 to 2016 and 2000 to 2015, respectively, and annual fisheries catches from

CCAMLR Subarea 48.1 (the Antarctic Peninsula) from 1976 to 2015 [21]. Annual biomass

densities and length-compositions from a 125,019 km2 sampling grid were obtained from a

combination of the U.S. Antarctic Marine Living Resources Program (U.S. AMLR) research

surveys during 1992 to 2016 [22, 23, 24], German research surveys during 1982 to 1989, and a

Peruvian research survey during summer 2014, and extrapolated to the surrounding 630,278

km2 CCAMLR Subarea 48.1.

Assessment model

An earlier version of the integrated assessment model for krill was fitted to only research-sur-

vey (trawl and hydroacoustic) data [22]. The effects of harvest removals since the 1970s were

assumed to be minor at the population level in that model. The population dynamics and like-

lihood equations used in the model configurations described here (Supplemental 1, "Model

equations") are the same as described in the earlier version for the annual length-compositions

(from research trawls), and Beverton-Holt recruitment penalties. The penalty on natural mor-

tality in the earlier modeling (Appendix Eq 9 of [22]) was removed from the current

configurations.

In the current configurations, annual krill harvests during 1976 to 2016 and observer mea-

surements of length-compositions from the commercial catch from 2000 to 2014 have been

added as additional sources of data. Mortality has been separated into natural and fishing mor-

talities. Model components representing the Baranov catch equation and population effects of

the fishery were incorporated to use the new data. The krill model assumes lognormally dis-

tributed errors for the annual biomass indices from six surveys and for the fishery catches.

Length-compositions from survey trawls and from the fishery are assumed to have multinomi-

ally distributed errors.

All survey and fishery selectivities are logistic functions of age in the current model. Model

age-compositions from the fishery were converted to lengths available in the data based on the

same von-Bertalanffy age-length conversion as for the research trawls (S1 Text).

Parameter estimation

Different subsets of 118 potentially estimable quantities in the krill assessment were estimated

using variable combinations of pre-specified quantities and estimated parameters. All parame-

ters were initialized to the same set of values that were either obtained from the literature or,

when pre-existing values for specific parameters could not be found, from early model runs

(Table 1). The quantities that were not activated for estimation in a configuration remained at

these pre-specified values. From 3 to 12 parameter groups were activated in phases 1 to 7, with

the terminal phase ending at phase 9 (a parameter "group" includes indexed parameters repre-

sented by each row of Table 1, although not all of these parameters were estimable in the best

configurations). The number of potential permutations of parameter groups in different phase

sequences was large. For example, for 12 parameter groups estimated in 7 phases the number

of permutations is 12!(12–7)! = 5.7e+10. Only a small sample of the potential permutations

were evaluated for each configuration.

Most of the estimated parameters in Table 1 did not have penalties or priors assigned to

them. Seven of the parameters were bounded (Table 1) but not all of these were estimated in

all models. Bounds on parameter estimates prevent the minimizing algorithm from searching

extreme regions of the potential parameter space. This can be problematic if the model esti-

mates a value to be at a bound, as that might indicate the model could find a better fit outside
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of the bounds. Estimates of bounded parameters should be checked after estimation to ensure

they are not at a bound.

Penalties on the annual recruitment deviations from a deterministic Beverton-Holt rela-

tionship with spawning biomass (Λ1 to Λ4) and on fishing mortality (Λ5,Λ6) are described in

the Supplemental Information (S1 Text). All other parameters in Table 1 were freely estimated

without penalties or priors, starting from the initial values.

The active parameters in each configuration were estimated in a series of 20 randomized,

sequential phase orderings, or replicates (Fig 1). An R script ran the ADMB executable after

randomizing the phases. Each replicate in a configuration estimated the same parameters but

in different sequential orders until either an invertible Hessian matrix (an approximation of

the covariance matrix for the parameters) was obtained or 3000 iterations of random phase

orders were completed. This sequence of randomizing the phase orders in a series of replicates

allowed us to evaluate the consistency of the negative log-likelihood values in models that were

able to produce MCMC samples (see "Parameter uncertainty: MLE asymptotic approximation

and MCMC sampling", below). It also identified phase orderings that produced a local mini-

mum in the negwative log-likelihood instead of the lowest negative log-likelihood observed.

We report results from 22 configurations with from 48 to 107 estimated parameters. Con-

figurations with 108 to 118 estimated parameters were also modeled but these did not produce

invertible Hessian matrices. In the first configuration ("cfg") of parameter estimates (cfg I),

only recruitment was estimated. The twenty replicates of this configuration each estimated 48

parameters—unfished recruitment, mean recruitment during the estimation period, and 46

Table 1. Potentially estimable parameters, their pre-specified, initial values, and bounds, if any, on the estimates.

The number of parameters estimated is one per survey for parameters subscripted with an s and one per year for

parameters subscripted with a y. Parameters are mathematically described in the Supplemental Information (S1 Text).

Description (number of parameters) Parameter Initial value(s) Bounds

log(unfished mean recruitment) (1)�� ln(R0) 16.0

log(mean recruitment) (1)�� lnð�RÞ 16.0

log(annual recruitment deviations) (46)�� εR
y 0 -15, 15

log(recruitment standard deviation) (1)�� ln(σR) -0.3567

log(natural mortality) (1)� ln(M) -0.2232 -5, 5

summer acoustic survey selectivity (2)�� αs,βs 3.3, 0.06

trawl and winter acoustic survey selectivity (10)�� αs,βs 1.3, 2.8

fishery selectivity (2)�� αf,βf 1.3, 2.8

log(average fishing mortality) (1)�� μf -2.3026

log(annual fishing mortality deviations) (41)� εf
y 0 -12, 8

fishery catch CV (1)�� σC 0.1

log(fishery catchability) (1)�� ln(qf) 0

steepness (1)� h 0.85 0.21, 1

log(survey catchability) (6)�� ln(qs) 0

von Bertalanffy growth (3)� ln(L1)

ln(k)

ln(σv)

4.11,

-0.799,

1.459

2.5, 5

-10, 5

0.2, 5

� These initial values are from application of the Generalized Yield Model to krill model (values obtained from

CCAMLR Secretariat), or recommended by a panel from the Center for Independent Experts that reviewed our

integrated krill model in 2016, except the von Bertalanffy variability of length with age (ln(σv)), which was based on

early model runs.

�� These initial values are based on fitting the data in early model runs.

https://doi.org/10.1371/journal.pone.0202545.t001
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annual recruitment deviations (Tables 1 and 2). The other 70 potentially estimable quantities

remained at their pre-specified, initial values. The numbers of parameters activated for estima-

tion were increased in subsequent configurations until, for all replicates, the Hessian matrix

was no longer invertible (indicating non-convergence) or the maximum gradients were greater

than 0.001 (indicating high correlations among some parameter estimates).

Three configurations used different combinations of pre-specified and estimated survey

selectivities in a single model. Cfg XV estimated fishery selectivity and catchability, and survey

selectivity for the summer Isaacs-Kidd midwater trawls (IKMT) (survey 3). The selectivities

for 4 other trawl surveys pre-specified with the values in Table 1. Cfg XVI estimated the selec-

tivity for the same IKMT trawl survey as cfg XV, but the other surveys in cfg XVI were pre-

specified with the selectivities estimated in cfg XVII instead of those listed in Table 1. Summer

acoustic surveys in cfgs XVI and XVII had pre-specified selectivities of 1 for all age classes

(selectivity parameters in Table 1).

Estimating the parameters of a configuration in different phase orders could result in one

of three possible outcomes: 1) all the replicates in a configuration could stop after 3000 ran-

domized phase orders without producing an invertible Hessian matrix or standard deviations

for the point estimates; 2) some or all replicates could estimate standard deviations for the esti-

mates but be unable to progress to MCMC sampling because the Hessian matrix was not

invertible, or; 3) some or all of the replicates could estimate standard deviations, an invertible

Hessian matrix, and achieve MCMC sampling of the posterior distribution.

Fig 1. Sequential modeling stages. Relationships among the model, the model configurations, and the phase-

randomized replicates.

https://doi.org/10.1371/journal.pone.0202545.g001
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Four metrics were used to evaluate model performance at the maximum likelihood stage

for the configurations that were able to progress to MCMC sampling: 1) the negative log-likeli-

hood, a measure of the fit to the data, with smaller numbers indicating better fit; 2) the maxi-

mum gradient, a measure of parameter identifiability, with values less than 0.001 preferred; 3)

the percentage of replicate models that produced the lowest observed negative log-likelihood

in a configuration, a measure of how often a configuration found the best observed negative

log-likelihood rather than a local minimum, with higher percentages preferred; and 4) the

mean number of phase-randomizations required per replicate before achieving an invertible

Hessian matrix and thus MCMC sampling.

The replicate models that produced invertible Hessian matrices within each configuration

and among different phase orders were compared. The replicate with the smallest negative

log-likelihood and smallest maximum gradient was selected as the best model for that parame-

ter configuration. The best models from each configuration were initially iterated for 10 mil-

lion MCMC samples, saving every 2,000th sample (thinning), for 5,000 saved samples.

We applied diagnostics from the coda R package [25] to the MCMC samples of the best rep-

licate model from each configuration. These were evaluated using Heidelberger and Welch

diagnostics for to up to 27 parameters (when they were estimated). These were all the scalar

parameters, the 2015 estimates of spawning biomass and recruitment, and the 2011 estimate

for annual fishing mortality deviation. Trace plots, Gweke plots, autocorrelation plots, and

density plots indicated whether or not the MCMC sampling appeared sufficient to obtain the

Table 2. Parameter groupings that were estimated ("e") in each of 22 configurations (“cfg”)�. All configurations were initialized using the parameter values from

Table 1. Configurations are ordered by increasing numbers of estimated parameters ("N pars").

cfg N pars R0
�R εR

y μf M αf,βf αs,βs qf σR h qs L1,k,σv

I 48 e e e

II 49 e e e e

III 49 e e e e

IV 49 e e e e

V 49 e e e e

VI 51 e e e e e

VII 54 e e e e

VIII 63 e e e e e e1-6

IX 90 e e e e

X 91 e e e e e

XI 91 e e e e e

XII 92 e e e e e e

XIII 93 e e e e e e

XIV 94 e e e e e e e

XV 96 e e e e e e e3 e

XVI 96 e e e e e e e3 e

XVII 104 e e e e e e e2-6 e

XVIII 104 e e e e e e1-6 e

XIX 105 e e e e e e e1-6

XX 106 e e e e e e e1-6 e

XXI 107 e e e e e e e1-6 e e

XXII 107 e e e e e e e1-6 e e

� Additional configurations that estimated survey catchability (qs) or growth (L1,k,σv) parameters were modeled, but did not have an invertible Hessian matrix and a

maximum gradient < 0.001. Subscripts on the survey selectivitys indicate which selectivities were estimated.

https://doi.org/10.1371/journal.pone.0202545.t002
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stationary distribution for the parameter estimates. MCMC sampling for configurations that

failed the convergence tests at 10 million samples were increased to 40 million, and finally to

100 million MCMC samples, and reevaluated using various burn-in (deletion of early samples)

and thinning values.

Parameter uncertainty: MLE asymptotic approximation and MCMC

sampling

Identifying the uncertainty associated with the estimates of a statistical model is of fundamen-

tal importance in their use [26, 27]. Two methods of quantifying uncertainties in the parameter

estimates and derived quantities were employed in this study. The first used the relationship

that the inverse of the Hessian matrix for the parameter estimates approximates the covariance

matrix for the parameters. An asymptotic, linear approximation of the standard deviations

around the parameter estimates can be calculated for nonlinear models from the Hessian

matrix using a Taylor series expansion, sometimes called the "delta-approximation method"

[28, 7, 6, 29].

MCMC sampling, a second alternative for estimating uncertainty, is a Bayesian method

that does not require the assumption of a symmetric Gaussian error distribution used in the

asymptotic approximation. ADMB uses the Metropolis-Hastings algorithm for MCMC sam-

pling. The algorithm is supplied with an approximate multivariate normal distribution calcu-

lated from the Hessian matrix [29]. Occasionally, a Hessian matrix that is sufficient for the

asymptotic approximation will not support MCMC sampling.

Model uncertainty

Both the asymptotic approximation and MCMC methods of estimating uncertainty assume

the model as given, or "true." To the extent the model is not true (model structural uncer-

tainty), both methods may misrepresent the actual uncertainty around the estimates as a repre-

sentation of nature. Models can be ranked, however, as "approximating models" in their ability

to represent a data set by such information-theoretic measures as AIC [30] or BIC [31]. AIC

has been described as a predictive-based viewpoint, while BIC measures goodness-of-fit as

developed from an explanatory viewpoint [32].

The relationship between achieving a better fit and estimating more parameters was

assessed using ΔAIC and ΔBIC model-selection methods. The ΔAIC score was calculated as

the difference in twice the negative log-likelihood plus twice the number of estimated parame-

ters between the best model for a data set and alternative models. The ΔBIC score was similarly

calculated as the difference in twice the negative log-likelihood plus the log of sample size

times the number of estimated parameters. The ΔBIC penalizes increasing numbers of param-

eters more than the ΔAIC. Sample size for the ΔBIC was 143, calculated as the sum of the num-

ber of years of data available from 6 surveys and the fishery (35 years of survey composition

data, 54 years of survey biomass indices, 41 years of fishery catches, 13 years of fishery compo-

sitions). Alternative models with ΔAIC scores further away from the best model than about 3

or 4 have very little support relative to the best model [30]. The evidence against models more

than 10 ΔBIC scores apart is "very strong" [33].

Simulation testing

Simulation testing of assessment models using "pseudo-data" has been recommended [34, 35].

In this approach, the predicted values generated by a model, the "operating model", are sup-

plied as data to a second model, the "estimating model". The ability of the estimating model to

reproduce the parameters of the operating model is then evaluated. When the operating and
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estimating models have the same structure this evaluation is known as a "self-test" and can be

used to examine potential bias in derived parameters such as the time-series of spawning bio-

mass or fishing mortality. When the model structures are different it is known as a "cross-test"

and can be used to evaluate process error due to these structural differences.

In this study, pseudo-data were generated without error from the predicted values of each

of the model configurations. Years of data available from each data source, effective sample

sizes, and CVs were the same as for the real data. Five replicates of each configuration of esti-

mating models were conducted. All configurations were evaluated using self-tests. Cfgs I, V, X,

XI and XVI were also evaluated using cross-tests.

Results

Increasing the numbers of estimated parameters

Estimating more parameters usually produced a better fit to the krill survey and fishery data,

as expected. Twenty-two alternative configurations of those evaluated with 48 to 107 estimated

parameters produced invertible Hessian matrices for all 20 of their replicates and were able to

be sampled using MCMC. None of the bounded parameter estimates were near their bounds

when they were estimated in these configurations. The negative log-likelihoods for models

with increasing numbers of parameters decreased (improved) from 17,247 for cfg I to 11,384

for cfgs XXI and XXII ("-LL", Table 3). All of the configurations that passed coda tests esti-

mated an invertible Hessian matrix after the first randomization. Not all of the replicates in a

Table 3. Model fit, consistency and convergence properties for the 22 configurations in Table 2. The number of estimated parameters (N pars), median number of

phase randomizations (iterations) before an invertible Hessian was obtained, percentage of the series of replicates that had the lowest objective value (% best), the lowest

negative log-likelihood (-LL), maximum gradient (max g), ΔAIC, ΔBIC, and whether or not the configuration passed (p) the coda diagnostics are reported.

cfg N pars median

iterations

% best -LL max g ΔAIC ΔBIC coda

I 48 1 100 17247 3.51E-05 11616 11474 p

II 49 1 100 14223 2.16E-05 5570 5431 p

III 49 1 100 16528 4.19E-05 10180 10041 p

IV 49 1 100 17070 3.02E-05 11264 11125 p

V 49 1 100 17106 2.50E-05 11336 11197 p

VI 51 1 80 13604 1.06E-06 4336 4203 p

VII 54 1 100 16368 3.14E-05 9870 9746 p

VIII 63 13 5 13446 3.67E-03 4044 3946

IX 90 1 30 13692 3.42E-05 4590 4572 p

X 91 1 95 12054 7.05E-06 1316 1301 p

XI 91 1 100 11766 1.91E-05 740 725 p

XII 92 1 95 11766 2.72E-05 742 730

XIII 93 1 95 11643 9.36E-06 498 489 p

XIV 94 1 55 11487 1.52E-05 188 182 p

XV 96 1 15 11417 6.66e-05 52 52 p

XVI 96 1 27 11391 3.77E-05 0 0 p

XVII 104 3 30 11384 4.52E-05 2 26

XVIII 104 19 40 12342 4.10E-05 1918 1942

XIX 105 8 10 11540 7.06E-02 316 343

XX 106 2 25 11386 5.84E-05 10 40

XXI 107 2 35 11383 2.25E-05 6 39

XXII 107 2 15 11383 1.92E-05 6 39

https://doi.org/10.1371/journal.pone.0202545.t003
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configuration had the same negative log-likelihood, however. As the number of estimated

parameters increased, the proportion of replicates that achieved the lowest observed negative

log-likelihood decreased (“% best”, Table 3). When more than 96 parameters were estimated,

more phase-randomizations were required to obtain an invertible Hessian matrix ("median

iterations", Table 3).

The 22 configurations produced a wide range of spawning biomass and annual recruitment

estimates (Fig 2). However, the differences of thousands of negative log-likelihood values

among configurations, producing differences in ΔAIC and ΔBIC scores of over 10,000 between

the best and worst models, indicate essentially zero support for the fits of the simplest of these

configurations compared to the configurations estimating more parameters ("ΔAIC", "ΔBIC",

Table 3).

For the configurations estimating fewer than 51 parameters, randomizing the phase order

had no effect on model performance. These configurations passed all diagnostic tests with 10

million MCMC samples (Table 3). All 20 replicates in each configuration converged on the

first phase-randomization to the same negative log-likelihood value for that configuration

(Table 3, cfgs I to V). Maximum gradients were less than 0.0001 for the best replicates and less

than 0.001 for all 20 replicates in each of these configurations.

For the 17 configurations in which 51 or more parameters were estimated, obtaining an

invertible Hessian matrix could require more than a single randomized phase order for a repli-

cate, and not all the replicates with an invertible Hessian matrix produced the lowest observed

negative log-likelihood value for that configuration. For cfg XVI, the median number of phase

randomizations before achieving an invertible Hessian matrix was 1, but only 45% of these

had the lowest observed negative log-likelihood. The number of replicates for cfg XVI was

increased from 20 to 100 to confirm the lowest negative log-likelihood (11,391) for this config-

uration had been obtained. Twenty-seven of the 100 replicates had the lowest negative log-like-

lihood, matching the best value observed for the initial 20 replicates.

Cfg XVI, estimating 96 parameters, met the combined criteria of best fitting the data, pro-

ducing an invertible Hessian matrix, having a maximum gradient less than 0.001, and passing

the MCMC diagnostics. None of the configurations that estimated more than 96 parameters

passed all coda and other diagnostics, indicating the parameter estimates for those configura-

tions did not converge to a stationary distribution (Table 3). There were substantial differences

Fig 2. Spawning biomass and recruit numbers from 22 model configurations. Maximum likelihood estimates of spawning

biomass and annual recruitment for all 22 configurations (gray), and the best-fitting configuration of those that passed coda

diagnostics, cfg XVI (black).

https://doi.org/10.1371/journal.pone.0202545.g002
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among the estimates from this best-fitted configuration for the same parameters in many of

the other configurations (Figs 2 to 6).

Fig 3. Annual recruitment estimates (where N = number of recruits X 1e+6) and associated uncertainty using MCMC and MLE

methods applied to cfgs I, XVI, and XX. MCMC quantiles of 0, 0.25, 0.5, 0.75, and 1.0, and 95% CIs around the MLE from the

asymptotic approximation are shown. A) Cfg I MCMC, B) Cfg I asymptotic approximation, C) Cfg XVI MCMC, D) Cfg XVI

asymptotic approximation, E) Cfg XX MCMC, F) Cfg XX asymptotic approximation.

https://doi.org/10.1371/journal.pone.0202545.g003
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The MCMC samples among cfgs XX, XXI and XXII produced similar estimates of mean

annual recruit numbers, natural mortality, average fishing mortality and unfished spawning

Fig 4. Annual spawning biomass estimates (log tonnes) and associated uncertainty using MCMC and MLE methods applied to

cfgs I, XVI, and XX. MCMC quantiles of 0, 0.25, 0.5, 0.75, and 1.0, and 95% CIs around the MLE from the asymptotic approximation

are shown. A) Cfg I MCMC, B) Cfg I asymptotic approximation, C) Cfg XVI MCMC, D) Cfg XVI asymptotic approximation, E) Cfg

XX MCMC, F) Cfg XX asymptotic approximation.

https://doi.org/10.1371/journal.pone.0202545.g004
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biomass, and had lower negative log-likelihoods than cfg XVI, but estimated almost no uncer-

tainty in the MCMC estimates for some or most parameters (Figs 3 to 6). Configurations

attempting to estimate more than 107 of the 118 total parameters did not produce invertible

Hessian matrices. Configurations estimating the parameters for von Bertalanffy growth or for

survey catchability had very large maximum gradients or did not produce invertible Hessian

matrices when more than one or two other parameters were estimated. The growth and survey

catchability parameters were pre-specified at their initial values (Table 1) in all the configura-

tions reported here.

Configurations estimating separate selectivities for all 6 surveys (summer and winter acous-

tics, summer and winter IKMT trawls, summer and winter RMT8 trawls in cfgs VIII and XVII

to XXII) produced invertible Hessian matrices and were able to be sampled using MCMC, but

Fig 5. Parameter estimates and uncertainty ranges for unfished recruitment (log(R0)) and mean log recruitment (log(�R))

from 22 model configurations. Boxplots of MCMC distributions, and 95% CIs based on MLE asymptotic approximation around

MLE point estimates. A) log(R0) MCMC, B) log(R0) asymptotic approximation, C) log(�R) MCMC, D) log(�R) asymptotic

approximation.

https://doi.org/10.1371/journal.pone.0202545.g005
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did not pass the Heidelberger and Welch diagnostic test at up to 100 million MCMC samples.

In the configurations that attempted to estimate survey selectivities, the summer acoustic

Fig 6. Parameter estimates and uncertainty ranges for natural mortality (M), mean fishing mortality (μf) and

unfished biomass (B0) from 22 model configurations. Boxplots of MCMC distributions, and 95% CIs based on MLE

asymptotic approximation around MLE point estimates. A) M MCMC, B) M asymptotic approximation, C) μf MCMC,

D) μf asymptotic approximation, E) log(Bo) MCMC, and F) log(Bo) asymptotic approximation.

https://doi.org/10.1371/journal.pone.0202545.g006
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selectivities were usually 1 for all ages and the other selectivities were near zero for ages 1 and 2

and increased to 1 by age 4 or 5.

The sequential orders in which parameters were estimated in the replicates for all configu-

rations varied widely without a clear pattern in the phase sequences. In cfg XVI for example,

most parameters in the 27 replicates with the lowest negative log-likelihood were first activated

in any of phases 1 to 7 (Table 4). The parameter estimates in the best replicates of all the con-

figurations displayed similar variabilities in their phase of estimation.

Natural mortality was estimable in many of these configurations but growth was not (the

maximum gradients for models including estimated parameters for growth had maximum

gradients of greater than 1000). Two parameters traditionally considered "inestimable" within

integrated stock assessments, recruitment variability (σR) and steepness (h), were not estimable

in this study unless no more than one or two other parameter groups were estimated.

The estimates for natural mortality were higher than the pre-specified value of 0.8 (an

annual mortality of 55%, log(M) = -0.2232, Table 1), with estimated values of from 1.37 (75%

annual mortality—cfg XVI) to 2.46 (91%—cfg VI) in the configurations that estimated natural

mortality and passed the coda diagnostics (cfgs II, VI, X, XIII to XVI). The configurations that

did not estimate natural mortality fit the data worse than configurations estimating otherwise

identical parameter sets, and estimated different trends in spawning biomass during the most

recent years modeled than the configurations estimating natural mortality (Tables 2 and 3).

MCMC and asymptotic variance estimates of uncertainty

MCMC sampling produced more narrow estimates of uncertainty than the variances pro-

duced using the asymptotic approximation for many of the estimated parameters. The differ-

ences between the MCMC and asymptotic approximation methods of estimating uncertainty

were most pronounced for natural mortality (M), average log fishing mortality (μf) and unf-

ished spawning biomass log(B0) (Fig 6). The derived time series of annual spawning biomass

also had much wider credible intervals for the MLE than for the MCMC estimates (Fig 4). For

other estimated parameters (e.g., log(R0), log(�R), log(εR
y )) the asymptotic and MCMC intervals

were similar in location and range.

Simulation testing

The simulation tests indicated that all configurations were able to reproduce their original esti-

mates of recruitment, spawning biomass, survey and fishery length-compositions, and fishery

catches when supplied with pseudo-data in a self-test (e.g., S1 Fig and S2 Fig). In most cases,

all five replicates of the estimating models produced the same negative log-likelihood and no

cases produced more than 1 replicate with a negative log-likelihood larger than the other 4 rep-

licates. Length-compositions from all six surveys and the fishery fit similarly to the IKMT sum-

mer surveys from 1991 to 2002 shown as examples in Figure A in S1 Fig and Figure A in S2

Fig.

Table 4. Minimum and maximum phases in which parameters were first activated for the 27 best (out of 100

total) replicate randomizations of cfg XVI. All negative log-likelihoods were 11,391, as reported in Table 3 (the other

replicates of cfg XVI had negative log-likelihoods from 11,393 to 11,438).

M R0
�R εR

y μf qf αs(3),βs(3) αf,βf

min 2 1 1 1 1 2 1 1

max 7 7 7 7 6 6 7 7

https://doi.org/10.1371/journal.pone.0202545.t004
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When different configurations were used as the operating and estimating models in cross-

tests, they often did not reproduce the parameters of the operating model. For example, when

cfg XI was the operating model and cfgs I, V, X, XI and XVI were the estimating models, only

cfgs X and XI were able to reproduce the recruitment and spawning biomass values of the

operating model (S3 Fig). As an estimating model, cfg XVI could closely but not exactly repro-

duce the parameter values when the other configurations were used as operating models (S3

Fig, S4 Fig). When a simple model such as cfg I was used as an estimating model with a more

complex operating model such as cfg XVI the estimates of recruitment, spawning biomass and

fishery catches could be far from the operating model values even though the length-composi-

tion data were closely fitted (S5 Fig).

There was a small downward bias in the estimates of fishing mortality for the years with the

highest fishing mortalities in the operating models. Cfg XVI for example was biased down-

wards for the highest values of fishing mortality in the self-test (Figures A and B in S6 Fig).

This may be due to the penalties on high fishing mortalities being overly severe. Removing

them completely allowed the model to fit the most recent years better but caused overestimates

in the early years (Figure C in S6 Fig).

Discussion

With over 40 years of research-survey and fishery data available, the krill population in the

vicinity of the Antarctic Peninsula qualifies as a relatively "data-rich" stock. Integrated models

based on such a time series could be expected to support the estimation of more parameters

than would be possible if time series information about Antarctic krill in the Antarctic Penin-

sula region was "data-poor" [36, 37]. Estimating differing numbers of parameters for the krill

model in different phase orders helped search a larger parameter space and insure that we

were able to find the best estimates for as many of the potentially estimable parameters, given

the data and model structures, as possible.

The potential for highly parameterized models to exhibit performance issues in fisheries

assessment has been previously recognized (e.g., [38, 39]). This study presumes that inference

from models that fitted the data better is preferable to inference from models that fitted the

data less well, so long as diagnostics do not indicate non-convergence, over-parameterization

or similar issues. Careful testing of model estimates using diagnostics such as AIC, BIC, the

maximum gradient, coda tests, and simulations are methods of identifying models that may be

attempting to estimate more parameters than the data can support.

Despite the wide ranges in parameter estimates from different configurations, differences in

ΔAIC or ΔBIC of several thousand or more indicate that there is no support for the configurations,

among those evaluated here, that estimated fewer parameters than cfg XVI. In a multi-model infer-

ence context, models with ΔAIC or ΔBIC scores more than 10 units away from the best model

would be so downweighted when combined with the best model that they would have an essentially

undetectable effect on the estimates from the best model when model-averaged [30].

Pre-specified values are structural components of the model, analogous to the choice of a

particular function among the various alternatives representing a spawner-recruit relationship,

or alternative growth functions. In a statistical model, these choices act as constraints, similar

to penalties, on the parameters that were estimated in an individual configuration. Unlike esti-

mated parameters, when these quantities were pre-specified they did not count as parameters

for the AIC- or BIC-based model selection criteria.

When more than the 96 parameters in cfg XVI were estimated, declines in model perfor-

mance and failure to pass coda diagnostics indicated the data were not sufficient to inform the

estimates. These configurations appear to be over-parameterized for the available data.
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For some derived parameters, e.g., annual spawning biomasses during the time period

modeled (By) (Fig 4), unfished spawning biomass (B0), natural mortality (M) and fishing mor-

tality (μf) (Fig 6) and the differences between MCMC-based and MLE asymptotic variance-

based methods of estimating the uncertainty around the point estimates was striking. The

asymptotic approximation produced much wider uncertainty ranges when applied to parame-

ters such as spawning biomass or natural mortality than observed in the MCMC distributions.

While other researchers have compared uncertainty estimates for the individual parameters

using asymptotic approximations and Bayesian MCMC estimates (e.g., [4, 6]) to our knowl-

edge this is the first study to find such a large discrepancy between the two methods for some

parameters. In highly parameterized, nonlinear models, uncertainty estimates based on

asymptotic methods may underperform.

The simplest models in this study indicate a potential danger with pre-specifying too many

parameters as known quantities in integrated models. When a parameter is pre-specified, it

can contribute to the derived and other model estimates without including any uncertainty

that would be incorporated if its value had also been estimated. This can produce not only dif-

ferent point estimates than models estimating more parameters, but a falsely narrow estimate

of the uncertainty around the model estimates (e.g., compare cfgs I and XVI in Figs 3 and 4).

The MCMC distributions for spawning biomass and recruitment in the simpler configurations

show different trends than those from the best-fitting and best-performing cfg XVI, and the

estimated uncertainties around the parameters from the simple models were misleadingly

smaller. If simple models such as cfg I were the only models evaluated the results could encour-

age unfounded confidence in the estimates.

The simulation tests have several implications. Divergence between the parameter estimates

of assessment models using simulated data and the operating model values has been com-

monly observed in other studies in both self- and cross-tests [34, 35]. In this study, the configu-

rations successfully reproduced the operating model values in self-tests (albeit with a small

downward bias in the highest estimates of annual fishing mortalities). The bias in the estimates

of the highest annual fishing mortalities (Figure A in S6 Fig) suggests the penalties on the esti-

mates of Fy may need modification.

As expected, the simpler configurations in the simulations were typically unable to repro-

duce the operating model values from configurations with more parameters because the sim-

ple configurations were overly constrained. Even though estimating models with more

parameters were able to more closely mimic the simpler operating models than simple estimat-

ing models could match complex operating models (S4 Fig, S5 Fig), in general most models

failed the cross-tests for recruitment and spawning biomass. Cfg XVI was often close to the

operating model values from other configurations (e.g., fitted to the cfg XI operating model, S3

Fig and to the cfg I operating model, S4 Fig).

As an example, operating model cfg I produced recruitments and spawning biomasses that

were much lower in the pre-data years than in the years with data. This situation, where the

estimates for the pre-data years have very different population dynamics than the years with

data is one that the recruitment penalties were designed to drive the model away from. Because

cfg I had fewer options for fitting the data than configurations with more parameters, it

incurred high recruitment penalties using both the real (S1 Table) and simulated data in a self-

test (S2 Table). If the true recruitments were very different in the years immediately prior to

the years with composition data, as in an unrecognized regime-shift or similar situation, the

recruitment penalties could drive the parameter estimates away from their true values in the

pre-data years. In the case of using the cfg XVI estimating model with the cfg I operating

model, the cross-test produced the correct trends in the estimates for recruitment and spawn-

ing biomass from about 1980 onwards, but increased their magnitude (S4 Fig).
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The best model in this paper, cfg XVI, still used 22 pre-specified values for potentially estima-

ble parameters. These were 6 survey catchabilities (qs), 10 survey selectivities (α1,2,4–6,β1,2,4–6),

steepness (h), recruitment variability (σR), catch variability (σC) and 3 von Bertalanffy growth

parameters (L1,k,σv) (Table 1). Because there is no uncertainty associated with these quantities

in the model, the uncertainty ranges on the estimated and derived parameters from cfg XVI

should be considered minimum values.

Most of the 22 quantities that could not be estimated when many other parameters were

also estimated were estimable in simple models with fewer total estimated parameters. These

simple models fit the data much more poorly than the configurations reported here, however.

One potential option that we did not explore in this study would be to fix parameters that are

inestimable in the more highly parameterized configurations to the values estimated in simpler

configurations and compare the fits of these models to the fits using the initial pre-specified

values from the literature or from early model runs.

Conclusions

We recommend that researchers and stock assessment scientists who aim to achieve the best

fit of integrated models to multiple data sources while minimizing variance should consider

using techniques such as phase randomization, ΔAIC and ΔBIC diagnostics, MCMC rather

than asymptotic approximations around the MLE estimates, diagnostic tests such as those in

the R package coda to ensure convergence of the parameter estimates, and simulation testing.

These measures will help guard against applying models that are too simple (e.g. Fig 3A and

3C) or too complex (Fig 5A and 5C) for the available data, and use parameter estimates from

models with sufficient complexity to be supported by the data (Fig 4A and 4C).
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