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A genome-wide association study (GWAS) in Chinese twins was performed to explore asso-
ciations between genes and pulse pressure (PP) in 2012, and detected a suggestive asso-
ciation in the phosphatase and actin regulator 1 (PHACTR1) gene on chromosome 6p24.1
(rs1223397, P=1.04e−07). The purpose of the present study was to investigate associations
of PHACTR1 gene polymorphisms with PP in a Chinese population. We recruited 347 sub-
jects with PP ≥ 65 mmHg as cases and 359 subjects with 30 ≤ PP ≤ 45 mmHg as controls.
Seven single nucleotide polymorphisms (SNPs) in the PHACTR1 gene were genotyped. Lo-
gistic regression was performed to explore associations between SNPs and PP in codom-
inant, additive, dominant, recessive and overdominant models. The Pearson’s χ2 test was
applied to assess the relationships of haplotypes and PP. The A allele of rs9349379 had a
positive effect on high PP. Multivariate logistic regression analysis showed that rs9349379
was significantly related to high PP in codominant [AA vs GG, 2.255 (1.132–4.492)], additive
[GG vs GA vs AA, 1.368 (1.049–1.783)] and recessive [AA vs GA + GG, 2.062 (1.051–4.045)]
models. The positive association between rs499818 and high PP was significant in codomi-
nant [AA vs GG, 3.483 (1.044–11.613)] and recessive [AA vs GG + GA, 3.716 (1.119–12.339)]
models. No significant association of haplotypes with PP was detected. There was no signif-
icant interaction between six SNPs without strong linkage. In conclusion, the present study
presents that rs9349379 and rs499818 in the PHACTR1 gene were significantly associated
with PP in Chinese population. Future research should be conducted to confirm them.

Introduction
Pulse pressure (PP) is the difference between systolic blood pressure (SBP) and diastolic blood pressure
(DBP), reflecting the fluctuation of blood pressure during each cardiac contraction [1,2]. Widening PP
is an independent risk factor for coronary heart disease (CHD), myocardial infarction (MI), stroke and
is linked to mortality [3–6]. Studies have demonstrated that some environmental factors affect PP. For
instance, reduced arterial compliance in large arteries with age leads to elevated PP [7]. Gender affects PP
through changing the time for return of the reflected wave, dependent on body height [8]. In addition, PP
might be influenced by cholesterol, diabetes and hypertension [2].

Besides the above environmental factors, PP is related to genetic factors. Genetic epidemiological stud-
ies using families or twins have reported a series of data on the heritability estimates of PP, ranging from
0.11 [9] in black African families to 0.63 [10] in Swedish families [9–25]. Among them, a study of Chi-
nese twins displayed that the heritability estimate is 0.45 [11], which is similar to Polish (0.37) [12] and
American (0.51) [21] studies using family data, respectively.

Recent studies have increasingly demonstrated that phosphatase and actin regulator 1 (PHACTR1)
gene polymorphisms are associated with cardiovascular disease (CVD) in different populations, includ-
ing Mexicans, Caucasians and Chinese, etc. [26–37]. Of note, a genome-wide linkage and genome-wide
association study (GWAS) for PP in Chinese twins was performed in 2012. The present study identified a
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suggestive linkage peak on chromosome 6 (LOD score = 3.19) and found a suggestive association between
rs1223397 in chromosome 6p24.1 PHACTR1 gene and PP (P=1.04e−07) [5].

The product of the PHACTR1 gene is a binding protein of protein phosphatase 1 (PP1) and actin via four
RPEL-repeat sequences [38,39]. As a regulator of PP1 activity, PHACTR1 is highly expressed in endothelial cells
(ECs) of the brain and heart, playing an important role in regulating endothelial tubulogenesis, motility and apoptosis
[34,39–41]. It is also expressed in ECs of arteries and is related to altered vasomotor properties [32,37,42]. Considering
the regulating function of PHACTR1 and the independent contribution of PP to cardiovascular and cerebrovascular
diseases, we wondered whether polymorphisms of the PHACTR1 gene contribute to the susceptibility of high PP.

Therefore, we performed the present study to examine the associations between PHACTR1 gene polymorphisms
and PP in a Chinese population.

Materials and methods
Study participants
The case–control study was performed from July 2015 to December 2017, among subjects residing in four districts
(Shibei, Shi’nan, Huangdao, Licang) of Qingdao, China. Participants aged 30 years and over and trained investigators
completed the questionnaires on a face to face basis. All participants recruited were ethnic Han permanent residents.
Patients with an antecedent or current history of cancer, valvular diseases, cardiovascular and cerebrovascular diseases
(CHD, MI and stroke, etc), and severe hepatorenal disease were excluded. In addition, pregnant or lactating women
were excluded. The case group consisted of subjects with PP ≥ 65 mmHg. The control group included individuals with
30 ≤ PP ≤ 45 mmHg, SBP ≤ 120 mmHg and DBP ≤ 80 mmHg, excluding those with antihypertensive medication
currently. A total of 706 blood samples (347 cases and 359 controls) were successfully collected and genotyped.

The research complied with the Declaration of Helsinki and was supported by the Ethics Committee of Qingdao
University Medical College. Every participant provided written informed consent.

Single nucleotide polymorphisms selection and genotyping
The selection of single nucleotide polymorphisms (SNPs) was based on the Chinese Han Beijing (CHB) pop-
ulation data of HapMap (HapMap Data Rel 27 PhaseII + III) and 1000 Genomes Project database (http://
browser.1000genomes.org/index.html). We used Haploview 4.2 software (https://www.broadinstitute.org/haploview/
downloads) to screen tag-SNPs according to minor allele frequency (MAF) > 0.05 and r2 > 0.8. In addition, we
screened the literature of SNPs related to blood pressure or CVD in PubMed and Google [5,26–29,31,34,43–45]. Fi-
nally, seven SNPs in the PHACTR1 gene were selected for the present study, i.e., rs475543, rs9472419, rs2026458,
rs9349379, rs1223397, rs693758, rs499818.

Genomic DNA was extracted from the peripheral blood of each subject using DNA isolation kits (BioTeKe Cor-
pration, Beijing) and stored at −20◦C before genotyping. SNPs genotyping was provided by the Bio Miao Biological
Technology (Beijing) Co., Ltd using Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry
(MALDI TOF–MS) of the MassARRAY system (Sequenom Inc., San Diego, CA, U.S.A.). The design of PCR primers
was performed by Assay Design 3.1 software (Sequenom Inc., San Diego, CA, U.S.A.) and listed in Supplementary
File S1. Genotyping was carried out without knowing the case or control status of blood samples for quality control.
We randomly selected 10% of samples for repeated genotyping detection, and the consistency of the results was more
than 99%.

Definitions
In the present study, we adopted body mass index (BMI) proposed by China to diagnose obesity (non-obese <

28 kg/m2; obese ≥ 28 kg/m2) [46]. According to the Chinese adult dyslipidemia prevention guide (2016), dyslipi-
demia was defined as meeting one of the following criteria: (i) total cholesterol (TC) ≥ 5.2 mmol/l; (ii) triglyceride
(TG) ≥ 1.7 mmol/l; (iii) high-density lipoprotein cholesterol (HDL-C) < 1.0 mmol/l; (iv) low-density lipoprotein
cholesterol (LDL-C) ≥ 3.4 mmol/l [47]. LDL-C level was calculated by the Friedewald equation: LDL-C (mmol/l) =
TC–HDL-C–(TG/2.2) (mmol/l) [48]. Diabetes, defined as fasting plasma glucose (FPG) was ≥ 7.0 mmol/l, or 2-h
plasma glucose (2h PG) was ≥ 11.1 mmol/l or self-reported physician diagnosis of diabetes history [49]. Smoked ≥
100 cigarettes in life and currently smoking was defined as smoking, smoked < 100 cigarettes in life or no smoking
for 2 years or more was defined as no smoking. Drinking alcohol within the last 6 months was considered alcohol
consumption [50]. Recreational activity refered to running, playing ball, swimming, dancing etc.
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Statistical analysis
In the current study, Stata 15.0 (Stata Corp LLC, College Station, TX, U.S.A.) was used for statistical processing of
data. The Student’s t test was performed to investigate the difference in continuous variables of normal distribution
between the cases and controls; if not, the Wilcoxon rank sum test was applied. The formula of Student’s t test was as
follows:

t = X1 − X2√
(n1−1)S2

1 +(n2−1)S2
2

n1+n2−2

(
1

n1
+ 1

n2

)

S1
2 and S2

2 were the variance of two samples, n1 and n2 were the number of two samples.
Pearson’s χ2 test was used to compare the difference of categorized variables between groups and verify the

Hardy–Weinberg Equilibrium (HWE). The formula of Pearson’s χ2 test was as follows:

χ2 =
∑ (A − T )2

T
A is the actual frequency; T is the theoretical frequency.
Five genetic models (i.e. codominant, additive, dominant, recessive and overdominant models) were adopted for

analysis. To examine the associations between SNPs in the PHACTR1 gene and PP in five genetic models, odds
ratios (ORs) with 95% confidence intervals (CIs) were computed by univariate and multivariate logistic regression.
The formula of logistic regression analysis was as follows:

logit p = In
(

p
1 − p

)
= β0 + β1 X1 + β2 X2 + · · · + βk Xk

Based on the univariate analysis, the variables with statistically significant distribution differences between groups
were selected as covariates for adjustment in the multivariate logistic regression analysis (including age, BMI, dyslipi-
demia, diabetes, drinking status and recreational activity). In addition, according to previous literature studies, the
multivariate logistic regression analysis also adjusted for gender. The Akaike information criterion (AIC) was applied
to determine the optimal inheritance model for each SNP.

Haploview 4.2 software was utilized to conduct pairwise linkage disequilibrium (LD) analysis, construct haplotype
blocks and calculate haplotype frequencies. D′ value was greater than 0.75, indicating the presence of strong LD among
the SNPs. Haplotypes with total frequency less than 5% were omitted. Pearson’s χ2 test was used to compare the
distribution of haplotype frequencies between groups. Generalized multifactor dimensionality reduction (GMDR)
0.9 software (http://www.ssg.uab.edu/gmdr/) was used for gene–gene interaction analysis. If there was a strong LD
between several SNPs, the SNP with maximum MAF was included in the GMDR model. To control the influence of
confounding factors on the results, age, gender, BMI, dyslipidemia, diabetes, drinking status and recreational activity
were adjusted as covariates. The cross-validation consistency (CVC), testing balanced accuracy and sign test were
applied to evaluate each selected interaction. The CVC score, as a measure of the degree of consistency, was used to
determine the best model. The testing balanced accuracy was used to measure the degree to which the interaction
accurately predicts case-control status with a score ranging from 0.5 to 1.0. The sign test for prediction accuracy
was applied to determine whether the identified model was significant or not. All probabilities (P-values) mentioned
above were two-sided with P less than 0.05 were considered significant.

Sample power calculation
Quanto 1.2.4. software (http://biostats.usc.edu/software) was used for power analysis based on the following param-
eter setting: OR was 1.5, the prevalence of high PP was 15% [51–53], type I error rate (α) was 0.05, inheritance model
was additive model, and sample size was 706 including 347 cases and 359 controls. Depending on the MAF in the
study (range: from 0.09 to 0.48), the power of the study was 62.3–96.3%. The power of the study had reached more
than 80% when MAF was 0.15.

Results
Demographic characteristics analysis
In the present study, a total of 706 subjects including 347 high PP subjects (cases) and 359 normal PP subjects (con-
trols) were selected. The demographic characteristics of case and control groups are presented in Table 1. Compared
with the controls, the high PP group had significant higher age (P=0.002). Except for gender and smoking status,
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Table 1 The characteristics of study subjects

Variables High PP group (n=347) Normal PP group (n=359) P-value

Age (years) 54.990 +− 8.138 53.090 +− 8.231 0.0021

Gender (Male/Female) 123 (35.4)/224 (64.6) 133 (37.0)/226 (63.0) 0.6582

BMI (<28/≥28 kg/m2) 244 (70.3)/103 (29.7) 330 (91.9)/29 (8.1) <0.0012

Dyslipidemia (No/Yes) 109 (31.4)/238 (68.6) 159 (44.3)/200 (55.7) <0.0012

Diabetes (No/Yes) 258 (74.6)/88 (25.4) 340 (94.7)/19 (5.3) <0.0012

Smoking status (No/Yes) 292 (84.1)/55 (15.9) 311 (86.6)/48 (13.4) 0.3512

Drinking status (No/Yes) 277 (79.8)/70 (20.2) 315 (87.7)/44 (12.3) 0.0042

Recreational activity (No/Yes) 336 (96.8)/11 (3.2) 320 (89.1)/39 (10.9) <0.0012

Data are expressed as mean +− standard deviation mean (SD) or frequency (percentage).
1Student’s t test.
2Pearson’s χ2 test.

Table 2 SNPs of the PHACTR1 gene investigated in the present study

SNP ID Chr
Chr position

(GRCh38.p12) Location
Alleles

(major/minor)
MAF

(case/control) HWE P1

rs475543 6 12717924 Intron 1 G/A 0.11/0.11 0.889

rs9472419 6 12718269 Intron 1 C/T 0.32/0.35 0.449

rs2026458 6 12825642 Intron 3 T/C 0.48/0.46 0.712

rs9349379 6 12903725 Intron 3 G/A 0.28/0.23 0.852

rs1223397 6 13270713 Intron 10 G/C 0.22/0.21 0.618

rs693758 6 13287168 3′UTR G/A 0.09/0.09 1.000

rs499818 6 13332235 3′near G/A 0.15/0.14 0.482

1The HWE P-value shows the HWE test in control subjects.

there were significant differences in the distribution of BMI, dyslipidemia, diabetes, drinking status and recreational
activity between the case and control groups.

Single SNP analysis of PHACTR1 gene and PP
Details for every SNP in our study are shown in Table 2. Genotype frequencies for all SNPs conformed to HWE in the
control samples. The association between each allele and PP, the associations of SNPs with PP in codominant, additive,
dominant, recessive and overdominant models are listed in Supplementary File S2. The A allele of rs9349379 had a
positive effect on high PP [A vs G, 1.293 (1.016–1.646)]. The univariate logistic regression presented that rs9349379
was correlated with an increased risk of high PP in codominant [AA vs GG, 2.137 (1.129–4.044)], additive [GG vs
GA vs AA, 1.290 (1.014–1.641)] and recessive [AA vs GA + GG, 2.029 (1.085–3.793)] models. Besides, the positive
association between rs499818 and high PP was significant in codominant [AA vs GG, 3.250 (1.046–10.099)] and
recessive [AA vs GG + GA, 3.454 (1.115–10.670)] models.

In the multivariate logistic regression analysis, adjusted for age, gender, BMI, dyslipidemia, diabetes, drinking status
and recreational activity, the association of rs9349379 in the above three genetic models with the higher possibility of
high PP did not change significantly. The adjusted OR (95% CI) for rs9349379 in codominant, additive and recessive
models were 2.255 (1.132–4.492), 1.368 (1.049–1.783) and 2.062 (1.051–4.045), respectively. Similarly, there was not
signifcant change in the association between rs499818 and PP in codominant [AA vs GG, 3.483 (1.044–11.613)] and
recessive [AA vs GG + GA, 3.716 (1.119–12.339)] models.

According to the AIC, corresponding best model for rs9349379 and rs499818 was the codominant model. No
significant association between other PHACTR1 SNPs and PP was found in the present study.

Haplotype analysis of PHACTR1 gene
As shown in Figure 1, LD analysis between seven SNPs in the PHACTR1 gene presented that there was a strong LD
between rs475543 and rs9472419, which constructed a haplotype block. The results of haplotype analysis displayed
that no significant association of haplotypes with PP was observed (Table 3).
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Figure 1. The haplotype structure of seven PHACTR1 SNPs in the total 706 ethnic Han Chinese subjects

A haplotype block was determined through the Haploview program. The rs number (top; from left to right) corresponds to the SNP

ID and the level of pairwise. Numbers in the squares refer to pairwise LD represented as 100 × D′ values.

Table 3 Association of the PHACTR1 haplotypes and PP

Haplotype1 rs475543 rs9472419 Freq (total) Freq (case) Freq (control) χ2 P2 Permutation3

H1 G C 0.557 0.568 0.547 0.594 0.441 0.738

H2 G T 0.334 0.321 0.347 1.029 0.310 0.609

H3 A C 0.108 0.111 0.106 0.095 0.758 0.952

1Haplotypes with total frequency less than 5% were omitted.
2P-value for the χ2 test.
3P-value for the 1000 permutation test.

Gene–gene interaction analysis
The GMDR method, adjusted for the above-mentioned covariates, was applied to analyze the interaction among the
six SNPs without strong linkage (rs9472419, rs2026458, rs9349379, rs1223397, rs693758, rs499818) in the PHACTR1
gene. The best interaction combination was a five-locus model with a maximum CVC (10/10), testing accuracy of
48.51% and P-value of 0.8281 (Table 4). The result suggested that there was no significant interaction between six
SNPs in the study of PP.

Discussion
The complex etiology of elevated PP is intimately involved with environmental and multigenic factors. Previous stud-
ies have revealed that PP is closely associated with polymorphisms of many genes, such as endothelial nitric oxide
synthase (eNOS) gene, angiotensin-converting enzyme (ACE) gene and fibrillin-1 gene [54–57]. With regard to the
PHACTR1 gene, studies have found that rs9369640 was related to hypertension [45], rs1223397 was suggestively as-
sociated with PP [5], and rs9349379 was linked to SBP [58]. In this study, we explored the associations of seven SNPs
in the PHACTR1 gene and PP in a Chinese population. The findings displayed that the A allele of rs9349379 was a
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Table 4 Best gene–gene interaction models, as identified by GMDR

Locus no. Best combination1 Testing accuracy CVC P

2 rs2026458 rs9349379 0.5011 7/10 0.3770

3 rs9472419 rs2026458
rs9349379

0.4823 6/10 0.6230

4 rs9472419 rs2026458
rs9349379 rs499818

0.4920 7/10 0.8281

5 rs9472419 rs2026458
rs9349379 rs1223397 rs499818

0.4851 10/10 0.8281

6 rs9472419 rs2026458
rs9349379 rs1223397 rs
693758 rs499818

0.4613 10/10 0.8281

1Adjusting for age, gender, BMI, dyslipidemia, diabetes, drinking status, recreational activity.

risk factor for high PP, AA genotype of rs9349379 (located in intron 3) and AA genotype of rs499818 (located in 3′

near) were significantly related to increased possibility of high PP in the best genetic models.
The PHACTR1 gene is composed of 20 exons and 19 introns, encoding PHACTR1, a 484-amino acid long regu-

latory protein and member of the phosphatase and actin regulatory proteins family [37,39,59,60]. More studies have
displayed that the polymorphisms of the PHACTR1 gene have been related to the pathogenesis of endothelial dys-
function and vascular diseases, i.e., CHD, MI and hypertension, etc. [26,32,45,61], and endothelial dysfunction makes
an important contribution to high PP [62]. Therefore, the association of PHACTR1 gene polymorphisms with PP
may be explained by its influence on the physiological function of vascular EC.

PHACTR1 is thought to be an effective inhibitor of PP1 – a multifunctional enzyme that regulates various cellular
processes through dephosphorylating serine and threonine residues of different substrates [41]. Reduced PP1 restricts
the dephosphorylation of eNOS to impair the synthesis of nitric oxide (NO) in EC [37,63], which is crucial for normal
endothelial function and vascular homeostasis, including modulation of vasomotion and local cell growth [64]. Ad-
ditionally, Rodŕıguez-Pérez et al. found that intronic polymorphisms in the PHACTR1 gene might cause abnormal
PHACTR1 protein through selective splicing in EC, which predisposes individuals to endothelial dysfunction [65].

Studies on rs9349379 of the PHACTR1 gene have provided vital evidence for the relationship between the
PHACTR1 gene polymorphisms and the function of EC. Surendran et al. thought that the G allele of rs9349379
was linked to lower SBP [58]. It may be due to the G allele of rs9349379 up-regulates the expression of endothelin-1
(EDN1) gene, located 600 kb upstream of the PHACTR1 gene [61]. Increased protein product (ET-1) of the EDN1
gene combines with endothelin B (ETB) receptors on ECs in great vessels, resulting in endothelium-dependent va-
sodilation via NO synthesis [66,67]. This may be why individuals with the A allele of rs9349379 had a higher proba-
bility of high PP than those with the G allele of rs9349379 in our study. ET-1 could also lower blood pressure through
enhancing the excretion of Na and water via ETB receptors in renal collecting system [61,68].

On the other hand, rs9349379 is located at a predicted binding site for the transcriptional activator myocyte en-
hancer factor-2 (MEF2) [69]. MEF2 is expressed in developing EC and is essential for EC proliferation, survival
and vascular endothelial integrity [69,70]. In research by Beaudoin et al., the authors observed that the G allele of
rs9349379 disrupted the MEF2-binding motif, reducing PHACTR1 expression levels on EC in the right coronary ar-
teries [71]. In this study, rs9349379 genetic association result is consistent with the above physiology, maybe it is also
a possible way to explain the effect of rs9349379 on PP.

Regarding rs499818, previous studies reported that it was linked to MI, stroke, fatal ischemic heart disease and
sudden cardiac death [26,72,73], but did not mention the possible mechanism about rs499818. In the present study,
there was a significant relationship between genotype of rs499818 and PP in codominant and recessive models, but
the difference in allele distribution was not significant between the case and control groups. Duplication studies are
needed to confirm the real correlation between SNP and PP.

There are some limitations in our study that should be considered. First, this research was a community-based
case–control study. There might be recalls bias and it might affect the results. Second, since the etiology of high PP is
complex, other unobserved variables may influence the outcome. Finally, the applicability of the results in the present
study to other races needs further validation.

In summary, the present study shows that two SNPs in the PHACTR1 gene (rs9349379, rs499818) may influence
the susceptibility to high PP in a Chinese Han population. Our results provide a new direction for genetic research
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and mechanism exploration on PP. Large sample size and multiethnic studies should be conducted to confirm the
findings.
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