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Classical Imaging with Undetected 
Photons
Jeffrey H. Shapiro, Dheera Venkatraman & Franco N. C. Wong

Barreto Lemos et al. [Nature 512, 409–412 (2014)] reported an experiment in which a non-degenerate 
parametric downconverter and a non-degenerate optical parametric amplifier—used as a wavelength-
converting phase conjugator—were employed to image object transparencies in a manner akin 
to ghost imaging. Their experiment, however, relied on single-photon detection, rather than the 
photon-coincidence measurements employed in ghost imaging with a parametric downconverter 
source. More importantly, their system formed images despite the photons that passed through the 
object never being detected. Barreto Lemos et al. interpreted their experiment as a quantum imager, 
as assuredly it is, owing to its downconverter’s emitting entangled signal and idler beams. We show, 
however, that virtually all the features of their setup can be realized in a quantum-mimetic fashion 
using classical-state light, specifically a pair of bright pseudothermal beams possessing a phase-
sensitive cross correlation. Owing to its much higher signal-to-noise ratio, our bright-source classical 
imager could greatly reduce image-acquisition time compared to that of Barreto Lemos et al.‘s 
quantum system, while retaining the latter’s ability to image with undetected photons.

Light is intrinsically quantum mechanical, and photodetection is a quantum measurement. Consequently, 
all imaging is really quantum mechanical. It has long been known, however, that the semiclassical theory 
of photodetection—in which light is a classical field and the discreteness of the electron charge results 
in photodetection shot noise—predicts measurement statistics identical to those obtained from quantum 
theory when the illumination is in a classical state, namely a Glauber coherent state or a classically-random 
mixture of such states. (See Ref. 1 for a review of quantum versus semiclassical photodetection.) Thus, 
because experiments whose quantitative behavior is correctly predicted by two disparate theories cannot 
distinguish between those two theories, it is entirely appropriate that the term quantum imaging be 
reserved for imagers whose quantitative understanding requires the use of quantum theory. (See Refs. 2–4 
for how a debate on this point has been settled with regards to pseudothermal ghost imaging.)

Three-wave mixing in a second-order nonlinear material is the workhorse of nonclassical light-beam 
generation, with spontaneous parametric downconverters producing entangled signal and idler beams5, 
optical parametric amplifiers producing squeezed-vacuum states6, and optical parametric oscillators 
producing photon-twin beams7. It follows that imagers using any such sources will be quantum imag-
ers, according to the criterion described in the preceding paragraph. Two such examples are the ini-
tial ghost-imaging experiment8, and quantum optical coherence tomography (Q-OCT)9,10. Both used 
continuous-wave (cw) spontaneous parametric downconversion (SPDC) sources, whose signal and idler 
outputs were taken to comprise streams of biphotons detectable by photon-coincidence counting. The 
joint state obtained from cw SPDC, however, is really a zero-mean Gaussian state that is completely char-
acterized by the signal and idler’s nonzero correlations, viz., their phase-insensitive auto-correlations and 
their phase-sensitive cross correlation11. Signal-idler entanglement is then manifest by the phase-sensitive 
cross correlation’s exceeding the classical limit set by the auto-correlations. The biphoton limit ensues for 
the experiments reported in Refs. 8,10 because cw SPDC emits low-brightness outputs—average signal 
and idler photons/sec-Hz much less than 1—whose signal-idler photon pairs are easily resolved in time 
by high-speed photodetectors11.
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Phase-sensitive cross correlations cannot be sensed in second-order interference. Hence the afore-
mentioned experiments’ reliance on photon-coincidence counting, which is a fourth-order interference 
measurement able to sense phase-sensitive cross correlations12. More important, for our purpose, is the 
fact that classical light beams can have phase-sensitive cross correlations. Indeed, Ref. 13 showed theo-
retically, and Ref. 14 verified experimentally, that signal and idler beams in a zero-mean jointly Gaussian 
classical state—determined by their non-zero phase-insensitive auto-correlations and phase-sensitive 
cross-correlation—yielded ghost images with almost all of the properties of the quantum case.

Three-wave mixing can also be used to phase-conjugate a light beam that had only a phase-sensitive 
cross correlation with a companion beam. The resulting conjugate then has a phase-insensitive cross 
correlation with that companion, which can be sensed via second-order interference. This possibility 
was exploited, theoretically in Ref. 15 and experimentally in Ref. 16, to realize phase-conjugate optical 
coherence tomography, in which classical-state signal and idler beams—of the type mentioned in the 
preceding paragraph—yielded the axial resolution and dispersion immunity afforded by Q-OCT without 
the need for nonclassical light.

The upshot of our long introduction is simply this. Quantum imagers employing the entangled signal 
and idler beams obtained from SPDC often have quantum-mimetic relatives that use classical-state signal 
and idler beams to realize the essential performance characteristics of the original quantum systems. We 
show that the experiment of Barreto Lemos et al.17 is another such example. In particular, by replacing 
Barreto Lemos et al.‘s entangled-state source with a classical-state source whose signal and idler beams 
have a phase-sensitive cross correlation, we see that a wavelength-converting phase conjugator again 
allows imaging with undetected photons. Moreover, our system can employ high-brightness light, thus 
leading to a much higher signal-to-noise ratio than its quantum counterpart, and hence the possibility 
of greatly reduced image-acquisition time. Before proceeding to establish these results, two explanatory 
notes concerning “classical imaging with undetected photons” are warranted.

Whereas photons are energy quanta of electromagnetic waves, classical electromagnetic waves are not 
comprised of photons. So how can we do classical imaging with photons, much less with undetected 
photons? As explained in our opening paragraph, all imaging is quantum, but we have reserved the term 
quantum imaging for systems whose statistical descriptions require quantum photodetection theory. 
Imagers whose statistics can be correctly derived from semiclassical photodetection theory are 
classical-state (proper P-function) imagers, so a more precise description of our work would be to say 
we will analyze classical-state imaging with undetected photons. That clarification, however, still leaves 
us with the question of whether Barreto Lemos et al.‘s quantum imager or our classical-state imager form 
their images with undetected photons. Here the quantum explanation—applicable to both the quantum 
imager (with its nonclassical light source) and the classical-state imager (the former’s quantum-mimetic 
counterpart)—is as follows. Spontaneous parametric downconversion in the wavelength-converting 
phase conjugator fissions a small fraction of the pump photons into signal-idler photon pairs. But the 
presence of incoming idler photons causes that three-wave mixer to emit additional signal-idler photon 
pairs. Thus, for both imagers considered below, the photons that interacted with the object being imaged 
are indeed not the photons that are detected.

Results
The setup we shall consider, which mimics that of Ref. 17, is shown in Fig. 1. Here, a signal-idler source 
produces a wavelength λs signal beam (green beam in Fig. 1) and wavelength λi idler beam (red beam in 
Fig. 1) that are separated by a dichroic mirror. The idler beam then propagates through an object trans-
parency and a wavelength-converting phase conjugator whose output at wavelength λs is mixed with the 
signal on a 50–50 beam splitter. The beam splitter’s outputs are detected by cameras whose outputs, we 
will show, contain positive and negative images of the object transparency, just as reported by Barreto 
Lemos et al.17 for their quantum imager. Lenses, not shown in Fig.  1, image the source’s idler-beam 
output onto the object transparency and the idler light transmitted through that transparency onto the 

Figure 1. Setup for quantum and classical imaging with undetected photons. DM dichroic mirror; M1, M2 
mirrors; O object transparency; BS 50–50 beam splitter; C+, C− cameras.
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phase conjugator. Other lenses, also omitted from Fig. 1, image the source’s signal-beam output and the 
signal-wavelength output from the phase conjugator onto the cameras, completing an equal path-length 
interferometer.

For a unified treatment of the quantum and quantum-mimetic versions of the Fig. 1 setup, we shall 
employ quantum analysis for both. Quantitatively identical results are obtained for the quantum-mimetic 
case when: (1) we use classical wave propagation for the object-transparency and beam-splitter interac-
tions; (2) we use the classical-noise model for the action of the wavelength-converting phase conjugator; 
and (3) we use the semiclassical (shot-noise plus illumination excess-noise) theory of photodetection. 
For simplicity, in what follows, we shall discretize in both space and time, i.e., we will take the source’s 
signal and idler outputs to be a collection of modes with photon-annihilation operators 

{ }a m a m j k P m M: 1 1jk
s

jk
i( ), ( ) ≤ , ≤ , ≤ ≤( ) ( )^ ^  for a P ×  P array of pixels, indexed by (j,k), and a 

sequence of M pulses, indexed by m. These modes will be assumed to be in a zero-mean jointly-Gaussian 
state whose non-zero correlation functions are
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where δab is the Kronecker delta function. Equations (1–3) imply pixel-to-pixel and pulse-to-pulse statistical 
independence, with the quantum imager having the maximum quantum-mechanical phase-sensitive cross 
correlation given its outputs’ average of N  photons per mode, and the classical imager having its maximum 
classical phase-sensitive cross correlation under this same constraint. Note, however, that the SPDC source 
used to produce the quantum imager’s signal and idler beams operates at low brightness, N 1 . On the 
other hand, the classical imager’s signal and idler beams—which can be obtained by using spatial light mod-
ulators to apply phase-conjugate pseudorandom modulations to wavelength λs and λi laser beams—can have 
high brightness, N 1 . Thus, to disambiguate these two cases in all that follows, we shall use N 1q   and 
N 1c   to denote the average per-mode photon numbers for the quantum and classical imagers, respectively.

Regardless of whether the source is quantum or classical, the annihilation operators for the 
wavelength-λi modes emerging from the object transparency are

a m T a m T b m1 4jk jk jk
i

jk jk
o 2 o
( ) = ( ) + − ( ), ( )

( ) ( ) ( )ˆˆ ˆ

where Tjk is the object’s complex-valued field transmission at pixel (j,k), and the { }b mjk
o
( )

( )ˆ  are the anni-

hilation operators for a collection of vacuum-state auxiliary modes associated with transmission loss 
through the object. The annihilation operators for the wavelength-λs modes emerging from the phase 
conjugator are then

a m G b m G a m1 5jk jk jk
pc pc o( ) = ( ) + − ( ), ( )
( ) ( ) ( )ˆˆ ˆ †

where G> 1 is the conjugator’s gain, assumed to be real valued, and the { }b mjk
pc
( )

( )ˆ  are the annihilation 

operators for the collection of vacuum-state wavelength-λs modes at the conjugator’s input. Here, because 
we have assumed that the gain value is the same for all pixels, it is crucial that the conjugator be a 
spatially-broadband device. As such it is very likely to have G 1 1−  , e.g., it could be an SPDC system 
into which the { }a mjk

o ( )( )ˆ  modes are injected. Indeed, if the conjugator uses the same crystal and pump 
power as the quantum imager’s signal-idler source, then G N1 1q− = 

 will prevail, even for the 
classical imager. In what follows we will make that assumption. Note that the classical model for the 
conjugator, when the source emits classical-state light, is then

a m N a m n m 6jk q jk
o

jk
pc ( ) = ( ) + ( ), ( )
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where classical complex amplitudes a mjk
pc ( )( )  and a mjk

o ( )( )⁎  have replaced the annihilation and creation 
operators a mjk

pc ( )( )ˆ  and a mjk
o ( )( )ˆ † , and { }n mjk ( )  is a set of independent, identically-distributed, zero-mean, 

circulo-complex Gaussian random variables characterized by n m Njk q
2
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The cameras record
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via photon counting (for the low-brightness quantum system) or shot-noise-limited direct detection (for 
the high-brightness classical system), where
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To compare the images that the quantum and classical systems provide, we first evaluate their 
ensemble-average behaviors. It is easy to show, for the states we have assumed, that
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Specializing equation (10) to the quantum (subscript q) and classical (subscript c) cases gives
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where we have used G N1 1q− = 

 in both cases and N 1c   for the classical case. Equation (11) 
agrees with the theory from Ref. 17: cameras C+ and C− produce positive and negative images, respec-
tively, of Re(Tjk) with 100% fringe visibilities when T j Pcos 2jk π= ( / )

 for  a nonzero integer. In com-
parison with Barreto Lemos et al.‘s quantum imager, equation (12) shows that our classical imager 
produces positive and negative images of Re(Tjk) with much weaker, N2 1q  , fringe visibilities for 
T j Pcos 2jk π= ( / )

.
We define the positive and negative images’ signal-to-noise ratios (SNRs), for ν= q,c, by
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where the subscript in the numerator is used to indicate that we only include the object-related portion 
of the average images, not the object-independent background terms that appear in equations (11) and 
(12), in assessing their strengths. Now, because the { }a mjk

C ( )( ±)ˆ  are in thermal states for both the quan-
tum and classical cases, we immediately find that
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for G N1 1q− = 

 and N 1c  . Thus the positive and negative quantum images have different SNRs, 
whereas the positive and negative classical images have identical SNRs. More importantly,
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For Tjk= ± 1, this SNR ratio approaches N2 1q
2/ 

, making it seem that the classical imager is vastly 
inferior to the quantum imager. For T 1 2jk ≤ / , however, this SNR ratio lies between 1/4 and 1/2, indi-
cating that the quantum imager is slightly worse than the classical imager for low transmissivity objects. 
Such, however, is not the case, as we now demonstrate by examining the behavior of the difference 
images, N N Njk jk jk

C C
∆ ≡ −

( +) ( −)ˆ ˆ ˆ , for the quantum and classical systems.
The difference-image mean values, which follow immediately from equations (11) and (12), are both 
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clearly indicate the SNR advantage afforded by the classical imager’s use of a high-brightness source. That 
advantage can translate into a much shorter image-acquisition time than that of the quantum imager, 
with its low-brightness SPDC source. In particular, for all pixels with |Re(Tjk)|≠0, we have that 

N NSNR SNRc jk q jk(∆ )/ (∆ )ˆ ˆ  increases monotonically with increasing  N c. For  N N T1 1 4 Rec q jk
2

/ 
 ( )  

 
this SNR advantage equals N2 c, and it saturates at N T1 2 Req jk

2
/ 

 ( )   as N c → ∞.
The huge improvement in the classical imager’s SNR that accrues from subtracting its negative image 

from its positive image is easily explained from semiclassical theory. In particular, because G 1 1−   
and N 1c  , the noise in the classical system’s positive and negative images is overwhelmingly 
variance- N M2c

2( / )  excess noise from the signal light illuminating the two detectors. For the classical 
system’s difference image, however, the complete correlation between the signal-beam excess noises 
impinging on the two detectors greatly reduces their impact on the difference image. Indeed, when the 
signal-wavelength output from the phase conjugator is blocked, the difference image’s variance is reduced 
to N Mc/ , the sum of the two detectors’ shot noises. However, when both beams interfere at the 50–50 
beam splitter, there is additional noise in the difference image. Its origin is easily identified if we interpret 
the difference image as arising from a balanced-homodyne measurement, in which the signal beam in 
the classical imager acts as a strong local oscillator (LO) that beats with the weak signal-wavelength 
output from the phase conjugator. The extra noise just alluded to is then the LO fluctuations’ random 
modulation of the beat between the two fields18. Thus, in equation (20), the first term in the denomina-
tor comes from the shot noise and the second term in the denominator, which sets the N c → ∞ upper 
bound on the classical imager’s SNR advantage, comes from the modulation noise.

Discussion
SPDC sources can be used to produce a wide variety of entangled and even hyper-entangled states. 
When such a source’s polarization-entangled outputs are used to perform qubit teleportation19, or its 
quadrature-entangled outputs are used to perform continuous-variable teleportation20, the results are 
fundamentally quantum mechanical, in that classical resources cannot approach the fidelities achievable 
with entanglement-based teleportation. A somewhat different situation transpires when SPDC sources 
are used in imagers. Here, previous work on ghost imaging13,14 and optical coherence tomography15,16 has 
shown that almost all of the features of SPDC-based systems can be realized with quantum-mimetic coun-
terparts that use classical-state light, namely pseudothermal signal and idler beams with a phase-sensitive 
cross correlation. We have demonstrated the same to be true for Barreto Lemos et al.‘s quantum imaging 
with undetected photons17. In particular, we have analyzed a classical-state system capable of imaging an 
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object transparency at wavelength λi by sensing only wavelength-λs photons, a wavelength for which the 
object may be opaque. Moreover, our classical-state system can use a bright source that results in its hav-
ing a much higher SNR than that of its quantum counterpart, owing to the latter’s use of a low-brightness 
source. Thus classical imaging with undetected photons can have a much shorter image-acquisition time 
than quantum imaging with undetected photons.

To illustrate the behavior of our quantum-mimetic system, we have performed computer simulations 
of the positive, negative and difference images, N jk

C( )+ˆ , N jk
C( )−ˆ , and N jk∆ ˆ . The object transparency, whose 

|Tjk|2 is shown in Fig. 2(a), was a 32× 32 MIT logo in which the “M” had field transmission Tjk= 1/2, the 
“I” had field transmission Tjk= eiπ/2/2, the “T” had field transmission Tjk= − 1/2, and all other pixels had 
Tjk= 0. Figure  2(b–d) are the resulting positive, negative, and difference images, respectively, when 
N 10c

4= , G N1 10q
4− = = − , and M= 100. These images show the characteristics expected from our 

analysis: (1) low contrast, low SNR in the positive and negative images, but high contrast and high SNR 
in the difference image; and (2) difference image with positive values for its “M” pixels, near-zero values 
for its “I” pixels, and negative values for its “T” pixels. Note that a quantum difference image of this 
transparency—taken with the same G N1 10q

4− = = −  and M =  100 values—would have an SNR 40 
dB lower than that of the classical difference image.

At this juncture some final overarching comments are in order. The work of Barreto Lemos et al.17 
is, in essence, a spatially-broadband version of the quantum interference experiment of Zou, Wang, and 
Mandel21. Given that we have shown the former has a quantum-mimetic (classical-state) counterpart 
which retains that system’s essential imaging characteristics, it behooves us to comment on whether a 
similar situation prevails with respect to the latter. Indeed it does. The Zou, Wang, and Mandel exper-
iment is assuredly quantum: it employs nonclassical light and hence requires quantum photodetec-
tion theory for its analysis, which those authors accomplish via the biphoton approximation for the 
post-selected outputs from an SPDC source. That said, however, our Gaussian-state treatment of SPDC 
is more rigorous; for example, it includes the multiple-pair emissions that account for the accidental 
coincidences seen in Hong-Ou-Mandel interferometry even when detector dark-counts are negligible1,12. 
Using Gaussian-state analysis, the quantum versus quantum-mimetic behavior for Ref. 21‘s experiment 
is explained by the single-pixel, M-pulse, object transmissivity T= eiϕ version of our theory, where ϕ is 
a controllable phase shift. In particular, from equations (11) and (12) we see that both the Zou, Wang, 
and Mandel experiment and our classical-state version thereof exhibit sinusoidal fringes as ϕ is varied, 
but the nonclassical source provides 100% fringe visibility, while the classical-state source yields very 
low fringe visibility.

An additional point, which emerges from our Gaussian-state analyses of17,21, is that both rely on 
stimulated, rather than spontaneous, emissions from the wavelength-converting phase conjugator in 
Fig. 1. This conclusion follows from equation (5) and G N1 q− = , which readily yield

a m a m N a m a m N 21jk jk q jk jk q
pc pc o o( ) ( ) = ( ) ( ) + ( )
( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ† †

for the average photon number of the conjugator’s mth signal-pulse output at pixel (j,k). Here, the 
first term on the right represents signal photons whose emissions were stimulated by the presence of 
idler photons at the conjugator’s input, while the second term on the right represents signal photons 
whose emissions occurred spontaneously. That stimulated emissions are responsible for the quantum 
and classical-state images we found earlier is then obvious from the resulting nonzero phase-insensitive 
cross correlation between the two signal-wavelength beams arriving at the beam splitter in Fig. 1, i.e.,

Figure 2. Object transparency and simulated classical-state images for 32× 32 pixels: (a) |Tjk|2 for the MIT 
logo transparency with “M” having Tjk= 1/2, “I” having Tjk= eiπ/2/2, “T” having Tjk= − 1/2, and Tjk= 0 for all 
other pixels; (b) positive image; (c) negative image; and (d) difference image. The images in (b–d) and were 
generated using N 10c

4= , G N1 10q
4− = = − , and M= 100.
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This cross correlation, which must be nonzero for the cameras in Fig. 1 to record an image, vanishes in 
the absence of stimulated signal emissions from the conjugator.

Equation (22) brings us to our paper’s final point. Just how essential is a wavelength-converting phase 
conjugator to quantum and classical imaging with undetected photons? For the quantum case the answer 
is clear. The phase-sensitive cross correlation between the signal and idler beams produced by cw SPDC 
cannot be sensed in second-order interference, but the phase-conjugating nature of Fig. 1’s wavelength 
converter transforms phase-sensitive cross correlation into phase-insensitive cross correlation, which can 
be sensed in second-order interference. The same necessity for phase conjugation arises if we replace the 
SPDC source with a classical-state source possessing phase-sensitive (but not phase-insensitive) cross 
correlation between its signal and idler outputs. But why must our source only produce a phase-sensitive 
cross correlation between its two output beams in order to image with undetected photons? The answer is 
that it need not. Suppose that the source in Fig. 1 produces a wavelength λs signal beam and a wavelength 
λi idler beam whose modal annihilation operators, { }a m a m j k P m M: 1 1jk

s
jk
i( ), ( ) ≤ , ≤ , ≤ ≤( ) ( )ˆ ˆ , are in 

a zero-mean, jointly-Gaussian state with non-zero correlation functions given by equations (1), (2), and

′ δ δ δ( ) ( ) = . ( )′ ′ ′ ′ ′
( ) ( )ˆ ˆ†a m a m N 23jk
s

j k
i

jj kk mm

Despite this phase-insensitive cross-correlation function’s being at the limit set by quantum physics, the 
joint state of the signal and idler is classical22. Now assume that λs <  λi, and that the wavelength-converting 
phase conjugator in Fig.  1 is replaced with a spatially-broadband upconverter whose output modes at 
wavelength λs are given by

a a b1 24jk jk jk
uc o uc

κ κ= + − , ( )
( ) ( ) ( )

ˆ ˆ ˆ

where 0 <  κ <  1 is the conversion efficiency and the { }b jk
uc( )ˆ  are in their vacuum states. It is easily shown, 

by paralleling the derivation that we presented earlier for a phase-sensitive cross correlation, that cameras 
C+ and C− will record background-embedded positive and negative images, respectively, of Re(Tjk), even 
when the object is opaque at the signal wavelength. In fact, having introduced the use of a 
spatially-broadband upconverter, we can do classical imaging with undetected photons in an even sim-
pler manner: use laser light at wavelength λi to uniformly illuminate an object transparency that is 
opaque at wavelength λs< λi. Then, use a spatially-broadband upconverter—described by equation (24)—
to obtain an image of |Tjk|2 by casting the wavelength λs field emerging from this three-wave mixer on a 
camera.
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