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Abstract: Bottom-up mechanokinetic models predict ensemble function of actin and myosin based
on parameter values derived from studies using isolated proteins. To be generally useful, e.g., to
analyze disease effects, such models must also be able to predict ensemble function when actomyosin
interaction kinetics are modified differently from normal. Here, we test this capability for a model
recently shown to predict several physiological phenomena along with the effects of the small
molecular compound blebbistatin. We demonstrate that this model also qualitatively predicts effects
of other well-characterized drugs as well as varied concentrations of MgATP. However, the effects
of one compound, amrinone, are not well accounted for quantitatively. We therefore systematically
varied key model parameters to address this issue, leading to the increased amplitude of the second
sub-stroke of the power stroke from 1 nm to 2.2 nm, an unchanged first sub-stroke (5.3–5.5 nm), and
an effective cross-bridge attachment rate that more than doubled. In addition to better accounting for
the effects of amrinone, the modified model also accounts well for normal physiological ensemble
function. Moreover, a Monte Carlo simulation-based version of the model was used to evaluate
force–velocity data from small myosin ensembles. We discuss our findings in relation to key aspects of
actin–myosin operation mechanisms causing a non-hyperbolic shape of the force–velocity relationship
at high loads. We also discuss remaining limitations of the model, including uncertainty of whether
the cross-bridge elasticity is linear or not, the capability to account for contractile properties of very
small actomyosin ensembles (<20 myosin heads), and the mechanism for requirements of a higher
cross-bridge attachment rate during shortening compared to during isometric contraction.

Keywords: myosin; actin; myosin-active compounds; muscle contraction; mechanokinetic model;
statistical model

1. Introduction

Muscle contraction results from interactions between billions of myosin motors and
actin molecules. These proteins are located in thick and thin filaments, respectively, in a
highly ordered 3D lattice in the muscle sarcomere. The approximately 2 µm-long sarcomeres
are connected in series in 1–3 µm-wide myofibrils that fill the muscle cells. As a result of the
interactions between myosin and actin, the thin and thick filaments slide past each other
at velocities of up to tens of micrometers per s as a result of nm displacements produced
by actin–myosin cross-bridges. The summation of the shortening of all sarcomeres in
series along the myofibrils causes the muscle cell to shorten by appreciable distances.
Additionally, by summation of the forces in all half-sarcomeres over the muscle cross-
section, the pN forces produced by each myosin cross-bridge add up to muscle-produced
forces corresponding to up to 1000 kg or more.

With the described hierarchical organization of the muscle, the contractile properties
directly reflect the mechanical and kinetic properties of the cross-bridges. This allows the
use of computational models to simulate muscle contraction, as pioneered by Huxley [1] and
later formalized by Hill and Eisenberg [2–4]. In these models, properties such as the muscle
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force–velocity relationship, (ATP)–velocity relationship, and ATP turnover rate vs. velocity,
among other average properties, reflect the probability of different actomyosin cross-bridge
states. These properties can be calculated using systems of differential equations in the
state probabilities. As has been demonstrated recently [5–9], this allows for very good
predictions of the physiological properties of muscle under full (or close to full) activation.
If the model parameter values (cross-bridge stiffness, strain-dependent transition rate
constants, etc.) are from studies of isolated actin and myosin, e.g., single-molecule studies
and solution biochemistry, we use the term bottom-up models (see also [9,10]). The success
of such models in predicting muscle function essentially from single-molecule properties
suggests that the predicted phenomena are affected by neither cooperative interactions
in the large ordered actomyosin ensembles, nor by the presence of accessory, regulatory
proteins. Bottom-up models are also of potential value in drug discovery. They thus allow
predictions of ensemble behavior and muscle function in the presence of drug candidates
based on initial studies of isolated proteins. This would be useful for evaluating if desired
drug effects are expected in a real muscle without actually expanding the experiments to
such preparations, with benefits from both an ethical and a cost perspective. However, in
order to use the models for such purposes, it is important that they not only accurately
predict physiological muscle properties but also drug effects, mutation effects, etc. In
order to allow effective testing, it is required that the drug and/or mutation effects be
well-characterized on the single-molecule level with minimal ambiguity, allowing the input
of well-defined parameter values. Moreover, detailed quantitative characterization of the
muscle properties upon treatment with a drug or the presence of a given mutation need to
be available for meaningful evaluation of the predictive power.

One small molecular compound that fulfills the above requirements is amrinone. This
compound was introduced as a phosphodiesterase inhibitor with the aim of treating heart
failure [11]. Later, it was found that it has well-defined effects on both frog and mammalian
muscles [12–14] via direct actions on myosin [15,16]. Its molecular effects, attributed to the
inhibition of strain-dependent ADP release [16], led to several changes in the force–velocity
(FV) relationship with increased maximum isometric force (F0), reduced the maximum
velocity of shortening (V0), reduced the overall curvature of the relationship, and reduced
the deviation of the FV relationship from a hyperbola at high loads [12,13,15,16]. Whereas
some of these effects on the FV relationship have been predicted by recent models, the
quantitative goodness of fit has been variable [16,17]. It is therefore of value to analyze the
effects of amrinone in greater detail. Other small molecular compounds whose mechanisms
of action have been quite well-characterized are omecamtiv mecarbil (OM) [18–25], initially
introduced as a myosin activator in heart failure [26,27], and the blebbistatin family of
myosin-inhibiting compounds [6,28–35]. The latter are used as myosin inhibitors in cell
studies [28] but have also been evaluated as muscle relaxants [36]. With respect to the
molecular mechanism, OM increases the rate of Pi release while inhibiting the power
stroke [18–25]. Blebbistatin, on the other hand, inhibits Pi release [29,31] an effect that was
recently [6] interpreted as being due to the inhibition of the transition from a pre-power
stroke state, AMDPPP, into a Pi-release state, AMDPPiR (cf. Figure 1A). This would shift the
rate-limiting step for the actin-activated ATPase of myosin from cross-bridge attachment to
the AMDPPP state to the AMDPPP–AMDPPiR transition. Whereas the effects of OM and
blebbistatin are well-characterized on the molecular level, the details of their effects on the
FV relationship are not. However, blebbistatin appreciably reduces both V0 and F0 [6,30,37]
and is dependent on regulatory light chain phosphorylation to have an effect on velocity in
muscle cells [37]. OM also appreciably reduces V0 while only slightly reducing F0 during
full calcium activation [38].

Here, we test the recently developed bottom-up model [6] (defined in Figure 1 and
Tables 1 and 2) with respect to its capacity to account for changes in the FV relationship of
muscle produced by the mentioned myosin-active small molecular compounds based on
molecular mechanisms. Our results demonstrate that overall, the model produces good
predictions of the FV data based on the major molecular mechanism for each compound.
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However, the model [6] suffers similar weaknesses as one other recent models [17] with
respect to its quantitative reproduction of the effects of the drug amrinone on F0 and
V0. Interestingly, the further constraints on the models by the drug effects together with
the availability of new experimental data from isolated molecules allow us to improve
the model to overcome the mentioned shortcomings while still accounting for other data.
Finally, we develop a Monte Carlo simulation-based version of the model that allows its
use with small myosin ensembles. Specifically, we test the latter version of the model
with regard to its capability to account for experimental FV relationships at varied MgATP
levels in small isolated actomyosin ensembles. We discuss remaining outstanding issues
related to challenges to obtain reliable parameter values due to experimental uncertainties
and differences between labs. Additionally, our study is relevant for understanding the
operation of actin–myosin molecular motor ensembles, as it focuses on key issues with
currently diverging views. In particular, this includes the possibility of faster cross-bridge
attachment rates during active shortening compared to during isometric contraction [39–41]
and the possibility of non-linear cross-bridge elasticity in muscle cells [8,42–45].

Table 1. Parameter values a for model in Figure 1 determining the shape of free energy diagrams for
simulation of contractile properties of fast mammalian muscle at 30 ◦C.

Parameter Numerical Value of Parameter

x1(AMDP, AMDPPP) 7.2 nm
x1 1(AMDPPiR, AMDL) 6.7 nm

x2(AMDH) 1.0 nm
x3 0 nm

∆Gw (MDP − AMDP) 0 kBT
∆GAMDP-AMDP-PP ≡ ∆Gon (AMDP − AMDPPP) 0.7 kBT

∆G PiR (AMDPPP − AMDPPiR) 1 kBT
∆GAMDPPiR-AMDL (AMDPPiR − AMDL) kBT ln([Pi]/KC)

∆GAMDL-AMDH (AMDL − AMDH) 14 kBT
∆GAMDH-AMD(AMDH − AMD) 2 kBT

∆GATP 13.1 + ln ([MgATP]/ ([MgADP][Pi]) kBT
ks 2.8 pN/nm

a The parameter values are primarily from two-headed myosin motor fragments from fast skeletal muscle from
rabbit at 30 ◦C, ionic strength 130–200 mM, pH 7–8. For further details, see [6–8].

Table 2. Parameter values a for model in Figure 1 defining rate functions and kinetic constants for
the simulation of contractile properties of fast mammalian muscle at 30 ◦C.

Parameter Numerical Value of Parameter

k+3+ k−3 220 s−1

K3 10
k−5 2000 s−1

Kc 10 mM
kon’ 130 s−1

kPr+’ 3000 s−1 b

kP+ 10000 s−1

kLH+ 6000 s−1

xcrit 0.6 nm
k6 5000 s−1

Physiological [Pi] 0.5 mM
[MgATP] 5 mM

K1 1.7 mM−1

k2 2000 s−1

a The parameter values are primarily for two-headed myosin motor fragments from fast skeletal muscle from
rabbit at 30 ◦C, ionic strength 130–200 mM, pH 7–8. For further details, see [6–8]. b Note difference from model
in [6], where the same parameter value was set to 1000 s−1 under control conditions. Here, it was necessary to
assume a higher value in order to achieve the experimentally observed V0 without changing other parameter
values from their literature data.
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tration of myosin head states, including their coarse-grained structure in interaction with actin. The 
model states are encoded by the letters in the boxes, where A and M denote actin and myosin, re-
spectively, and T, D, and P denote substrate and products, respectively (see further text). The sub-
scripts PP and PiR denote a pre-power stroke state and a Pi-release state, respectively, as defined 
previously [6,46]. The subscripts L and H are defined in the text. Upper-case and lower-case letters 
for transition constants refer to equilibrium constants and rate constants, respectively. The argu-
ment x indicates the strain dependence of the constant. (B) Free energies of the states defined in A 
as a function of the strain variable, x. 

2. Results 
2.1. Simulation of Force–Velocity relationships under Physiological Conditions  

We simulated the FV relationship for muscle in the absence of small molecular com-
pounds using a model from [6] (Figure 1) that was slightly modified with respect to pa-
rameter values (Tables 1 and 2). The results are compared to experimental data from living 
mouse toe muscle at 30 °C (reproduced from [47] in Figure 2), similar to the temperature 
at which the model parameters (Tables 1 and 2) were derived. It can be seen (Figure 2A) 
that the simulated V0 value is low compared to the experimental values and are in the 
range of 13,000–18,000 nm/s ([13,48,49]; reviewed in [8]). We attribute this to either of the 
following factors or a combination of them: First, the experimental results in Figure 2 are 
from mouse toe muscle, which is expected to have a velocity at the fast end of the range, 
as it is a fast muscle from a small animal [50]. These data [47] were used because they are 
particularly complete in the high force range. However, most of the model parameter val-

Figure 1. Key transitions and model states with characterization of major states. (A) Schematic
illustration of myosin head states, including their coarse-grained structure in interaction with actin.
The model states are encoded by the letters in the boxes, where A and M denote actin and myosin,
respectively, and T, D, and P denote substrate and products, respectively (see further text). The
subscripts PP and PiR denote a pre-power stroke state and a Pi-release state, respectively, as defined
previously [6,46]. The subscripts L and H are defined in the text. Upper-case and lower-case letters
for transition constants refer to equilibrium constants and rate constants, respectively. The argument
x indicates the strain dependence of the constant. (B) Free energies of the states defined in A as a
function of the strain variable, x.

2. Results
2.1. Simulation of Force–Velocity relationships under Physiological Conditions

We simulated the FV relationship for muscle in the absence of small molecular com-
pounds using a model from [6] (Figure 1) that was slightly modified with respect to
parameter values (Tables 1 and 2). The results are compared to experimental data from
living mouse toe muscle at 30 ◦C (reproduced from [47] in Figure 2), similar to the tem-
perature at which the model parameters (Tables 1 and 2) were derived. It can be seen
(Figure 2A) that the simulated V0 value is low compared to the experimental values and
are in the range of 13,000–18,000 nm/s ([13,48,49]; reviewed in [8]). We attribute this to
either of the following factors or a combination of them: First, the experimental results
in Figure 2 are from mouse toe muscle, which is expected to have a velocity at the fast
end of the range, as it is a fast muscle from a small animal [50]. These data [47] were
used because they are particularly complete in the high force range. However, most of the
model parameter values (Tables 1 and 2), particularly those of relevance for V0, are from
fast rabbit psoas muscles [43,51]. A second possible reason for a low V0 in the modelling
is that a linear myosin cross-bridge elasticity is assumed, whereas it is possible that the
real cross-bridge elasticity is non-linear [8,42,43,52]. This issue is discussed further below.
With regard to F0 in model and experiments, the numerical values cannot be directly com-
pared due to experimental complexities related to the use of a whole-muscle preparation
in the experiments, e.g., presence of appreciable extracellular space, non-parallel muscle
fibers, failure to activate some fibers and, finally, intracellular space between myofibrils.
Despite the complexities, it can be seen in Figure 2B that the shape of the FV relationship is
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well-predicted by the model. This particularly applies to the general curvature, but it also
includes the deviation of the relationship from a single hyperbola at high loads.
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ues (Tables 1 and 2). (A) Simulated data from model under standard conditions (black) and modi-
fied conditions (as described in text) to account for the effects of 1–2 mM amrinone (red). The mod-
eled data are compared to experimental FV data (purple) from [13] in the absence of any myosin-
modifying compound. Maximum force given in pN per available cross-bridge (whether attached or 
not) for model data, whereas the maximum force for experimental data is normalized to exhibit the 
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Figure 2. Force–velocity data simulated using the model in Figure 1 with standard parameter
values (Tables 1 and 2). (A) Simulated data from model under standard conditions (black) and
modified conditions (as described in text) to account for the effects of 1–2 mM amrinone (red). The
modeled data are compared to experimental FV data (purple) from [13] in the absence of any myosin-
modifying compound. Maximum force given in pN per available cross-bridge (whether attached
or not) for model data, whereas the maximum force for experimental data is normalized to exhibit
the same maximum force as the model. (B) Data from A replotted after normalizing both force
and velocity to maximum value under each condition. (C) Simulated data from A, but red symbols
correspond to the effects of saturating the concentration of blebbistatin. (D) Data from C replotted
after normalizing both force and velocity to maximum value under each condition. (E) Simulated
data from A but red symbols correspond to effects of saturating concentration of OM. (F) Data
from E replotted after normalizing both force and velocity to maximum value under each condition.
(G) Simulated data from A, but red symbols correspond to effects of reducing [MgATP] from 5 mM
to 100 µM. (H) Data from G replotted after normalizing both force and velocity to maximum value
under respective conditions.
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2.2. Effects of Small Molecular Compounds on the Force–Velocity Relationship

A model of general validity should account for the key contractile effects of muta-
tions, drugs, and altered experimental conditions in addition to physiological data. This
capability was tested for our standard model by investigating its predictions for the effects
of the drugs amrinone, blebbistatin, and OM on the FV relationship. For amrinone, the
central mechanism seems to be inhibition of the strain-dependent transition prior to ADP
release [16]. The implementation of this idea by reducing ∆GAMDH-AMD from 2 to 0.5 kBT in
the model (cf. Figure 2B) predicts a substantial increase in F0 simultaneously with a reduc-
tion in V0 (Figure 2A). These results, reflecting near-saturating amrinone concentrations of
1–2 mM, are qualitatively similar to the experimental findings. However, the predictions
of the model in Figure 2A as well [6] as those of some other models (based on similar
assumptions) [17] differ from the experimental results with amrinone in several respects: 1.
appreciably higher increase in F0 in the model; 2. lower reduction in V0; 3. increased, rather
than decreased, curvature of the FV relationship; and 4. limited effects of amrinone on the
deviation of the FV data from a hyperbola in the model. Such differences between model
and experimental results were smaller in earlier model simulations (particularly [16]).
These issues are considered below, where we also describe the results of an optimized
version of the model.

With regard to blebbistatin, we recently [6] attributed its contractile effects and the
inhibition of Pi release to a greatly reduced transition rate between the pre-power-stroke
state (AMDPpp) and the Pi-release state (AMDPPiR). We then implemented this idea in a
mechanokinetic model [6]. The standard model that we use here increased the value of kPr+’
from 1000 s−1 to 3000 s−1 but is otherwise identical to the model in [6]. It is therefore no
surprise that a decrease in kPr+’ from 3000 s−1 to 5 s−1 (cf. [6]) accounts for the quantitatively
larger reduction in V0 than in F0, as seen experimentally with blebbistatin [13].

For OM, molecular mechanistic studies [21,22,53] suggest that it stabilizes an acto-
myosin pre-power-stroke state, which is associated with an increased rate of the transition
into this state (the Pi-release state in [46]) and with appreciable slowing of the subsequent
power stroke. We bluntly implemented these ideas in our standard model by increasing the
free energy difference between the AMDPpp and AMDL states from 1 to 6 kBT while reduc-
ing the free energy difference between the AMDL and the AMDH states (the power-stroke
transition) from 14 to 0 kBT. These changes in the model led to a substantial reduction in V0
and only minor changes in F0, similar to observations in experiments on human ventricular
muscle tissue and isolated myosin [23].

Finally, for lowered [MgATP], similar to amrinone, the model predicted increased
F0 and reduced V0, which is broadly in agreement with experimental findings [54,55].
For varied [MgATP], blebbistatin, and OM, no complete FV data are, to the best of our
knowledge, available from studies of intact muscle fibers. FV data are available for varied
[MgATP] levels using skinned fibers from rabbit psoas [55] and frog muscle [54]. Similar
data from skinned fibers are available for 20 µM blebbistatin [37], where, however, effects
on velocity are only observed under conditions with phosphorylated myosin-regulatory
light chains. The skinned fiber FV data usually exhibit greater variability in the exact
shape of the relationship, and they reveal less details than the intact fiber data. For varied
[MgATP], blebbistatin, and OM, we therefore only discuss the effects of the intervention on
V0 and F0 in the analyses below and not the shape of the FV relationship (despite showing
simulated FV data).

In summary, key effects on the FV relationship of the small molecular compounds
amrinone, OM, and blebbistatin as well as lowered [MgATP] are reasonably well accounted
for by our standard model if parameter values are changed on basis of the molecular effects
of the compounds suggested by analyses on isolated proteins. However, we also note
quantitatively poor predictions of the detailed effects of amrinone on the FV relationship.
We consider this phenomenon further because detailed experimental FV data from intact
muscle fibers exist for the effects of 1–2 mM amrinone.
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2.3. Towards an Optimized Model

A clue to a deficiency in our present model is obtained by inspecting differences from
a model from Albet-Torres et al. [16] that was better at quantitatively reproducing the
effects of amrinone on the FV relationship. One key difference of that model from the
present version was a larger second sub-stroke of the power stroke (2.2 nm instead of 1 nm)
associated with the transition from AMDH to AM/AMD.

Whereas there were also other differences, the larger amplitude of the second sub-
stroke is of particular interest because such a larger second sub-stroke (~2.5 nm) was also
suggested by recent single-molecule data [44] using full-length myosin incorporated into
filaments. This differed from estimates obtained using isolated myosin subfragment 1
(~1 nm) [56], which we employed in our previous modelling work but also in the present
Figure 2. In order to evaluate the importance of the amplitude of the second sub-stroke, we
modeled the FV relationship and the effect of amrinone for different amplitudes of this sec-
ond sub-stroke in the range of 1–3.5 nm while keeping all other parameter values constant.
We also repeated this analysis under three different conditions, all with ∆GAMDL-AMDH
+∆GAMDH-AM/AMD = 16 kBT but with ∆GAMDL-AMDH/∆GAMDH-AM/AMD, assumed to be ei-
ther 14 kBT/2 kBT, 12 kBT/4 kBT, or 10 kBT/6 kBT under physiological conditions. The
amrinone effects were then simulated by changing these ratios to 14 kBT/0.5 kBT, 12 kBT/1
kBT, or 10 kBT/1.5 kBT, i.e., by reducing ∆GAMDH-AM/AMD to 25 % of the physiological
value. The effects of these changes in the model parameters on the FV relationship are
summarized in Figure 3A–D, where the second sub-stroke amplitude, d2, is related to the
varied parameter value x2, such as d2 = x2-x3 with x3 constant at 7.7 nm. Additionally, full
simulated FV data sets are shown in Figure 3F after changes in the model parameters to
x2 = −5.2 nm with ∆GAMDH-AM/AMD = 12 kBT and ∆GAMDL-AMDH = 4 kBT under physio-
logical conditions and an assumed change of ∆GAMDL-AMDH to 1 kBT in the presence of
1–2 mM amrinone. It is clear from this analysis that the fractional increase in the second,
compared to the first, sub-stroke in the model leads to better quantitative reproduction of
the effects of amrinone on F0 and V0. However, the changes in the model parameters (i.e.,
change of x2 from −6.7 to −5.2 nm) also result in curvature of the FV relationship that is
too high and with lower maximum power output than observed experimentally. This effect
leads us back to a path that has been tread before, i.e., the idea that the apparent rate of
cross-bridge attachment may be higher during muscle contraction associated with length
changes than during isometric contraction [39,40,57].
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of 1–2 mM amrinone on V0 and F0. (A) Variations in simulated values (pN/(all cross-bridges; N))
of isometric force (F0) vs. x2 with ∆GAMDH-AMD of 2 kBT (black circles), 4 kBT (black squares), and
6 kBT (black triangles). The same symbols are used in the other panels. Normal range indicated
by dashed lines corrected for the simplifying assumption in the model of one myosin binding site
per actin target zone (at 36 nm interval) along the thin filament. The calculations of the normal
range assumed 294 myosin heads per thick filament associated a cross-sectional area of 1.6 10−15 m2

and an isometric force per myofibrillar cross-sectional area of 450–500 kPa [58,59]. (B). Variations
in simulated values of V0 vs. x2. Normal range indicated by dashed lines (cf. [8]). Same coding by
symbols as in A. (C) Variations in simulated values of the ratio a/F0* where vs. x2 where a is derived
by a fit to Hill’s hyperbolic equation (see Materials and Methods) limited to force values below 80%
of F0. The parameter F0* is an estimate of F0 obtained by extrapolating the Hill equation to zero
velocity. Normal range indicated by dashed lines. Same coding by symbols as in A. (D) Variations in
simulated values of the ratio F0*/F0 that is one estimate of the degree of deviation in the FV data from
a hyperbola. Normal range indicated by dashed lines. Same coding by symbols as in A. Note that the
ratio is highly sensitive to minor changes in the shape of the FV relationship. E. Simulated effects of
amrinone (see text and below) on F0 and V0 with similar symbol coding as in A, but open symbols
for F0 and filled symbols for V0. F. Simulated FV data after modifying x2 from −6.7 to −5.2 nm,
∆GAMDL-AMDH from 14 to 12 kBT, and ∆GAMDH-AM/AMD from 2 to 4 kBT but keeping all other model
parameters at standard values (Tables 1 and 2) for physiological conditions (black). Effect of amrinone
(red) simulated by changing ∆GAMDH-AM/AMD to 1 kBT. Experimental data (purple) the same as in
Figure 2.

Most simply, the steady-state FV relationship with a higher attachment rate constant
during shortening can be simulated by assuming a higher cross-bridge attachment rate at
all loads. An increase in kon’ from 130 to 325 s−1 could account for the high power output
during shortening against intermediate loads rather well, with only minimal effects on the
steady-state isometric force (Figure 4A). However, the experimentally observed deviation
from a hyperbola of the FV relationship at high loads is not very well-predicted with this
set of parameter values. The non-hyperbolic deviation has previously been shown to reflect
the positions along the x-axis (cf. Figure 1B) of the free energy minima of the different
cross-bridge states [40,60] as well as the level of these free energy minima relative to each
other [40]. Here, we modified the positions slightly from those used in Figures 3F and 4A
in order to improve the predictions. This can be justified within the bottom-up modeling
framework due to uncertainties of up to 1 nm [6]. First, we tested to increase the values of
x1 and x11 (Figure 4A–D), thereby increasing the total stroke following attachment from
about 7 to 8 nm, well within current estimates (reviewed in [10]). As predicted based
on previous results, the shape of the high-force region of the FV relationship is sensitive
to small modifications of x1 and x11. However, the small modifications did not fully
accommodate the experimentally observed deviation of the FV relationship. To achieve
this, we also fine-tuned the value of x2 from −5.2 nm to −5.5 nm (Figure 4E), showing that
the exact non-hyperbolic shape is also quite sensitive to this parameter. As demonstrated
previously [9], we found that an increase in x1 also reduces F0 (data not shown) while
increasing the maximum power output.

Based on the above analysis and the renewed evidence suggesting the need to assume
a velocity-dependent attachment rate constant, we updated our standard set of parameter
values (for physiological conditions) to those given in Table 3. It is of interest to note that
the changes in x1, x11, and x2 are in good agreement with new single-molecule data for the
power stroke distances [44,45].
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Figure 4. Modeled FV relationships with parameter values in Figure 3F showing effects of increased 
attachment rate constant and modified values of the parameters x1, x11, and x2. (A) Effect of increased 
attachment rate constant kon’ to 325 s−1 (grey symbols) compared to data simulated with standard 
parameter values (with kon’ = 130 s−1; black-filled symbols) and experimental data used in other fig-
ures (purple). (B) Grey symbols refer to data modeled with attachment rate constant kon’ = 325 s−1 but 
also with x1 (0.5 nm) and x11 (−0.5 nm), different from standard parameter values. Black and purple 

Figure 4. Modeled FV relationships with parameter values in Figure 3F showing effects of increased
attachment rate constant and modified values of the parameters x1, x11, and x2. (A) Effect of increased
attachment rate constant kon’ to 325 s−1 (grey symbols) compared to data simulated with standard
parameter values (with kon’ = 130 s−1; black-filled symbols) and experimental data used in other
figures (purple). (B) Grey symbols refer to data modeled with attachment rate constant kon’ = 325 s−1

but also with x1 (0.5 nm) and x11 (−0.5 nm), different from standard parameter values. Black and
purple data are the same as in A. (C) Grey symbols refer to data modeled with attachment rate
constant kon’ = 325 s−1 but also with x1 (0.5 nm) and x11 (0 nm), different from standard parameter
values and from their values in B. Black and purple data are the same as in A. (D) Grey symbols refer
to data modeled with attachment rate constant kon’ = 325 s−1 but also with x1 (0 nm) and x11 (0 nm),
different from standard parameter values and from their values in B and C. Otherwise, color coding
is the same as in A. (E) Grey symbols refer to data modeled with same parameter values as in D but
with x2 = −5.5 nm. Black and purple symbols have same meaning as in (A) and in (B–E).

2.4. Prediction of Ensemble Contractile Function with and without Small Molecular Compounds
Using Optimized Model

Using the updated parameter value set (Table 3, Figure 5, and its legend), we re-ran
simulations of the FV data in the presence of amrinone, varied [MgATP], blebbistatin,
and omecamtiv mecarbil (Figure 6). Here, we assumed that that parameter values were
changed by the small molecular compounds in a similar way as in the simulations in
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Figure 2, as specified in the legend of Figure 6. We found that with the optimized model,
not only the physiological steady-state data, are well accounted for. Additionally, the
amrinone effects are in closer agreement with the experimental findings. Thus, V0 was
predicted to be reduced by 25 % in the model compared to between 25 and 35% in differ-
ent experimental preparations from frog, mouse, and rabbit myosin/muscle fibers with
1–3 mM amrinone [12,13,15–17]. The maximum force, F0, on the other hand, was predicted
to be increased by 16% in the model compared to by 4%, 14%, and 8% in experiments
using fast mouse[13], rat [61], and frog[12] skeletal muscle, respectively. If x2 = −5.2 nm
(instead of −5.5 nm, as in the final optimized model), the predicted reduction in velocity
was 27%, and the increase in force was 11%, in even better quantitative agreement with the
experimental data. However, independent of which of these values of x2 was used, there
was a minimal effect of amrinone on the overall curvature of the FV relationship in the
model. This is different from experimental data that always showed reduced curvature
in the presence of amrinone. On the other hand, the change of going from the previous
standard to the new optimized model is in the right direction because the use of the previ-
ous standard parameter values (Tables 1 and 2) predicts an increased curvature upon the
addition of amrinone. Furthermore, the optimized model suggests reduced deviation in
the FV relationship from a hyperbola (Figure 6); however, this is not reflected in the F0/F0*
ratio, as is usually the case.

Table 3. New parameter values for parameters modified to final optimized model and effects of
temperature on these and other parameter values a.

Parameter 30 ◦C 22 ◦C 15 ◦C 5 ◦C

∆GAMDL-AMDH 12 kBT 9.2 kBT 7.2 kBT 5.1 kBT

∆GAMDH-AMD 4 kBT 4 kBT 4 kBT 4 kBT

kon’ 325 s−1 168 s−1 121 s−1 62.5 s−1

x1 0 nm 0 nm 0 nm 0 nm

x11 0 nm 0 nm 0 nm 0 nm

x2 −5.5 nm −5.5 nm −5.5 nm −5.5 nm

k+3 + k−3(Recovery
stroke+hydrolysis) 220 s−1 87.9 s−1 39.4 s−1 12.5 s−1

K3 10 7.5 5.8 4

k2 2000 s−1 1207 s−1 776 s−1 413 s−1

kP+’ 3000 s−1 1925 s−1 1305 s−1 750 s−1

a Parameter values not given here are assumed to be identical to those given in Tables 1 and 2. Temperature effects
estimated as described previously [6].
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Figure 5. Changes in minimum value and position of free energy diagrams in optimized model.
In the optimized model, we assumed different values than in Tables 1 and 2 for the attachment rate
constant (kon’ = 325 s−1), but also (as indicated by the dashed curves) for the variables x1 (0 nm),
x11 (0 nm), x2 (−5.5 nm), ∆GAMDL-AMDH = 12 kBT, and ∆GAMDH-AM/AMD = 4 kBT. The free energy
diagrams with the standard parameter values are shown by full lines.
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 Figure 6. Predictions of the FV relationship with effects of different compounds for the optimized
version of the model (Figures 4E and 5; Table 3). (A) Simulated data from model under normal
physiological conditions (black) and modified (as described in text) to account for the effects of
1–2 mM amrinone (red). The modeled data with amrinone, simulated by assuming a reduction in
∆GAMDH-AMD from 4 kBT to 1 kBT, are compared to experimental FV data (purple) from [13] in the
absence of any myosin-modifying compound. Force given in pN per available cross-bridge (whether
attached or not) for model data, whereas the maximum force for experimental data is normalized to
exhibit the same maximum force as in the model. (B) Data from A replotted after normalizing both
force and velocity to maximum value in each solution. (C) Simulated data from A, but red symbols
correspond to the effects of the saturating concentration of blebbistatin simulated by assuming that
this compound reduces kP+’ from 3000 s−1 to 5 s−1. (D) Data from C replotted after normalizing both
force and velocity to maximum value in each solution. (E) Simulated data from A, but red symbols
correspond to the effects of saturating concentration of OM simulated by assuming that OM reduces
∆GAMDL-AMDH from 12 kBT to 0 kBT and increases ∆GPiR from 1 to 6 kBT. (F) Data from E replotted
after normalizing both force and velocity to maximum value. (G) Simulated data from A, but red
symbols correspond to effects of reducing [MgATP] from 5 mM to 100 µM. (H) Data from G replotted
after normalizing both force and velocity to maximum value in each solution.
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We also implemented a Monte Carlo simulation approach to enable studies involving
small myosin ensembles, e.g., expressed proteins isolated from cell systems. The validity
of this implementation is supported by the results in Figure 7, showing that simulated
force–velocity data of large myosin–actin ensembles are virtually identical using the Monte
Carlo approach (see output of simulations in Figure S2) and the solution of differential
equations in state probabilities. Using the Monte Carlo version of the model, we also
showed that the key predicted consequences of reducing the myosin ensemble size are a
reduced maximal (unloaded) shortening velocity with negligible effects on the maximum
isometric force normalized to the number (N) of available myosin heads (Figure S1). This
expands previous data for small and large ensembles using less optimized models with
fewer states [62,63].
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Figure 8. Simulated data for isometric force and for force during slow shortening ramps. (A) Isometric 
force from 28 simulation runs for N = 16–19 and 30 simulation runs for N = 33–39. Data given together 

Figure 7. Velocity–force data simulated using differential equations and Monte Carlo approach
for ensembles of different sizes. (A). Force vs. velocity based on solution of differential equations
(Materials and Methods) in the state probabilities (black-filled circles; same as similar symbols in
Figure 6) and Monte Carlo simulations assuming N = 3000 (open grey squares), N = 33–39 (filled red
circles; mean ± 95% CI), and N = 16–19 (open red squares). Monte Carlo simulation data for N = 3000
based on 1 simulation run, whereas simulations for N = 16–19 and N=33–39 are based on 4 simulation
runs per point except for isometric force (velocity= 0 nm/s), which is based on 28 simulation runs
(N = 16–19) and 30 runs (N = 33–39). Inset: Data for N = 16–19 shown without error bars and assuming
that the point for isometric contraction is identical to that at large N (consistent with overlapping 95%
CI and data in Figure S1). (B). Data in A replotted after normalization of force and velocity to F0 and
V0, respectively. Same color and symbol coding as in A. All data sets, except Monte Carlo simulation
data for N = 16–19, fitted by Hill’s hyperbola (Equation (14)). Data points for N = 16–19 connected
by lines for clarity. Note, virtually identical FV relationships (both in absolute and relative terms)
for large ensembles whether data obtained by Monte Carlo simulations or solution of differential
equations. Note further that the simulated FV relationship becomes less curved for low N, with loss
of the hyperbolic shape for N = 16–19.

In accordance with experimental data [44,45,64–68], the simulated FV relationship for
moderately small ensembles (N, 33–39; Figure 7) exhibits the typical Hill shape [69]: an
overall hyperbolic shape. However, the model predicts a less curved relationship for the
low-ensemble case, consistent with one [44] but not other sets [66,70] of small-ensemble
near-physiological (mM) [MgATP] experimental data. Notably, we could not derive the
typical Hill relationship (see Materials and Methods) in our simulations when N was
reduced to 16–19 heads (Figure 7), corresponding to a maximum isometric force of about
20 pN. This is in contrast to the situation in the experiments of Pertici et al. [66], where
a low number of myosin heads (N = 16) with an isometric force of 20 pN (similar to
our simulations) produced a typical Hill-style FV relationship. Previously [64], a Hill-
style FV relationship was also found for even fewer myosin heads (8) but at <100 µM
MgATP. It can further be seen in the simulations in Figure 7 (particularly Figure 7B) that
the non-hyperbolic shape of the FV relationship for N = 33–39 at a high load is largely
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concealed by stochastic noise. More generally, the Monte Carlo simulations suggest that
noise effects would make it quite challenging to derive accurate FV relationships from
small ensemble measurements. In the simulations, this is attributed both to variability
within a given simulation run and variability between runs (Figure 8; Figure S3). With
regard to the between-run variability, this is particularly severe for simulations of isometric
contraction. The effect is associated with the single-site assumption, where only one short
segment (approximately 5 nm) of 36 nm along the actin filament is available for myosin
head attachment, corresponding to a probability of p ≈ 5/36 ≈ 0.14. We show in the
Supplementary Information that under our simulation conditions, this is expected to lead
to number of attached heads Natt that is binomially distributed Natt ∈ Bin (N, p) between
runs, with a mean value Np and standard deviation

√
Np(1− p) , i.e., with a signal-to-

noise ratio associated with the variability between runs proportional to
√
{Np/(1− p)}.

Clearly, both an increase in N and an increase in p (as with several actin sites per target
zone) would increase this signal-to-noise ratio, consistent with the changes in the signal-to-
noise ratio between simulations for N = 16–19 and N = 33–39 (Figure 8). The between-run
variability was markedly reduced during the simulated slow shortening of amplitude
>36 nm, which we attribute to averaging out of the effect of the non-uniform distribution of
myosin heads. In the present analysis, we largely eliminated the effect of the in between-run
variability in isometric force by averaging over a large number of runs. The remaining
within run variability was higher during simulated shortening than isometric contraction.
This effect was not only attributed to stochastic attachment and detachment events, but
also, the cyclic increase in cross-bridge attachment as the number of cross-bridges available
for attachment varies. The effect of this variability was largely eliminated by averaging
all force data during a simulated iso–velocity-shortening run producing low remaining
variability (Figure 8).
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Figure 8. Simulated data for isometric force and for force during slow shortening ramps. (A) Isometric 
force from 28 simulation runs for N = 16–19 and 30 simulation runs for N = 33–39. Data given together 

Figure 8. Simulated data for isometric force and for force during slow shortening ramps.
(A) Isometric force from 28 simulation runs for N = 16–19 and 30 simulation runs for N = 33–39. Data
given together with mean ± 95% CI. Each data point averaged over 15–55 data points during each
simulation run. (B) Force during shortening ramps at 5% V0 for same conditions as in (A). Note
that there is an appreciably smaller difference between simulation runs in B than in the case of the
isometric force in (A).

The simulations in Figure S3 depict force responses to iso–velocity shortening of
an actin filament propelled by N = 16–19 or N = 33–39 available myosin heads. Ramp
shortening rates of approximately 5, 30%, or 60% of V0 were imposed after the attainment
of steady-state isometric force. The average isometric force obtained for these conditions
(averaged both between and within runs) was 22.9 ± 5.2 pN (mean ± 95% CI; N = 16–19
myosin heads; 28 runs; 16–66 data points per run) and 51.6 ± 6.6 pN pN (N = 33–39
myosin heads; 30 runs, 15–55 data points per run), respectively (Figure 8). This may
be compared to experimental data with an isometric force of about 20 pN for a myosin
ensemble of 16 heads [66] and 40 pN for 17 heads [44]. The comparison of these results
with the simulated data in Figures 7 and 8 suggest that double the number of heads are
attached in the experiments compared to in the simulations for a given N, consistent with
approximately up to two accessible sites per actin target zone in experiments compared to
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one site per target zone in the simulations. In contrast to the very low signal-to-noise ratio
in the simulations for 17 heads, the experimental data [66] with similar isometric force (for
16 heads) exhibited a high signal-to-noise ratio.

As mentioned above and discussed further below, our Monte Carlo simulations
experienced challenges in accounting for the behavior of small myosin ensembles of about
N = 20 and below (corresponding to forces of around 20 pN and below). However, the
behavior of larger ensembles seems well predicted. This allowed us to subject the Monte
Carlo version of the optimized model to a further test with regard to its prediction of
effects of varied [MgATP] on FV data obtained in experiments using isolated actin and
myosin filaments [70]. Based on the isometric force in these experiments of approximately
120 pN, we estimated the number of available heads to be N ≈ 100. The temperature in the
experiments was approximately 22 ◦C, suggesting changes in the model parameters, as
in Table 3. Simulations of FV data at 1.2, 0.5, and 0.1 mM MgATP on these assumptions
are shown together with experimental data for 1.2 and 0.5 mM MgATP in Figure 9. These
data show that the predicted FV relationship, with parameter values adjusted as in Table 3
and [MgATP] and N set to 1.2 mM and 100–110, corresponds reasonably well to the
experimental data. The small discrepancy in the predicted V0 from the experimental value
can be attributed to the choice (based on pilot simulations) of somewhat low N values
in the simulations. Increased N would increase both the total isometric force (not F0/N
though) and V0 (Figure S1). A higher V0 value would also be expected if the cross-bridge
elasticity had been assumed to be non-linear. Lowering [MgATP] to 0.5 mM results in the
prediction of reduced maximum velocity, reduced curvature of the FV relationship, and
increased F0, just as shown in the large ensemble simulations in Figure 6. The predictions
for the changes in V0 and the FV curvature with reduced [MgATP] from 1.2 to 0.5 mM in
the simulations are qualitatively similar to the experimental findings but are appreciably
smaller in magnitude. A better reproduction of the experimental data at 0.5 mM MgATP is
achieved by lowering [MgATP] to 0.1 mM in the simulations.
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Measured F0 in experiments at 1.2 mM MgATP: 112.4 ± 11.0 pN/µm (n = 12) and at 0.5 mM MgATP:
54.5 ± 3.6 pN/µm (n = 8). Data shown as mean ± standard error of the mean (SEM). Experimental
data fitted by Hill’s equation (see Materials and Methods) with a/F0* = 0.27 at 1.2 mM MgATP and
0.40 at 0.5 mM MgATP. (B) FV data for 1.2 mM (black), 0.5 mM (red), and 0.1 mM (blue) MgATP
simulated using Monte Carlo approach described in the text. Simulated data superimposed on
experimental data (“Exptl.”, stars and dashed line) at 1.2 mM MgATP from A. Simulated data shown
as mean ± SEM; n = 2 except for isometric force (open symbols), where n = 10, due to variability in
average force between simulation runs. Simulated data (except point at F0) fitted by Hill’s equation
with a/F0* = 0.46 at 1.2 mM MgATP, 0.54 at 0.5 mM MgATP, and 0.74 at 0.1 mM MgATP.

The lower curvature of the FV relationship at 1.2 mM MgATP that we observed in the
simulations compared to the experimental data in Figure 9 may be related to the tendency
of our small ensemble simulations to predict lower curvature of the relationship (Figure 7).
However, it is also important to keep in mind the substantial variabilities between labs in
terms of force–velocity data for both isolated proteins and muscle cells (Figure 10).
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myosin ensembles. Data from living muscle from mouse toe [13] (black squares), rabbit extraocular
muscle [49] (full line), and rat fast muscle [48] (dotted line). Other data are from isolated myosin
ensembles from fast rabbit muscle interacting with one actin filament with either N = 17 [44] (open
circles), N = 16 [66] (dashed line), or N > 100 [70] (open squares; same experimental data as in
Figure 9). Data assembled by Månsson [9] either by re-plotting Hill equation fits or by measuring
from the respective paper. Figure reproduced from [9], except for data from [70].

A discrepancy between the experimental data and model predictions that is worth
noting is an appreciably lower F0 at lowered [MgATP] levels in the experiments (see legend
of Figure 9 and [70]). In contrast, the model predicts increased F0 with reduced [MgATP],
both in the large ensemble version in Figure 6 and in the small ensemble (Monte Carlo)
version in Figure 9. These predictions are consistent with previous results where the effects
of varied [MgATP] were studied using skinned muscle cells [54,55]. For instance, in the
study of Cooke and Bialek [55] using glycerinated rabbit psoas fibers, the force increased
after lowering MgATP from 1 mM to 50 µM, where a maximum was observed for F0.
Further reductions in [MgATP] led to a drop in F0. Presumably, the basis for the opposite
effects in the filament experiments in Figure 9 is the way the isometric force is attained via
the appreciable sliding of the filaments past each other. It is possible that this sliding may
be partly inhibited by the lowered [MgATP] level to prevent attainment of the true F0.
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3. Discussion
3.1. Summary and Main Implications

We refined a bottom-up model [6] that was previously found to account for a range
of physiological phenomena in muscle contraction as well as the effects of blebbistatin by
applying constraints based on contractile effects of other small molecular compounds. This
model, whether implemented by solving differential equations in state probabilities or by
Monte Carlo simulations (Materials and Methods), brings new insights and introduces the
potential use of bottom-up models in predicting ensemble effects of drugs and myosin mod-
ifications in diseases. We show that the model is applicable to the simulation of experiments
both on muscle cells and on small actomyosin ensembles in vitro. An important finding
from our analysis is that changes in the parameter values that determine the amplitudes of
the two sub-strokes of the power stroke have key roles in determining the shape of the FV
relationship. Making these values more similar to those obtained in recent single-molecule
studies (5.5 and 2.5 nm, respectively) [44] allows for better quantitative reproduction of
the amrinone effects on F0 and V0. However, associated with these changes in the model,
we found it necessary to increase the rate constant of cross-bridge attachment more than
two-fold in order to account for the maximum power output. This means that a higher
cross-bridge attachment rate is required to account for the maximum power (>300 s−1)
than suggested by the rate of rise of isometric contraction (~130 s−1) and the maximum
actin-activated ATP turnover rate (cf. [6]). This is in contrast to our recent modelling efforts
assuming a short second sub-stroke of 1 nm (with a first sub-stroke of 5–6 nm; [5–7,9,71]).
However, the finding is similar to previous data from models and experiments by us and
others [1,39,40,57,72,73], as further discussed below.

3.2. Comparison with Previous Studies

As mentioned above, the amrinone effects were quite well-accounted for quantitatively
by an earlier model [16]. However, it is difficult to directly compare the present results to
those findings. First, the previous model was not stringently defined with respect to the
relationship between the mechanical and biochemical (ATP turnover) states. Second, it [16]
was applied particularly to data from frog muscle fibers but with parameter values obtained
in rather incoherent ways by mixing data from frog muscle with other data extrapolated
from experiments on isolated actin and myosin from mammalian muscle. Since then,
our models have evolved in different ways, starting in [17] and [5]. First, we arrived at
a one-to-one correspondence between mechanical and chemical states, and second, we
switched from modelling fast frog muscle data to modelling fast mammalian muscle results
using parameter values from fast mammalian actomyosin only (more details in [9]).

The bottom-up modeling approach deserves some general considerations. The key
strategy is to stick with model parameters obtained in independent experiments on isolated
proteins when simulating ensemble contractile data of muscle and to not change the
parameter values to improve the fits, unless absolutely necessary. This approach means that
we interpret any differences that emerge between experiments and the model as either being
due to experimental uncertainties or as being due to the effects of cooperative effects in the
actomyosin ensemble or of accessory proteins, etc., in muscle. Here, we take cooperative
effects to mean that different kinetic properties that need to be assumed for each actomyosin
interaction in an ordered myosin ensemble than for an isolated single molecule. In our
most recent modeling efforts conducted before this study, we found that experimental
uncertainties seem sufficient to explain deviations between experimental data and data
predicted from bottom-up models [9,10,71]. However, the present model refinements,
constrained by drug effects and consistent with recent single molecule experiments [44],
has forced us to change our conclusions. This issue is of fundamental importance for
understanding the operation of the actomyosin molecular motor system and is discussed
in further detail in the next section.
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3.3. The Need to Assume Higher Cross-Bridge Attachment Rate during Shortening

The high power output of a real muscle could not be accounted for by our optimized
model without appreciably increasing the attachment rate constant to a value higher than
that accounting for the maximum rate of rise in the isometric force and actin-activated
ATP turnover rate. In order to account for this finding, it seems necessary to assume
cooperative effects with a higher cross-bridge attachment rate during shortening than
predicted from actomyosin kinetics derived from isolated proteins (and from the rate of rise
of isometric contraction). In our recent models [5–9], where we assumed a shorter second
sub-stroke, there seemed to be no need to invoke cooperative effects in order to explain
the experimental data. This change in model properties, due to rather small alterations
in x1, x11, and x2, demonstrates an appreciable sensitivity of the power output to these
parameters. Furthermore, our analysis shows that small changes in these parameters also
strongly affect the exact shape of the non-hyperbolic deviation of the FV relationship from
a hyperbola at high loads, emphasizing and expanding previous findings [40,60].

A higher apparent cross-bridge attachment rate during shortening than during isomet-
ric contraction is intriguing. It is highly unlikely that the rate of cross-bridge attachment
should change as the thin and thick filaments start to slide past each other during short-
ening. One may, however, consider the effect in relation to the so-called regeneration of
the power stroke following a length step. Additionally, this process exhibits a faster rate
constant than for cross-bridge attachment during isometric contraction and actin-activated
ATP turnover [74]. Regeneration is defined as the process whereby the tension responses to
a length step recover following a previous first length step to become similar to the tension
responses (time course and amplitude) seen after that first step [74]. Both the apparent
increase in the attachment rate constant during shortening and the regeneration of the
power stroke may reflect either of the following processes: (a) the sequential action of the
two heads of myosin during shortening [39,40,75]; (b) the slippage of myosin cross-bridges
between neighboring sites (separated by 5.5 nm) along the actin filaments [6,72,73]; (c) the
rate limitation for attachment (partly) associated with transitions between detached states,
allowing completion of this transition as myosin heads slide between neighboring sites
during shortening and thus bypassing the rate limitation in that case [76]; or (d) a thick fila-
ment mechano-sensing mechanism [77] that leads to increased recruitment of cross-bridges
during shortening against high and intermediate loads [78].

Which of these mechanisms (a-d), or which combination of them (if any), might operate
is presently unclear. However, each of the mentioned mechanisms would contribute to
explaining an apparent velocity dependence of the attachment rate constant with a faster
attachment rate during shortening than in isometric contraction. Here, it is important
to note that the entire steady-state FV relationship is well-predicted by also assuming
the higher attachment rate constant during isometric contraction because this would
only have minimal effects on the steady-state isometric force. Importantly, however, the
high rate would not be compatible with transient phenomena such as the rate of rise of
isometric force during the onset of a contraction or after a release followed by reinstated
isometric conditions.

3.4. Monte Carlo Simulations

A Monte Carlo simulation approach is required for predicting and analyzing the con-
tractile behavior of small ensembles of myosin motors, e.g., as studied in recent experiments
using optical tweezers [44,45,64–67] and nanofabricated cantilevers [68]. Such studies allow
the evaluation of FV and other ensemble contractile data for myosin motors expressed
in (and purified from) cell systems (cf. [79,80]). These experiments are not possible using
methods developed for myofibrils and muscle cells. Similarly, simulation of the results is
not feasible using the large ensemble version of the model based on solving differential
equations. For instance, with a low number of available cross-bridges, the cross-bridge
attachment rate is expected to appreciably influence the velocity (cf. [81,82]), rather than the
detachment rate constant, at high motor densities [6,62,83]. Monte Carlo simulations [5,6]
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allow us to take this and some other effects into account. The small ensemble experiments
and the associated use of Monte Carlo simulations to analyze the data would be of value for
investigating the effects of disease-causing mutations (e.g., in cardiomyopathies), ensemble
drug effects, as well as mechanisms for contractile properties of myosin ensembles based
on molecular characteristics.

After demonstrating the general validity of the Monte Carlo approach by comparing
simulations of large ensemble data to those obtained by solving differential equations in
state probabilities (Figure 7), we went on to demonstrate the main predictions of the model
due to a reduction in the myosin ensemble size, N. First, we found that the model predicts
that the force/available head is virtually unchanged, whereas the maximum velocity of
shortening is appreciably reduced with reduced N (Figure S1). Moreover, we found that the
simulation of data at reduced N is appreciably affected by variability between simulation
runs and within a given run (Figure 8, Figure S3). We considered the basis for these types
of variability above and found that the influence of noise seems to be appreciably worse in
simulations than in experiments, particularly at the lowest N values studied here (N < 20).
We also found that this effect seems to be associated with a failure of the model to predict a
hyperbolic shape of the FV relationship in contrast to what was observed experimentally
by Pertici et al. [66]. However, a tendency for a non-hyperbolic FV relation was seen in
previous experiments [84] in which loads were imposed using electrostatic fields rather
than via force feedback using optical tweezers.

Experimental FV data at physiological ATP are well-predicted (Figure 7) within the
experimental variability (Figure 10) for a myosin ensemble with N > 33 and isometric force
of approximately 50 pN. This seems generally consistent with the data of Cheng et al. [70]
and Kaya et al. [44] (who assume two sites per actin target zone in their experiments).
However, the failure of our model for N = 17–18 to predict a hyperbolic force–velocity
relationship seems at odds with the experiments of Pertici et al. [66], clearly demonstrating
a hyperbolic FV relationship that was well-fitted by the Hill equation (Equation (14)).
Similar to the high signal-to-noise ratio in their experiment compared to the low signal-
to-noise ratio in our simulations, the reasons are not entirely clear. It is possible that the
low signal-to-noise ratios in our modelling is itself important in this context (see above) in
relation to the single-site assumption and lack of damping as mentioned above. Moreover,
we also assumed [MgATP] = 5 mM, ionic strength >100 mM, and temperature = 30 ◦C
in our simulations, whereas Pertici et al. [66] performed their experiments at [MgATP] =
2 mM, an ionic strength of 80 mM, and a temperature = 23 ◦C. It is unclear whether these
factors are sufficient to explain the difference between the experiments of Pertici et al. [66]
and our simulations.

The otherwise satisfactory performance of the model for N > 30 allowed us to go on to
evaluate effects of varied [MgATP] using isolated myosin and actin filaments with N appreciably
greater than 30. In these studies, we found qualitatively similar effects of varied [MgATP] in the
simulations compared to the experiments. However, the absolute values of the curvature of
the FV relationship at the highest [MgATP] level was lower than in the experiments discussed
above. Moreover, in order to predict the typical effects of lowering [MgATP] from 1.2 to 0.5 mM,
we had to assume a reduction from 1.2 to 0.1 mM in the simulations. This finding is actually
not unexpected from several previous studies of the relationship between [MgATP] and V0
predicting that the MgATP concentration (KM) for half-maximum unloaded velocity (i.e., V0) is
several-fold lower than in experiments [5,8,17,85]. These previous studies also suggested that a
way to amend this problem is to leave the assumption of a linear cross-bridge elasticity and to
instead assume a non-linear cross-bridge elasticity of the type observed in [43]. This idea was
not further tested here, but it is an important observation. We also noted that our model could
not account well for the effect of lowered [MgATP] on maximum isometric force, but this seems
to be due to the particular way that maximum isometric force was attained in the experiments,
as considered in the Results section.
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3.5. Limitations

Models are only approximations of the real world, and it is also important to realize
that models are not better than the underlying experimental data that are compared to
the model results and/or the data used to derive the values of the model parameter. It is
well-known that such experimental data vary between labs and even between experimental
conditions in a given lab. This issue is clearly illustrated by the comparison of different sets
of FV data from both muscle and small ensembles of isolated proteins in Figure 10.

Moreover, there are also some conceptual limitations of the present model. One of
these is the simplified single binding site assumption (often made in models), where only
one myosin binding site is assumed to be available per 36 nm half-repeats of the actin
filament and only one myosin head (out of the two per myosin molecule) is available for
binding to this site. This assumption means that the number of available cross-bridges may
be 2–3 times higher for geometrical reasons in real muscle than assumed here [7]. However,
with the exception of reducing extensive properties such as maximum isometric force (e.g.,
leading to corrections in Figure 3A) and an ATP turnover rate that increased by 2–3-fold, this
assumption, normally does not noticeably alter the prediction of intensive properties such
as V0, the increase rate of force, and the shape of the force–velocity relationship [7]. In the
present case, however, the assumption precludes realistic representation of the phenomena
(listed as a-d above) that may underlie the apparently faster cross-bridge attachment rate
during shortening than during isometric contraction. The only way to represent such
effects in the present model is by a faster cross-bridge attachment rate. Furthermore, the
assumption of a single site contributes to the variability when N is low.

A limitation of any model, presently, is that it is unclear whether the cross-bridge
elasticity is linear or non-linear [7,8,42–44,86]. This is a critically important issue. If the
cross-bridge elasticity is non-linear in muscle fibers in the way suggested by single molecule
experiments [43] with very low stiffness at negative x values, V0 would be appreciably
higher for a given set of rate constants. Indeed, it was already pointed out in [87] that the
only ways to account for the high velocity of shortening is to either to appreciably assume
increased detachment rate constants for cross-bridges at negative strain or to assume non-
linear cross-bridge elasticity. The latter effect also has the advantage of it leading to better
reproduction of the relationship between [MgATP] and velocity [17] than the assumption
of linear cross-bridge elasticity. This uncertainty about the cross-bridge’s elastic properties
is the major reason why we did not change any rate constants when attempting to increase
V0 in our simulated data. The model results in this regard would be in the upper part of
the normal range (cf. [8]) without changing any rate functions, especially if assuming that
the cross-bridge elasticity exhibits a non-linearity similar to that proposed in [43]

3.6. Relation to Other Similar Models

It is of relevance to consider the presently optimized model in the context of other
recent related models. This is carried out in Figure 11, which indicates that modifying
related models ([5,85]), as seen here for the model of Rahman et al. [6], would improve
their predictive capacity as well. This would allow for optimized versions of these models
instead of the present one to be used when more appropriate, e.g., for simpler computations
and for situations with reduced complexity (Månsson, 2016) [5], or to take into account a
range of effects of varied [Pi] values [85].
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inclusion of secondary Pi-binding sites outside the active site to account for a range of experimental 
observations at varied Pi levels, producing the model of Moretto et al. (2022) [85]. Importantly, the 
modifications of the model of Rahman et al. (2018) to produce the present optimized model should 
also be readily implemented (dashed arrows) in the models of Månsson (2016) and Moretto (2022). 
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Figure 11. History of model and implications for related models. The model in Figure 1 is essen-
tially the model of Rahman et al. (2018) [6] developed from the model of Månsson (2016) [5] to
include a Pi-release state, allowing the model to account for most blebbistatin effects on actomyosin
function and muscle contraction. The model of Rahman et al. [6] was then further modified with the
inclusion of secondary Pi-binding sites outside the active site to account for a range of experimental
observations at varied Pi levels, producing the model of Moretto et al. (2022) [85]. Importantly, the
modifications of the model of Rahman et al. (2018) to produce the present optimized model should
also be readily implemented (dashed arrows) in the models of Månsson (2016) and Moretto (2022).

4. Materials and Methods
4.1. Modelling—General

Our bottom-up mechanokinetic models relate actomyosin interaction kinetics, acto-
myosin elastic properties, and other basic molecular properties to the steady-state contrac-
tion of ensembles of myosin motors in muscle and in vitro. The integration of actomyosin
biochemistry with elastic and structural cross-bridge properties follows the formalism
in [2], with details described more recently [4,5,9,88].

All model states and parameter values are defined in Figure 1 and in Tables 1 and 2.
The myosin (M) and actomyosin (AM) states have either substrate (ATP; T) or products
(ADP, D; inorganic phosphate, P or Pi) in the active site. The strongly actin-bound states
with ADP in the active site are of different biochemical and structural types (Figure 1). The
state before the power stroke is indicated by the subscript “L” (low force), and a second
AMD state after the power stroke is indicated by subscript “H” (high force). Finally, one
AMD state (denoted AMD/AM) without a subscript in Figure 1 is assumed to follow the
AMDH state in the cycle after a second small sub-stroke that confers strain sensitivity to
the ADP release. The AMD state is assumed to have an open nucleotide pocket from which
ADP is very rapidly released, making the state in rapid equilibrium with the rigor (AM)
state. On this basis, and because of the lack of major structural changes in connection
with the ADP release, the AMD and AM states are lumped together into an AMD/AM
state. Standard model parameter values (Tables 1 and 2) for initial simulations are from
independent solution biochemistry and single-molecule mechanics experiments [9] to
as great of an extent as possible. The model structure and parameter values (Figure 1;
Tables 1 and 2) are similar to those in [6], with modifications as suggested in [7–9]. Most
importantly, the rate constant for transition from the AMDPPP to the AMDPiR state was
increased from 1000 s−1 in the original model [6] to 3000 s−1 in order to the avoid effects
on V0 under some conditions. Simulations of FV data at low temperatures (22 ◦C or 5 ◦C)
were performed using the parameter values in Table 3 (cf. [6] and references therein). Free



Int. J. Mol. Sci. 2022, 23, 12084 21 of 27

energy differences (∆GAMDP-AMDL, ∆GAMDL-AMDH, and ∆GAMDH-AM) between states are
given in units of kBT (~4 pN nm), where kB is the Boltzmann constant, and T is the absolute
temperature. Moreover, simplifying assumptions of the modelling include a uniform
distance (x) distribution between the myosin heads and the closest myosin binding site on
actin (cf. [1,2,40]), with only one myosin head available for binding to a given actin site.
Finally, we assume independence of the two heads of each myosin molecule and linear
(Hookean) cross-bridge elasticity (ks = 2.8 pN/nm).

The rate functions exhibit strain dependence, which is expressed in terms of the
variable x. The latter is formally defined as the distance between a myosin head in the rigor
(AM/AMD) state and the nearest binding site on actin so that the elastic strain in the rigor
cross-bridge is zero at x = 0 nm. The transition in the cycle from the weakly bound AMDP
state specifically to the first stereospecifically attached pre-power-stroke (AMDPPP) state is
governed by the rate function:

kon(x) = kon′ exp
(

∆Gon − ks(x− x1)
2/(4kBT)

)
(1)

where ∆Gon is the difference in free energy minima between the MDP and AMDPPP states.
The reversal of the transition is governed by:

kon-(x) = kon’ exp(ks (x − x1)2/(4kBT)) (2)

The transition into the subsequent Pi-release state (AMDPPiR) (19) and its reversal (20)
are governed by:

kPr+(x) = kPr+’ exp(∆GPiR/2 − (ks/2)(x − x11)2/(2kBT) + (ks/2)(x − x1)2/(2kBT)) (3)

and

kPr−(x) = kPr+’ exp(∆GPiR/2 + (ks/2)(x − x11)2/(2kBT) − (ks/2)(x − x1)2/(2kBT)) (4)

Here, ∆GPiR is the difference between the free energy minima of the AMDPPP and the
AMDPPiR states.

Subsequently, Pi is assumed to be rapidly and reversibly released from the AMDPPiR
state in a strain-insensitive transition to form the AMDL state. If the forward, first-order,
rate constant is denoted kp+, the backward pseudo-first order rate constant (at constant [Pi])
is given by:

kp− = kp+[Pi]/KC (5)

where KC is the dissociation constant for Pi-binding to myosin, and [Pi] is the concentration
of inorganic phosphate in solution.

The subsequent transition is the power stroke (a Huxley and Simmons [89] type of
transition; see also [4]). The forward (7) and reverse (8) transitions are governed by:

kLH+(x) = kLH−(x) exp(∆GAMDL-AMDH + ks(x − x1)2/(2kBT) − ks(x − x2)2/(2kBT)) (6)

and
kLH−(x) = 2000 s−1 (7)

respectively.
We next assume [6,8,88] that the transition from the AMDH to the AMD state is

governed by:

k5(x) = k5(x1) exp(∆GAMDH−AM +
ks(x− x2)

2

2kBT
− GAM(x)) (8)

where
GAM(x) =

∫ x3

x
FAM

(
x′ − x3

)
dx′/ kBT (9)
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In the case of linear cross-bridge elasticity, as assumed here, FAM(x′ − x3)= ks(x − x3).
Furthermore, as mentioned above, the states AMD and AM are lumped together into an
AM/AMD state.

The detachment rate function from the AM/AMD to the MT state can then be approx-
imated by (cf. [6]):

koffx =
k2(x)k6[MgATP]

k6
K1

+ (k2(x) + k6)[MgATP]
=

k2(x)[MgATP]
1

K1
+ k2(x)

k6
[MgATP] + [MgATP]

(10)

with

k2(x) = k2(0)exp
(
|FAM(x− x3)|·xcrit

kBT

)
(11)

Here, k2(0) (k2 in Table 2) and k6 are rate constants for ATP-induced detachment from
the AMT state at x = 0 and ADP dissociation from the AMD state, respectively. Because
we assumed that [MgADP] ≈ 0, the latter transition (rate constant k6) is assumed to be
irreversible. The parameter K1 is an equilibrium constant for MgATP binding to the
AM/AMD state (Figure 1) and xcrit defines the strain sensitivity of k2(x) [5].

4.2. Solutions of Ordinary Differential Equations and Derivation of Simulated Muscle Properties
from State Probabilities

Model state probabilities for muscle contraction at constant velocity, v, was modeled
by solving the following differential equations (for all j,k):

daj

dx
=

(
n1

∑
k

kkj(x)ak(x)−
n2

∑
k
{k jk(x)aj(x)}/v

)
(12)

where aj(x) are the state probabilities for the MT (j = 6), MDP (j = 7), AMDPPP (j = 1),
AMDPPiR (j = 2), AMDL (j = 3), AMDH (j = 4), and the AM/AMD (j = 5) states in Figure 1.
The rate functions kkj(x) and kjk(x), given in detail above and represent transitions into
n1 neighboring states and out of state aj (into n2 other states), respectively. The model
simulations were performed by numeric solutions (Runge–Kutta–Fehlberg algorithm) of
the differential equations using the program Simnon (cf. [7]). The observable variables were
then calculated from appropriate state probabilities [40] by averaging over the inter-site
distance (36 nm) along the actin filament. Using this approach, average force <F> (in pN)
per myosin head (attached to actin or not) is given by:

< F ≥ 5

∑
1

∫ 14

−91
ksaj(x)

(
x− xj

)
dx

/
7

∑
1

∫ 14

−22
aj(x)dx (13)

where the denominator represents summing over all states and x values, as seen in Figure 1.
In order to ensure stability in the numerical computations, the value of any rate

function (Equations (1)–(11)) was limited to a maximum (rmax) of 100,000 s−1 for isometric
contraction and to 1,000,000 s−1 for the fastest shortening velocities and to a minimum
(rmin) of 1 × 10−6 s−1. If any of the limits exceeded a certain value of x, the parameter
value was set to either rmax or rmin. For other details regarding the implementation of the
numerical integration method, please see [7].

4.3. Monte Carlo Simulations

Monte Carlo simulations were performed essentially as described in [5,6] using the
Gillespie algorithm [90]. We originally [5,6] developed a method to simulate data from
the in vitro motility assay. Therefore, the total number (N) of available myosin heads is
defined by a surface motor density (ρ), an actin filament length (L), and the width (d) of
a band surrounding the filament, where myosin motors may reach an attachment site on
actin, i.e., N = ρdL. As an approximation, we further assume (as in the differential equation
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implementation) that only one actin subunit per 36 nm of the actin filament is available for
myosin head binding.

Three versions of the simulations were run corresponding to 1. unloaded shortening,
2. pure isometric contraction, and 3. isometric contraction, with the imposition of iso-
velocity shortening ramp upon attainment of the maximum isometric force. In the first of
these running modes (unloaded shortening), the cross-bridge state distribution is allowed
to move freely along the x-axis (defining the myosin head and actin site distance) to keep
the total cross-bridge force equal to 0 pN. The resulting displacement per time then gives
the unloaded shortening speed. In the second run mode (isometric contraction), the cross-
bridge distribution evolves to with zero displacement over time between the actin site and
the myosin head. Finally, in the third run mode, an approximate iso–velocity displacement
(constant velocity displacement of the cross-bridge distribution along the x-axis) is imposed
once the cross-bridges have reached their steady-state isometric distribution.

In all running modes, the simulations started with the myosin heads being detached
from actin and equilibrated between the MT and MDP state. Transitions were then stochas-
tically selected, and inter-state transition times were stochastically determined using
the Gillespie algorithm based on probabilities reflecting transition rates, as defined by
Equations (1–11) (see [5,6,9] for details). This leads to a stochastic exploration of the state
space defined in Figure 1. The population of different states at a given time is transformed
to different force levels based on elastic and structural properties of the myosin cross-
bridges, as defined by the free energy diagrams in Figure 1B. Average force values as well
as average velocity values can be estimated from these simulated data, forming the basis
for the construction of FV relationships.

In order to compare FV data for very large myosin ensembles between the approaches
using the solution of a differential equation and Monte Carlo simulations, we assumed a
low motor density (ρ) on the surface in our Monte Carlo simulation design together with
very (unrealistically) long filaments. This was necessary to avoid competition between
motors for each actin site. Systematic tests suggested that in order to obtain accurate and
reliable large ensemble properties by the Monte Carlo approach, i.e., values similar to
those obtained via the solution of differential equations, it was necessary to assume an
ensemble size of >1000 myosin heads (N) (Figure S1). Whereas the simulated maximum
isometric force per myosin head is virtually independent of N, V0 is reduced with reduced
N, with saturation of N >~1000 at a V0 value very similar to that derived via the solution
of differential equations. We further found that the appropriate condition to obtain N >
1000 was to have L > 400 µm and ρ < 250 µm−2. Combinations with ρ > 1000 µm−2 and L
< 100 µm, i.e., >~1 head on average per available actin site, at 36 nm intervals along the
filament failed to reproduce the data obtained via the solution of differential equations
(inset Figure S1). We attribute this to competition between myosin heads to the actin sites.

In comparing the FV data from the Monte Carlo simulations to those obtained by
solving differential equations, we used identical model structure (Figure 1) and parameter
values (Tables 1–3) as well as very similar rate functions (Equations (1)–(11)) for the two
methods. However, the Monte Carlo simulations assumed that the very fast power stroke
transitions are represented by rapid equilibria, whereas the actual forward and backward
transition rate constants were used to solve the differential equations. In the present imple-
mentation of the simulations, this had negligible effects on the results, as is clear from the
very similar values of the FV data (see below) obtained by the Monte Carlo and differential
equation approaches. Furthermore, in accordance with this view, several-fold increases in
the power stroke transition rates had negligible effects on the simulation outcome.
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4.4. Fit of Simulated and Experimental Data to Hill (1938) Hyperbolic Equation

In several of the figures below, both experimental and simulated FV data are fitted
by the Hill (1938) hyperbolic equation [69] using non-linear regression (implemented in
Graph Pad Prism, v. 9.3.1, Graph Pad Software, San Diego, CA, USA):

(F + a) × (V + b) = b (Fo + a) (14)

where a and b are constants, F is force at a given velocity, V is the velocity, and Fo is the
maximal isometric force when V = 0. Because V0 occurs for F = 0, V0 = (b × Fo)/a.

5. Conclusions

Based on data for the molecular mechanisms and contractile function of the drug
amrinone, we have arrived at an optimized version of the model from [6] (closely related
to two other models [5,85]). This model is now in better agreement with recent estimates
for myosin’s power stroke sub-components [44]. In the process, we elucidated parameter
values of importance for determining the shape of the non-hyperbolic deviation of the
force–velocity relationship at high loads. After increasing the attachment rate in the model
by 2.5-fold to account for the maximum power output, the prediction of experimental
force–velocity data was within the experimental uncertainty range (Figure 9) for both the
huge ensembles of muscle and small myosin ensembles with >30 myosin heads. However,
limitations of the model, e.g., the poor prediction of FV data for low N and the uncertainty
of whether the myosin cross-bridge elasticity is linear [86] or non-linear [8,43] in muscle
cells, need to be addressed before final use in assessing drugs and mutation effects.
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//www.mdpi.com/article/10.3390/ijms232012084/s1, Figure S1: Monte-Carlo simulation based
predictions for force and velocity vs the number of available myosin heads (N); Figure S2: Monte-Carlo
simulation of force-velocity data for large number of myosin heads (N, 2975–2990); Figure S3. Monte-
Carlo simulation of FV-data for N = 17–19 (left panels) and N = 34–39 (right panels). Supplementary
text: Basis for in-between runs variability in Monte-Carlo simulations of isometric force at low N.
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