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Abstract: Background and objective: Among the broad variety of chemokines, monocyte chemoat-
tractant protein-1 (MCP-1) is considered to be one of the most important chemokines. Among others,
MCP-1 activates monocytes and other immune cells highly involved in inflammation. In the present
systematic review and meta-analysis, we evaluated the relationship between serum/plasma MCP-1
levels and the risk of obstructive sleep apnea (OSA) in adults as a disease related to inflammation.
Materials and methods: Four databases were systematically investigated until 12 July 2022. We
used the Review Manager 5.3 software (Copenhagen: The Nordic Cochrane Centre, The Cochrane
Collaboration, Copenhagen, Denmark) to extract and calculate the standardized mean difference
(SMD) and its 95% confidence interval (CI) of plasma/serum levels of MCP-1 between adults with
and without OSA. Results: Eight articles including eleven studies in adults were entered into the
meta-analysis. The serum/plasma MCP-1 levels in adults with OSA were higher than that in the
controls (SMD = 0.81; p = 0.0007) and as well as for adults with severe OSA compared to those with
mild and moderate OSA (SMD = 0.42; p < 0.0001). The subgroup analysis showed that ethnicity
was an effective factor in the pooled analysis of blood MCP-1 levels in adults with OSA compared
to the controls (Asians: (p < 0.0001), mixed ethnicity: (p = 0.04), and Caucasians: (p = 0.89)). The
meta-regression showed increasing serum/plasma MCP-1 levels in adults with OSA versus the
controls, publication year, age of controls, body mass index (BMI) of controls, and sample size
reduced, and also BMI and the apnea-hypopnea index of adults with OSA increased. Conclusions:
The meta-analysis showed that compared to the controls, serum/plasma levels of MCP-1 in adults
with OSA were significantly more, as well as adults with severe OSA having more serum/plasma
MCP-1 levels compared to the adults with mild to moderate OSA. Therefore, MCP-1 can be used as a
diagnostic and therapeutic factor in adults with OSA.

Keywords: obstructive sleep apnea; blood; cytokine; monocyte chemoattractant protein-1; meta-analysis

1. Introduction

Approximately one billion adults aged between 30 and 69 years are suffering from
obstructive sleep apnea (OSA) [1]. A prevalence rate of 9-38% has been shown for OSA,
when measured with an apnea-hypopnea index (AHI) of >5 events/h [2], and from 6-17%,
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when measured with an AHI >15 events/h [2]. Male gender [2] and overweight are major
risks for OSA [3-5].

Further, processes of inflammation occur as a consequence of exposure to tissues
and organs against damaging stimuli, such as microbial pathogens, stimulants, or toxic
cells [6]. The link between OSA and systemic inflammation is strong, and efforts are made
to clarifying the causal correlations between OSA and inflammatory processes and to
recognizing potential biological markers [7-10]. Chronic intermittent hypoxia and sleep
fragmentation can increase the chronic inflammatory response; therefore, a chronically
stimulated immune system can be substantial in the OSA pathogenesis [11].

Chemokines (chemotactic cytokines) are the only group of cytokines that interact with
G protein-coupled receptors [12]. Chemokines are small binding proteins (60 to 100 amino
acids) and structurally similar to cytokines [13]. Inflammatory chemokines regulate the
deployment of effector leucocytes in tissue injury, infection, inflammation, and cancers [14].
Lots of these chemokines selectively affect the target cell and take action on the cells of the
adaptive and innate immune system [14]. As such, chemokines are considered important
agents in the process of inflammation and autoimmune response; indeed, chemokines
appear to be highly involved in the lymphoid organogenesis, angiogenesis, and immune
regulation [15]. In this vein, recent meta-analyses showed the association between several
polymorphisms in adults with OSA in comparison to adults without OSA [16-19].

Among the broad variety of chemokines, monocyte chemoattractant protein-1 (MCP-1)
is included in the family of CC chemokines [20]. An alternative expression to MCP-1 is
Chemokine (CC-motif) ligand 2 (CCL2). MCP-1/CCL2 is considered one of the main
chemokines responsible for the regulation of the migration and infiltration of mono-
cytes/macrophages [13]. MCP-1 on binding to its receptor (C-C Motif Chemokine Receptor
2 (CCR2)) activates monocytes and immune cells highly involved in the inflammation
response [13]. Studies have reported different results for the association between OSA risk
and blood levels of MCP-1, specifically, while some studies showed high serum/plasma
levels of MCP-1 in adults with OSA in comparison with controls [21-23], in contrast, other
studies were unable to confirm such a pattern of results [24,25], or even reported opposite
results [26]. Further, to our understanding, no thorough meta-analysis and systematic
review were so far performed. With this context in mind, the aims of the present meta-
analysis and systematic review were two-fold: First, to compare MCP-1 levels between
adults with OSA and the healthy population; second, to associate MCP-1 levels with the
severity of OSA.

2. Materials and Methods
2.1. Study Plan

To perform the meta-analysis, we rigorously followed PRISMA guidelines [27]. We
identified the PECO with the question [28,29]: Are blood MCP-1 levels different in adults
with OSA compared with controls? This resulted in Human cases with/ without OSA:
P; OSA disease: E; adults with OSA compared with controls: C; and variations in the
plasma/serum MCP-1 levels: O.

2.2. Recognizing of Articles

One author (M.S) comprehensively searched the databases of Web of Science, the
Cochrane Library, PubMed/Medline, and Scopus up to 12 July 2022, with an age restriction
(just individuals with age >18 years old were included) to retrieve the related articles. The
strategy of the search was: (“obstructive sleep apnea-hypopnea syndrome” OR “OSAHS”
OR “obstructive sleep apnea” or “sleep apnea” or “OSA” or “obstructive sleep apnea
syndrome” or “OSAS”) and (“monocyte chemotactic protein-1” or “monocyte chemotactic
protein 1”7 or “monocyte chemotaxis protein-1” or “monocyte chemotaxis protein 1 “or
“monocyte chemoattractant protein-1” or “monocyte chemotactic protein 1” or “MCP-1").
Moreover, the references or citations of the reviews in relation to the topic were checked
to make sure that no study was lost and afterwards, the titles/abstracts of these articles
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were determined by the same author (M.S); after that, those that fully met the criteria
were downloaded. The second author (M.M.I) re-examined the previous process. A
disagreement among the authors was obviated by another author (S.B).

2.3. Suitability Criteria

Inclusion criteria were: (1) study with any design including adults with OSA and con-
trols aged >18 years and not receiving any treatment; (2) studies reporting plasma/serum
MCP-1 levels in diagnostic and therapeutic methods OSA and controls; (3) polysomnog-
raphy was used to diagnose OSA, defined as AHI >5 events per hour for an adult; and
(4) adults with OSA and controls had no other systemic diseases. Exclusion criteria were:
(1) reviews, book chapters, meta-analyses, or conference articles; (2) studies with insufficient
data; (3) studies with a lack of control group or the control group had AHI >5 events/h;
(4) studies including cases aged <18 years old participants; and (5) studies involving adults
with OSA and with other systemic diseases (e.g., diabetes and cardiovascular diseases).

2.4. Data Collection

Two authors (M.S and M.M.]) individually extracted the data of the articles entered
into the meta-analysis. These data were the country and ethnicity of individuals, MCP-1
sampling, the sample size or number of adults with OSA and controls, quality score, OSA
type, and the plasma/serum MCP-1 levels in two groups, and body mass index (BMI), age,
and AHI means of two groups.

2.5. Quality Assessment

The quality evaluation of the studies was completed by one author (M.S) using the
Newcastle-Ottawa scale (NOS), pursuant to which the number nine was the highest score
for each study, and a score of >7 was considered as a high-quality score.

2.6. Statistical Analysis

The Review Manager 5.3 software extracted and calculated the standardized mean
difference (SMD) and its 95% confidence interval (CI) of the plasma/serum levels of MCP-1
among the adults with OSA and without OSA. The Z-test was utilized to examine the
pooled SMD significance (p-value (2-sided) < 0.05 was treated as significant). A Preterogeneity
less than 0.1 (I? > 50%) was set to identify significant heterogeneity and therefore a random-
effects model [30]. Further, a fixed-effect model [31] was used to identify if the heterogeneity
was insignificant.

The subgroup analysis and the random-effect meta-regression analysis were per-
formed according to three and seven variables, respectively.

Next, both “one-study-removed” and “cumulative analysis” were used to examine
the stability / consistency of the pooled SMD. In addition, a Egger’s test via funnel plots
was applied to determine the degree of publication bias [32] and Begg’s test showed if
there was a significant correlation among the ranks of the estimations of effect and the
ranks of their variances [33]. The p-values of both of the tests were calculated and a p-value
(2-sided) < 0.10 suggested the existence of publication bias. These analyses were carried
out applying the Comprehensive Meta-Analysis version 2.0 (CMA 2.0) software (Biostat,
Englewood, NJ, USA).

To address false positive or false negative results in meta-analyses [34], trial sequential
analysis (TSA) was accomplished using TSA software (version 0.9.5.10 beta) (Copenhagen
Trial Unit, Center for Clinical Intervention Research, Copenhagen, Denmark) [35]. The
required information size (RIS) was computed with alpha and beta risks of 5% and 20%,
respectively, and a two-sided border type. We estimated heterogeneity (D?) = 97% for the
plasma/serum MCP-1 levels. The mean difference calculated on empirical assumptions
was produced automatically by the software. When the Z-curve crossed the RIS line or the
borderline or entered into the futility zone, the number of individuals was large enough
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and the conclusion was trustworthy or dependable and therefore, no more information will
be needed.

The GetData Graph Digitizer 2.26.0.20 (GetData Pty Ltd., Kogarah, Australia) software
was applied to extract data from the graphs in some specific studies. The authors checked
the last analyses and any disagreements were removed following discussion.

3. Results
3.1. Study Selection

To search in the databases as Figure 1 shows, 113 records were identified. Removing the
duplicates and irrelevant records, 17 full-text articles were appraised for suitability criteria.
Nine articles were removed for various reasons (three articles reported gene expressions of
MCP-1, two articles reported polymorphisms of MCP-1, one article had a case group with
type 2 diabetes, one article had a group with coronary artery disease, one article included a
control group with AHI >five events/h, and one article included children.). Finally, eight
articles including eleven studies were imported into the meta-analysis.

= Records identified through database Records identified through other databases
2 searching searching

é (n=113) (n=0)

= PubMed: 37 Web of Science: 41

5 Scopus: 35 Cochrane Library: 0

=

A 4

Records after duplicates removed
(n=50)

A

Records screened Records excluded

(n="50) > (n=33)
&
= Full-text articles assessed Full-text articles excluded,
= for eligibility > with reasons*
=) (n=17) (n=9)
(o,
A 4
Articles included in meta-
analysis
=
2 (n=3)
=
)
=
=
v
Studies included in meta-
analysis
(n=11)
* 2 articles reported polymorphisms of MCP-1. 3 articles reported gene expressions of MCP-1. 1
article had case group with type 2 diabetes. 1 article had case group with coronary artery disease.
1 article included control group with AHI > 5 events/h. 1 articles included children.

Figure 1. Flowchart of the study selection. MCP-1: Monocyte chemotactic protein-1. AHI: Apnea—
hypopnea index.
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3.2. Characteristics

Table 1 presents the characteristics of the articles incorporated in the meta-analysis [21-26,36,37].
The articles were published from 2003 to 2021. Six studies [21-23,25,36,37] included Asian
participants, one [24] included Caucasians, and one [26] included participants of mixed eth-
nicity. Five articles [21,22,24,25,36] analyzed the data in serum samples, and three [23,26,37]
in plasma samples. Six articles [21,22,24,25,36,37] had high-quality scores (score > 7). The
number of cases and controls, mean AHI, BMI, and age are shown in Table 1. Three arti-
cles [22-24] reported data from two independent studies. One study [26] had 18 missed
cases, but the authors did not indicate the number of cases missed in each individual group;
given this, we considered the initial number of participants entering each group.

Table 1. Characteristics of articles.

Cases Controls
P FlﬁSt ?uthgr, Country  Ethnicity Mean Mean Sampling quality
ublication Year No.  AHI,  BMI,  Age, NO- AHI,  BMI,  Age, core
events/h kg/m?  Years events/h kg/m?  Years
Ohga, 2003 [21] Japan Asian 20 38.9 29.4 47.8 10 3.1 28.4 48.9 Serum 9
Hai-rong, . .
2005 [25] China Asian 35 >5 29.24 50 25 <5 28.04 50 Serum 8
Hayashi, Japan Asian 60 494 28.8 51.6 30 2.8 232 55 Serum 7
2006 [36] p ’ ’ ’ ’ ’
Kim, 2010 * [23] Korea Asian o 14.40 2443 38 22 1.25 23.88 26 Serum 6
28 52.71 28.69 42
K 2017 ** 28 >5 27.3 449
Ong['zz? China Asian = 30 <5 27.6 457  Serum 9
54 >5 27.9 459
Perrini, 2017 *** 16 42.5 38 46.3
em“[lé 4]O Italy  Caucasian 15 46 411 437 Serum 8
15 273 38.7 46.1
Wen, 2020 [37] China Asian 155 28.53 23.59 52 52 3.00 27.21 49.67 Plasma 7
Silva, 2021 [26] Brazil Mixed 188 26.97 25.1 47 520 4.8 28.7 45 Plasma 5

BMI, Body mass index; AHI, Apnea-hypopnea index. * This study included two studies (moderate vs. control and
severe vs. control). ** This study included two studies (mild/moderate vs. control and severe vs. control). *** This
study included baseline data in two studies (treatment cases vs. control and sub-treatment cases vs. control).

3.3. Pooled Analysis (Case vs. Control)

As Figure 2 presents, pooled SMD of serum/plasma MCP-1 levels was 0.81 for adults
with OSA compared to controls (95% CI: 0.34, 1.27; p = 0.0007; I2 = 91% (Pheterogeneity < 0.00001)).
The results showed significantly higher blood MCP-1 levels in the adults with OSA com-
pared to controls.
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Case Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Hai-rang, 2005 10013 1466 35 4685 1716 25  95% 0.33[-0.18,0.85] r—
Hayashi, 2006 631 2479 B0  46.8 1862 30 97% 0.70([0.25,1.16] ———
Kim, 2010 {mod) 7111 3539 9 328 15893 22 7% 1.62[0.73, 2.51] — -
Kirn, 2010 {sev) 111.14 355 28 328 1583 22 82% 2.69[1.91,3.48] s
Kong, 2017 (mild/mod) 53.72 2083 28 3388 2273 30 94% 0.90[0.35, 1.44] ——
Kong, 2017 (sev) 7331 3486 54 3388 2273 30 96% 1.26[0.77,1.74] ——
Ohga, 2003 132,99 101.42 20 2388 2574 10 8.0% 1.25([0.42, 2.08] —
Perrini, 2017 {subthe) 210,86 8416 15 2083 94.04 15  85% 0.03[0.69,0.74) 1T
Perrini, 2017 {the) 21214  86.92 16 208.3 84.04 15  86% 0.04 [-0.66, 0.75] T
Silva, 2021 31.4 2652 188 3623 2778 520 106% -0.18 [-0.34,-0.01] -
Wen, 2020 286.67 59.25 155 230 13333 52 10.2% 0.67 [0.35, 0.99] -
Total (95% Cl) 608 771 100.0% 0.81[0.34,1.27] e
Heterogeneity, Tau®= 0.52; Chi*=109.28, df=10 (P < 0.00001); F=91% =2 51 b 1= é
Test for overall effect Z= 3.40 (P = 0.0007) Favours [case] Favours [control]

Figure 2. Forest plot analysis comparing blood levels of monocyte chemotactic protein-1 in adults
with obstructive sleep apnea compared to controls. CI: Confidence interval. SD: Standard devia-
tion. [21-26,36,37].

3.4. Pooled Analysis (Adults with Severe vs. Mild/Moderate OSA)

As Figure 3 shows, pooled SMD of serum/plasma MCP-1 levels was 0.42 for adults
with severe OSA compared to mild/moderate OSA (95% CI: 0.21, 0.62; p < 0.0001; 12 = 28%
(Pheterogeneity < 0.23)). The result reported significantly higher blood MCP-1 levels in adults
with severe OSA compared to mild/moderate OSA.

Severe Mild/Moderate Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Fixed, 95% CI IV, Fixed, 95% CI
Hayashi, 2006 (i) 63.6 23.92 22 629 268 16 9.7% 0.03 [-0.62, 0.67] S
Hayashi, 2006 (ji) 63.6 23.92 22 62.7 2533 22 11.5% 0.04 [-0.56, 0.63] T
Kim, 2010 (i) 11114 355 28 7111 3539 9 B6.3% 1.10([0.31, 1.80] e —
Kang, 2017 {ifii) 7331 3486 54 5372 2083 28 18.4% 0.63[0.16,1.10] ——
Wen, 2020 (i) 300 51.85 67 273.33 59.25 44 26.9% 0.48[0.10,0.87] —a—
Wen, 2020 (i) 300 51.85 67 280 66.67 44 27.3% 0.34 [-0.04,0.72] =
Total (95% ClI) 260 163 100.0% 0.42[0.21,0.62] <
Heterogeneity: Chi*= 6.91, df=5 (P = 0.23); F= 28% =2 51 5 15 é
Testfor overall effect Z= 4.06 (P < 0.0001) Favours [Severe] Favours [Mild/Moderate]

Figure 3. Forest plot analysis comparing blood levels of monocyte chemotactic protein-1 in
mild/moderate compared to adults with severe obstructive sleep apnea. SD: Standard deviation. CI:
Confidence interval [22,23,36,37].

3.5. Subgroup Analysis

The subgroup analyses of MCP-1 levels in adults with OSA in comparison with the
controls based on ethnicity, sample size, and sampling, are represented in Table 2. The
results recommended that only ethnicity was an effective factor for pooled analysis. The
serum/plasma MCP-1 levels in Asians with OSA were significantly more than the controls
(p < 0.0001), as well as for mixed ethnicity (p = 0.04), but not for Caucasians (p = 0.89).
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Table 2. Subgroup analysis in adults with obstructive sleep apnea compared to controls.

95% CI
Variable, N SMD Min Max p-Value 12, % Pheterogeneity
Ethnicity
Asian (8) 1.10 0.69 1.52 <0.00001 79 <0.0001
Caucasian (2) 0.03 -0.47 0.54 0.89 0 0.98
Mixed (1) -0.18 -0.34 -0.01 0.04 - -
Sample size
<100 (9) 0.95 0.47 1.43 <0.0001 81 <0.00001
>100 (2) 0.24 -0.59 1.07 0.58 95 <0.00001
Sampling
Serum (9) 0.95 0.47 1.43 <0.0001 81 <0.00001
Plasma (4) 0.24 —0.59 1.07 0.58 95 <0.00001

N: Number of studies. SMD: Standardized mean difference. CI: Confidence interval.

3.6. Meta-Regression

Table 3 reports the results of serum/plasma MCP-1 levels in adults with OSA in
comparison with controls. The publication year, age, BMI, AHI, and sample size were
confounding factors for the pooled analysis: increasing serum/plasma MCP-1 levels in
adults with OSA versus controls, publication year, age of controls, BMI of controls, and the
sample size reduced, and also the BMI and AHI of adults with OSA increased.

Table 3. Meta-regression analysis in adults with obstructive sleep apnea compared to controls.

Variable Point Estimate ~ Standard Error Lower Limit Upper Limit Z-Value p-Value
Publication year —0.06450 0.01084 ~0.08575 —0.04325 —5.94886 <0.00001
Mean age of adults ~0.03085 0.02243 —0.07481 0.01311 ~1.37525 0.16905
with OSA
Mean age of controls ~0.03391 0.01188 ~0.05720 ~0.01063 —2.85432 0.00431
Mean BMI of adults 0.02835 0.01804 —0.00701 0.06370 1.57128 0.00612
with OSA
Mean BMI of controls ~0.07558 0.01744 ~0.10976 —0.04139 433352 0.00001
Mean AHI of adults 0.04198 0.00826 0.02579 0.05816 5.08275 <0.00001
with OSA
Sample size ~0.00165 0.00020 ~0.00204 ~0.00126 ~8.29125 <0.00001

3.7. Sensitivity Analysis

Both the “one-study-removed” and “cumulative analysis” reported the stability of
the pooled analysis of serum/plasma MCP-1 levels. Removing the articles [23,26] with a
quality score of <7, the pooled SMD was 0.67 (95% CI: 0.38, 0.95; p < 0.00001; I? = 56%);
thus, the pattern of the results remained unaltered, though heterogeneity decreased (from
91% to 560/0).

3.8. Publication Bias

The values of p-values for both Begg’s and Egger’s tests were 0.39180 and 0.00722,
respectively (Figure 4). The results of the tests showed a moderate publication bias.
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1 SE(HD)

(8]

SMD

Figure 4. Funnel plot in adults with obstructive sleep apnea compared to controls. SMD: Standardized
mean difference. SE: Standard error. Each small circle of the plot represents a separate one study. The
vertical dotted line indicates the overall effect from the meta-analysis.

3.9. Trial Sequential Analysis

Figure 5 shows the TSA of the serum/plasma MCP-1 levels in adults with OSA versus
controls. The result showed that there were sufficient cases for this analysis.

Cumulative RIS is a Two-sided graph

Z-Score

RIS =882
&4

7
&

5

Favours
Case
IS

T

671 Number of
patients

(Linear scaled)

Favours
Control
1
IS
&

Figure 5. Trial sequential analysis in adults with obstructive sleep apnea compared to controls. The
vertical red line shows the required information size (RIS). Horizontal brown lines shows conventional
boundary for benefit (up) and for harm (down). Each black dot on the Z-curve (blue line) shows one
study.
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4. Discussion

The main results of the meta-analysis were that the serum/plasma level of MCP-
1 including sufficient individuals in adults with OSA was significantly more than the
serum/plasma level of MCP-1 of adult individuals without OSA. In addition, the serum/
plasma level of MCP-1 in adults with severe OSA was higher than the serum/plasma level
of MCP-1 in adults with mild/moderate OSA. Increasing the serum /plasma MCP-1 levels
in adults with OSA versus the controls, publication year, age of controls, BMI of controls,
and the sample size decreased, and also the BMI and AHI of adults with OSA elevated.

Among the broad variety of CC chemokines, MCP-1 is considered one of the most
substantial CC chemokines. More specifically, inflammatory and stromal cells express
MCP-1, while proinflammatory stimuli regulate the chemotactic activity of MCP-1 [38,39].
Animal and in vitro models showed that intermittent hypoxia can induce MCP-1 synthesis
and expression via the activation of the NF-«B signaling pathway [40,41]. In addition, early
studies showed that hypoxia caused by OSA can enhance the circulating MCP-1 levels,
while in contrast, useful treatment for OSA can decrease the MCP-1 expression [36,42].

One study reported that the plasma levels of A proliferation-inducing ligand (APRIL)
were significantly related to plasma MCP-1 in adults with OSA [37]. Another study [43]
found a correlation between adipose tissue blood flow in adults and OSA for the gene ex-
pression of MCP-1. Deterrence of MCP-1 has been illustrated to improve insulin resistance
and diminish macrophage infiltration among the adipose tissue of obese mice [44]. Further,
OSA is independently related to the emergence of insulin resistance [45,46]. MCP-1 is
upregulated in human atherosclerotic plaques, which appears to indicate the MCP-1 role in
the increase and progression of early atherosclerotic lesions [47-50]. Next, OSA is closely as-
sociated with both various cardiovascular diseases (CVDs) and with atherosclerosis [51-53].
The connection between OSA with atherosclerosis and insulin resistance, and also the
relationship between MCP-1 levels and atherosclerosis and insulin resistance appears to
show a correlation between MCP-1 levels and OSA risk; similarly, the present meta-analysis
showed high serum/plasma levels of MCP-1 in adults with OSA compared to the controls.
Therefore, it appears pivotal to assess the basic mechanisms of the OSA-atherosclerosis
and OSA-insulin resistance interaction.

One study [22] described that by increasing blood levels of MCP-1, AHI scores in
adults with OSA were reduced; in contrast, the present meta-analysis yielded a different
result, in that elevating the serum/plasma levels of MCP-1, meant that the BMI [23] and
AHI scores [23,36] elevated. Further, the MCP-1 concentrations increased with higher
obesity [54,55] and the MCP-1 levels increased with lower age in healthy people [56].
However, another study [57] reported that the serum MCP-1 levels were unrelated to the
age of individuals with atherosclerosis (a disease linked with OSA [58]). In the present
meta-analysis, increasing the age of the controls, blood MCP-1 levels reduced, and there
was a lack of a significant correlation between the age of adults with OSA and blood MCP-1
levels. Therefore, the role of the participants” age should be considered in future studies
with more sensitivity and the role of AHI with less sensitivity.

In spite of the novelties, the below limitations should be remarked upon: (1) There
was a low number of cases in most of the studies; (2) There was a high heterogeneity in the
initial pooled analysis; (3) The occurrence of several confounding factors; (4) Some of the
studies reported the MCP-1 level on the graphs and we estimated their means and standard
deviations with appropriate software; and (5) There was a publication bias between or
across the studies. In contrast, the meta-analysis included sufficient cases with stable
results.

5. Conclusions

The findings showed that serum/plasma levels of MCP-1 in adults with OSA were
significantly more than those in controls, as well as in adults with severe OSA compared to
mild/moderate OSA. Therefore, it appears that MCP-1 can have a practical, clinical, and
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diagnostic importance in adults with OSA. In addition, age, ethnicity, BMI, and AHI should
be considered in the diagnostic and therapeutic approach to adults with OSA.
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