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Abstract

Studies using blood-oxygenation-level-dependent functional magnetic resonance

imaging (BOLD fMRI) have characterized how the resting brain is affected by concus-

sion. The literature to date, however, has largely focused on measuring changes in

the spatial organization of functional brain networks. In the present study, changes in

the temporal dynamics of BOLD signals are examined throughout concussion recov-

ery using scaling (or fractal) analysis. Imaging data were collected for 228 university-

level athletes, 61 with concussion and 167 athletic controls. Concussed athletes were

scanned at the acute phase of injury (1–7 days postinjury), the subacute phase (8–-

14 days postinjury), medical clearance to return to sport (RTS), 1 month post-RTS

and 1 year post-RTS. The wavelet leader multifractal approach was used to assess

scaling (c1) and multifractal (c2) behavior. Significant longitudinal changes were identi-

fied for c1, which was lowest at acute injury, became significantly elevated at RTS,

and returned near control levels by 1 year post-RTS. No longitudinal changes were

identified for c2. Secondary analyses showed that clinical measures of acute symptom

severity and time to RTP were related to longitudinal changes in c1. Athletes with

both higher symptoms and prolonged recovery had elevated c1 values at RTS, while

athletes with higher symptoms but rapid recovery had reduced c1 at acute injury. This

study provides the first evidence for long-term recovery of BOLD scale-free brain

dynamics after a concussion.
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1 | INTRODUCTION

Concussion involves the transmission of impulsive forces to brain tissue,

and it is associated with transient impairments in cognition, physical func-

tion, and emotion regulation (Daneshvar, Nowinski, McKee, & Cantu,

2011). In the context of sport, the diagnosis and management of concus-

sion are mainly based on symptom assessments, along with brief cognitive

and balance testing, with the clinical determination of return to sport

(RTS) based on symptom resolution following a graded exercise protocol

(McCrory et al., 2013). Although the natural history of clinical recovery is

well described, brain recovery following concussion is less understood

(McCrea et al., 2017), particularly with respect to time of RTS.

As a mild form of traumatic brain injury (TBI), concussion is rarely

associated with gross neuroradiological findings. Instead, injuries at
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the microscopic level, undetectable in individual patients using stan-

dard diagnostic imaging, have a measurable impact on brain function,

including disturbances in neurometabolic activity and the regulation

of cerebral blood flow (Giza & Hovda, 2014). Blood-oxygenation-level

dependent functional magnetic resonance imaging (BOLD fMRI) has

been used to detect changes in brain function among concussed indi-

viduals, during cognitive tasks and at rest (Slobounov, Gay, Johnson, &

Zhang, 2012). Studies of the resting brain have typically focused on

functional connectivity, which measures the synchrony of spontane-

ous BOLD signal fluctuations between different brain regions (Sporns,

2014). Functional connectivity has been studied in concussed cohorts,

during the symptomatic phase of injury and after RTS (Churchill et al.,

2017b; Johnson et al., 2012; Zhang et al., 2012; Zhu et al., 2015),

showing significant concussion-related disturbances that persist

beyond medical clearance.

Connectivity-based methods provide an incomplete picture of

the functional brain changes that occur after a concussion, however.

These methods do not directly characterize the temporal dynamics of

spontaneous BOLD signal fluctuations or provide information about

how these dynamics are affected by injury. The temporal dynamics of

BOLD signals have been well characterized in the uninjured resting

brain and show evidence of scale free (or fractal) behavior, such that

no specific timescale plays a dominant role (He, 2014). In the same

way that geometric fractals are “self-similar,” with each magnified part

resembling a smaller-sized copy of the whole (Mandelbrot, 1983), a

scale-free time series signal x(t) is statistically indistinguishable from a

dilated and rescaled version of itself, that is, x(t)~a−Hx(at), for all values

of a > 0. In this expression, the Hurst exponent H parameterizes scal-

ing behavior, with higher values indicating a more scale-free signal. In

practice, the scaling behavior of functional brain signals is often

defined in terms of a power-law relationship between frequency f and

the power spectral density (PSD) Px(f ) / |f|−β, where β = 2H − 1 (Eke

et al., 2000). More recently, sophisticated multifractal formalisms have

extended beyond monofractal models in which a single scaling behav-

ior H is modeled, instead describing signals in terms of a spectrum of

time-varying scaling exponents h, thereby providing a richer descrip-

tion of BOLD dynamics (Ciuciu, Varoquaux, Abry, Sadaghiani, &

Kleinschmidt, 2012; Shimizu, Barth, Windischberger, Moser, &

Thurner, 2004; Wink, Bullmore, Barnes, Bernard, & Suckling, 2008).

Although it has long been known that the brain exhibits scale-free

dynamics at multiple different levels of organization (Werner, 2010),

the initial BOLD fMRI studies of scaling behavior considered it to be a

product of measurement noise and/or physiological fluctuations

unrelated to brain function (Aguirre, Zarahn, & d'Esposito, 1997;

Zarahn, Aguirre, & d'Esposito, 1997). Subsequent studies challenged

this assumption though, showing that scale-free processes in electro-

physiology are linked to BOLD signal fluctuations (Van de Ville, Britz, &

Michel, 2010). Moreover, BOLD scaling encodes important informa-

tion, as scaling behaviors vary with cognitive state and systematic dif-

ferences have been observed in brain areas serving different cognitive

roles (Barnes, Bullmore, & Suckling, 2009; Ciuciu et al., 2012; He,

2011). Potentially more relevant to concussion, the suppression of

BOLD scaling in the brain is associated with greater cognitive effort

(Churchill et al., 2016), trait anxiety (Tolkunov, Rubin, & Mujica-Parodi,

2010), and distress during adverse life events (Churchill et al., 2015;

Tolkunov et al., 2010). Reduced BOLD scaling is also associated with

slower reaction time during tasks (Suckling, Wink, Bernard, Barnes, &

Bullmore, 2008; Wink et al., 2008). In general, these findings point

toward the suppression of BOLD scaling as an indicator of a more

taxed, less adaptive brain. This is consistent with the literature on

scaling in biological systems (Goldberger et al., 2002), which finds that

reduced scaling, which reflects a loss of system complexity, is a hall-

mark of functional impairment.

Given the literature evidence that suppression of BOLD scaling is

a marker of brain dysfunction, this study examined whether concus-

sion, which involves impairments in brain function and behavior

including cognitive difficulty and emotional dysregulation, had similar

effects on BOLD scaling. It was hypothesized that for concussed ath-

letes: (a) BOLD scaling will show continual increase from acute injury

up to 1 month post-RTS, reflecting brain recovery that lasts beyond

medical clearance; (b) for brain areas showing longitudinal change,

BOLD scaling will be suppressed relative to uninjured controls at

acute injury; and (c) longitudinal recovery will depend on clinical

covariates of acute symptom severity and time to RTS. These hypoth-

eses were evaluated using resting-state BOLD fMRI data acquired

from a sample of university athletes with sport-related concussion

who were followed longitudinally from the acute phase of injury to

1 year post-RTS. In addition, a large normative cohort of athletic con-

trols was also evaluated. Scaling analyses were performed using the

wavelet leader multifractal (WLM) formalism, which offers superior

performance over standard monofractal techniques (Lashermes,

Jaffard, & Abry, 2005; Wendt & Abry, 2007; Wendt, Abry, &

Jaffard, 2007).

2 | METHODS

2.1 | Study participants

Sixty-one concussed athletes were recruited from university-level

sport teams at a single institution (including volleyball, hockey, soccer,

football, rugby, basketball, lacrosse, and water polo; see Supplemen-

tary Table S1 for athlete numbers by sport) through the academic

sport medicine clinic, following a concussion diagnosis. Diagnosis was

determined by a staff physician following a sustained direct or indirect

contact to the head with signs and/or symptoms as per the Concus-

sion in Sport Group guidelines (McCrory et al., 2013). Imaging evalua-

tions were conducted at the acute phase of injury (ACU; 1–7 days

postinjury), the subacute phase (SUB; 8–14 days postinjury), medical

clearance to RTS (RTS), 1 month post-RTS (1MO) and 1 year post-RTS

(1YR). Within the longitudinal study, some of the concussed athletes

had missed imaging sessions. The number of participants retained at

each time point was: ACU (53/61), SUB (29/61), RTS (51/61), 1MO

(45/61), and 1YR (32/61). Attrition was not significantly related to

demographic variables (age, sex, concussion history) or clinical vari-

ables (symptom severity, time to RTS) examined in this study, based
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on Spearman correlations, at a false discovery rate (FDR) of 0.05

across time points.

As a control group, one hundred and sixty-seven athletes were

also consecutively recruited and imaged at the start of their competi-

tive season. All athletes in the study completed baseline assessments

with the Sport Concussion Assessment Tool (SCAT) (Echemendia

et al., 2017; Guskiewicz et al., 2013) before the beginning of their sea-

sons. Athletes diagnosed with a concussion also completed SCAT

assessments at acute injury and at time of RTS. Athlete recruitment

and data collection were carried out between October 2014 and

March 2019. None of the athletes in this study had a history of neuro-

logical or psychiatric diseases or sensory/motor impairments, and

none of the concussed athletes experienced loss of consciousness or

posttraumatic amnesia. This study was carried out in accordance with

recommendations of the Canadian Tri-Council Policy Statement 2 and

with approval of the research ethics boards at the University of

Toronto and St. Michael's Hospital, with written informed consent

given by all participants in accordance with the Declaration of

Helsinki.

2.2 | Magnetic resonance imaging

The athletes were all imaged at St. Michael's Hospital using a

research-dedicated MRI system operating at 3 Tesla (Magnetom

Skyra, Siemens, Erlangen, Germany) with the standard 20-channel

head receiver coil. Structural imaging included three-dimensional

T1-weighted magnetization prepared rapid acquisition gradient echo

(3D MPRAGE: inversion time (TI)/echo time (TE)/repetition time

(TR) = 1,090/3.55/2,300 ms, flip angle (FA) = 8�, 192 sagittal slices

with field of view (FOV) = 240 × 240 mm2, 256 × 256 pixel matrix,

0.9 mm slice thickness, 0.9 × 0.9 mm in-plane resolution, with band-

width (BW) = 200 Hz per pixel (Hz/px)), fluid attenuated inversion

recovery imaging (FLAIR: TI/TE/TR = 1,800/387/5,000 ms, 160 sagit-

tal slices with FOV = 230 × 230 mm2, 512 × 512 matrix, 0.9 mm slice

thickness, 0.4 × 0.4 mm2 in-plane resolution, BW = 751 Hz/px) and

susceptibility-weighted imaging (SWI: TE/TR = 20/28 ms, FA = 15�,

112 axial slices with FOV = 193 × 220 mm2, 336 × 384 matrix,

1.2 mm slice thickness, 0.6 × 0.6 mm2 in-plane resolution,

BW = 120 Hz/px). Structural images were reviewed in a two-step pro-

cedure, involving initial inspection by an MRI technologist during the

imaging session and later review by a neuroradiologist with clinical

reporting, if abnormalities were identified. Statistical testing was also

performed by obtaining the mean, variance and skew of voxel signal

intensity distributions for masked MPRAGE, FLAIR, and SWI images

(following brain extraction using FSL bet software), generating a Z-

score for each imaging sequence per athlete relative to the controls

and identifying significant outliers at p < .05. No abnormalities (white

matter [WM] hyperintensities, contusions, microhemorrhage, or sta-

tistical outliers) were found for study participants.

Resting-state fMRI data were acquired via multislice T2*-

weighted echo planar imaging (TE/TR = 30/2,000 ms, FA = 70�,

32 oblique-axial slices with FOV = 200 × 200 mm2, 64 × 64 matrix,

4.0 mm slice thickness with 0.5 mm gap, 3.125 × 3.125 mm2 in-plane

resolution, BW = 2,298 Hz/px), producing a time series of 195 images

at each slice location. During fMRI, athletes were instructed to lie still

with their eyes closed and not to focus on anything in particular.

Processing and analysis were performed using the Analysis of Func-

tional Neuroimages (AFNI) package (afni.nimh.nih.gov), fMRIB Soft-

ware Library (FSL; https://fsl.fmrib.ox.ac.uk), and customized

algorithms developed in the laboratory. After discarding the first four

volumes to allow the fMRI signal to reach equilibrium, the processing

included rigid-body motion correction (AFNI 3dvolreg), removal of out-

lier scan volumes using the SPIKECOR algorithm (nitrc.org/projects/

spikecor), slice-timing correction (AFNI 3dTshift), spatial smoothing

with a 6 mm full width at half maximum (FWHM) isotropic 3D Gauss-

ian kernel (AFNI 3dmerge) and regression of motion parameters and

linear-quadratic trends as nuisance covariates. For motion parameter

regression, principal component analysis was performed on the six

rigid-body movement parameters (consistently accounting for >85%

of variance), and the first two PCs were used as nuisance regressors.

To control for physiological noise, the data-driven PHYCAA+ algo-

rithm (nitrc.org/projects/phycaa_plus) was used to downweight areas

with nonneural signal, followed by further regression of signal origi-

nating from WM and cerebrospinal fluid (CSF). The WM and CSF

regressions were performed after spatial normalization, described in

the paragraph below.

To perform group-level analyses, the fMRI data were cor-

egistered to a common anatomical template using the FMRIB Soft-

ware Library (FSL) package (https://fsl.fmrib.ox.ac.uk). The FSL flirt

algorithm was used to compute the rigid-body transform of the

mean functional volume for each athlete to their T1-weighted ana-

tomical image, along with the 12-parameter affine transformation of

the T1 image for each athlete to the MNI152 template. The net

transform was applied to the functional imaging data, which was res-

ampled at 3 × 3 × 3 mm3 resolution. To remove WM and CSF signal,

subject T1-weighted images were segmented and coregistered to

the MNI152 template using the fslvbm protocol (fsl.fmrib.ox.ac.uk/

fsl/fslwiki/FSLVBM), which used fast to obtain partial volume seg-

mentation maps of gray matter (GM), WM, and CSF, followed by

iterative applications of affine registration algorithm flirt and

nonlinear registration algorithm fnirt, to obtain a symmetric, study-

specific mean GM tissue template. The spatial transforms were sub-

sequently used to obtain mean WM and CSF tissue templates, res-

ampled into 3 × 3 × 3 mm3 resolution and a 6 mm FWHM isotropic

3D Gaussian smoothing kernel was applied. For WM, the brain mask

p(WM) ≥ P95%(WM) was obtained (i.e., voxels within the distribution

95th percentile) and a single spatial erosion performed (3 × 3 kernel,

in-plane). Two mean seed time series were obtained by separately

averaging over cerebral WM voxels and averaging over brainstem

WM (as their time courses were substantially different). For CSF, the

brain mask p(CSF) ≥ P95%(CSF) was obtained and manually edited

into two separate masks of the lateral ventricles. Two mean seed

time series were obtained by separately averaging over these two

ventricular regions. The four physiological time series were then

regressed from each voxel, for all study participants.
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To reduce computational burden and improve the stability of

regional BOLD measures, the data were then parcellated using the

Brainnetome Atlas (BNA), which a connectivity-based atlas that subdi-

vides the brain into 210 cortical regions and 36 subcortical regions

(Fan et al., 2016). Within each parcel, a mean seed time series of inter-

est was obtained, for a cubic region of interest (ROI) of 3 × 3 × 3

voxels, placed at the parcel center of mass. Seed ROIs of uniform size

were created for all parcels, to avoid potential unequal smoothing

effects across caused by averaging over parcels of different size. This

procedure generated a set of 246 BOLD time series per participant

for subsequent analyses.

2.3 | Clinical and demographic data

Participant demographics are reported in Table 1, including age,

sex, and prior concussion history, along with time to RTS for con-

cussed athletes, defined as the number of days from concussion

event to symptom resolution following a graded exertional protocol

(McCrory et al., 2017). From the SCAT, a symptom severity score

was obtained by summing across the 22-item symptom scale, with

each item receiving a 7-point Likert scale rating. A total symptoms

score was also obtained by counting the total number of symptoms

with nonzero ratings. In addition, brief cognitive testing scores

were reported, including orientation, immediate memory, concen-

tration, and delayed memory, along with total scores for the modi-

fied balance error scoring system. All scores were tested at acute

injury and RTS for a significant difference relative to baseline, via

nonparametric Wilcoxon paired-measures tests (two-tailed). As per

evolving clinical guidelines, the first 44/61 concussed athletes and

68/167 controls in this study were evaluated with SCAT3, while

the remainder were evaluated using SCAT5. The immediate mem-

ory and delayed memory tests were changed in SCAT5 (from 15 to

30 items and from 5 to 10 items, respectively). For these subtests,

statistics are only reported for SCAT3 data, as this represents the

larger sample of concussed athletes. For all other subtests, statis-

tics are based on the complete dataset, after verifying that there

were no significant within-cohort differences in SCAT3 and SCAT5

scores based on two-sample Wilcoxon tests (p ≥ .288, for all

measures).

2.4 | Measuring BOLD scaling

The goal of the analyses in this section was to summarize the

dynamics of the spontaneous, arrhythmic fluctuations of resting-

state BOLD time series x(t). This was attained for each of the

246 parcel ROIs identified for a given participant (concussed and

control) and imaging session. One approach involves analyzing sig-

nal variance at different frequencies f using a PSD estimator. How-

ever, both the BOLD signal and underlying neural activity have a

broad spectral distribution, where power declines smoothly with

increasing frequency (Fox, Snyder, Vincent, & Raichle, 2007);

hence, no specific set of frequencies or timescales can be singled

out for analysis. For this reason, scaling analysis is an appealing

alternative; instead of analyzing specific frequencies, this approach

characterizes power-law scaling behaviors that relate the dynamics

of BOLD signals at different timescales. By convention, x(t) is

deemed scale invariant if the following relation holds for a wide

range of frequencies:

Px fð Þ=C fj j−β β >0ð Þ ð1Þ

This has nontrivial implications, as the relative spectral power at a

given frequency f is then entirely dictated by a single scaling exponent

β. This parameter is also related to the Hurst exponent by β = 2H − 1

for a fractional Brownian motion model (Eke et al., 2000), where H is

considered an index of temporal dependence. A value of 0 < H < 0.5

indicates short-range dependency, where a high value for x(t) tends to

be followed by a low value for x(t + 1) and vice-versa; H = 0.5 denotes

TABLE 1 Demographic and clinical
data for athletes with concussion and
controls. Clinical scores of total
symptoms and symptom severity are
summarized by the median [Q1, Q3]. For
tests of Immediate Memory and Delayed
Memory, denoted by a “*,” statistics are
based on a reduced sample of 44/61
concussed athletes and 68/167 controls,
due to changes in scoring guidelines
between SCAT3 and SCAT5. Significant
differences in scores at acute injury,
relative to baseline, are noted with “**”

Control Concussion

Age (mean ± SD) 20.2 ± 2.0 20.4 ± 2.0

Female 87/167 (52%) 31/61 (51%)

Previous concussions 73/167 (44%) 36/61 (59%)

Days to RTP — 30 [15, 66]

Baseline ACU RTS

Total symptoms 2 [0, 5] 3 [1, 5] 10 [5, 17]** 1 [0, 2]

Symptom severity 3 [0, 7] 3 [1, 10] 14 [6, 35]** 1 [0, 2]

Orientation 5 [5, 5] 5 [5, 5] 5 [5, 5] 5 [5, 5]

Immediate memory* 15 [15,15] 15 [14, 15] 15 [14, 15] 15 [15, 15]

Concentration 4 [3, 5] 4 [3, 5] 4 [3, 5] 4 [3, 5]

Delayed memory* 4 [3, 5] 5 [4, 5] 4 [3, 5] 5 [4, 5]

M-BESS errors 2 [1, 4] 3 [2, 5] 4 [1, 6] 1 [0, 5]

Abbreviations: M-BESS, modified balance error scoring system; RTS, return to sport.
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an uncorrelated process; and 0.5 < H < 1.0 indicates long-range

dependency, where a high (or low) value for x(t) tends to be followed

by a high (or low) value for x(t + 1). In practise, PSD-based scaling

analysis typically involves estimating β from the slope of log(Px(f )) ver-

sus log(f ) scatterplots, calculated using standard linear regression

techniques.

Although intuitive, PSD-based scaling analyses suffer from a

significant limitation, namely the inability to distinguish true scal-

ing behavior from deterministic trends in the data. To address this

issue, scaling may be evaluated using wavelets (Abry, Gonçalvés, &

Flandrin, 1995; Abry & Veitch, 1998; Veitch & Abry, 1999). The

wavelet transform employs translated and dilated versions of a

basis function Ψ0(t), which is compact in both time and frequency

domains, to analyze x(t) at different delays and timescales. This

basis function Ψ0(t) is also characterized as having NΨ ≥ 1

vanishing moments, where for all integers k = 0, …, NΨ − 1,Ð
tkΨ0(t)dt = 0, making Ψ0(t) insensitive to low-order polynomial

trends in x(t) (Daubechies, 1992). In the continuous time domain,

the wavelet coefficient dx(a, k) measures signal at timescale a and

delay k by computing the inner product dx a,kð Þ= 1
a

Ð
x tð ÞΨ0

t−k
a

� �
dt .

In discretely sampled real-world data, the analogous computation uses

the discrete wavelet transform (DWT), which analyzes dyadic scales

a = 2j and delay intervals k = n2j, for nonnegative integer j and n. The

mean squared wavelet energy at a given timescale is then calculated

as dx 2j
� ����

���
2
= 1

N

P
n dx 2j,n2j

� ����
���
2
. The wavelet energy has a relation-

ship with dyadic scale that is described by the following equation:

dx 2j
� ����

���
2
=C2jβ ð2Þ

The DWT approach shows reduced modeling error compared to

PSD estimators (Abry et al., 1995; Abry & Veitch, 1998) and is thus

the preferred technique for scaling analyses. As with PSD-based

methods, scaling analysis typically involves estimating β from the

slope of log(|dx(2
j)|2) versus j scatterplots.

One additional concern is that the DWT approach assumes the

data of interest to be Gaussian, with scaling of x(t) fully defined by

its variance (i.e., its second-order moment) across timescales. We

may extend the approach to encompass scaling behaviors for a range

of moments q using the WLM formalism (Lashermes et al., 2005;

Wendt & Abry, 2007; Wendt et al., 2007). To ensure robust perfor-

mance, wavelet coefficients dx(a, k) are replaced with wavelet

leaders Lx(a, k), which are calculated as the largest coefficient value |

dx(a0, k0)| in a neighborhood of k, for all a 0 ≤ a. The WLM approach

then describes a more general expression relating dyadic timescale

j to wavelet power:

1
K

X
k
Lx 2j,k
� ����

���
q
=Cq2

jτ qð Þ ð3Þ

Instead of a fixed β value, wavelet power scaling is now expressed

in terms of a characteristic function τ(q) that varies with statistical

moment q. This function is typically expressed as a Legendre

polynomial expansion τ(q) ≈
P

pcp(q
p/p!), where the set of log-

cumulants cp summarize scaling behavior of x(t).

The function τ(q) is linked to the concept of multifractality,

in which x(t) exhibits time-varying fractal features characterized

by their Hölder exponent values h(t), which describe power-law

scaling behavior of x(t) in the neighborhood of each time point

t (Wendt & Abry, 2007). This collection of scaling exponents is

characterized by a “singularity spectrum” D(h), which measures the

Hausdorff dimension at each value h, which is the “size” of the set

of time points ti such that h(ti) = h. In practise, D(h) is approxi-

mated using the Legendre transform of τ(q) and therefore the log-

cumulants cp reflect multifractal scaling behavior.

The present work examined the parameterization τ(q) = c1q +

c2q
2/2, as higher order coefficients were found to be nonsignificant

under bootstrap testing (Wendt & Abry, 2007). The log-cumulant c1 is

equivalent to the peak amplitude of D(h), that is, the most frequently-

occurring scaling parameter h, which is similar to monofractal H (Wendt

et al., 2007). The log-cumulant c2 determines the width of D(h), and can

therefore be thought of as indexing the degree of multifractality (Ciuciu

et al., 2012). Multifractal analysis was performed using the WLBMF

toolbox (https://www.irit.fr/~Herwig.Wendt/software.html; [Wendt &

Abry, 2007; Wendt et al., 2007]). The WLM estimation was performed

using Daubechies' wavelets with N = 3 vanishing moments and q values

ranging −10 to 10. Robust results were identified for dyadic wavelets

over a three octaves range of j = [2, 4], which corresponds to a fre-

quency range of [0.016, 0.125] Hz.

2.5 | Analysis of healthy controls

To characterize the spatial distribution of scaling behavior, the c1

and c2 log-cumulant values were obtained for all athletic controls, at

each of the 246 ROIs. Bootstrap 1-sample tests were then con-

ducted at each ROI to evaluate scaling behavior: c1 was tested

against the null c1 ≤ 0.5 (1-tailed) and c2 was tested against the null

c2 = 0 (2-tailed). Significant ROIs were then identified after adjusting

for multiple comparisons at an FDR of 0.05. For ROIs that were

determined to be significant, maps of the group mean and standard

error values were displayed.

Subsequent analyses examined whether both c1 and c2 were

affected by demographic factors. At each ROI, log-cumulant values

were regressed onto covariates of age (integer), sex (binary) and history

of concussion (binary) using a general linear model (GLM). To minimize

assumptions about the distribution of log-cumulant values, boo-

tstrapping was used to obtain empirical p-values on the regression coef-

ficient values b. The ROIs showing a significant effect of imaging

session were then identified at an FDR threshold of 0.05. Afterwards,

log-cumulant values were averaged across significant ROIs and the

values reanalyzed with a bootstrapped GLM to obtain a single set of

summary statistics, including coefficient b with a 95% confidence inter-

val (95% CI), standardized measure of effect size termed the bootstrap

ratio (BSR; calculated as b divided by bootstrapped standard error) and

p-value.
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2.6 | Longitudinal effects of concussion

To model longitudinal change in c1 and c2 values of concussed athletes

(see Section 2.1), the effect of imaging session on log-cumulant values

was evaluated at each ROI using a linear mixed-effects model (LMM).

For this model, missing longitudinal data are handled implicitly via maxi-

mum likelihood estimation. Fixed effects were estimated at each post-

acute imaging sessions (SUB, RTS, 1MO, 1YR) relative to ACU; the

model also included fixed-effect covariates adjusting for age, sex, and

concussion history and subject-specific random-effects intercepts. For

seven participants who were medically cleared at the time of ACU or

SUB scan, the corresponding datapoints were given labels of both

ACU/SUB and RTS during model fitting. The LMMs were fitted using

the MATLAB R2017b fitlme package (The MathWorks, Natick, MA)

with full covariance estimation using Cholesky parameterization. Analy-

sis was done in a bootstrap resampling framework, where resampling

units consisted of the set of all images for a given subject (1,000 itera-

tions). This was used to obtain empirical p-values on the fixed-effect

regression coefficients b. The ROIs showing a significant effect of imag-

ing session were then identified at an FDR threshold of 0.05.

Afterwards, log-cumulant values were averaged across significant ROIs

and the values reanalyzed with a bootstrapped LMM to obtain sum-

mary statistics, including fixed-effect coefficient b with a 95%CI, BSR

and p-value for each imaging session.

For ROIs showing significant longitudinal change, the c1 and c2

values of concussed athletes were also compared to athletic controls.

Log-cumulant values were averaged over all ROIs showing significant

longitudinal effects, and at each imaging session (ACU, SUB, RTS,

1MO, 1YR) concussed and control group means were compared.

Given the demographic effects seen in the control cohort (see

Section 2.5), a GLM was used to evaluate the effects of concussion

with covariates adjusting for age, sex and history of concussion. This

was done in a bootstrap resampling framework (1,000 iterations) to

obtain coefficient b with a 95%CI, BSR, and p-value for each imaging

session, with significant imaging sessions identified at an FDR thresh-

old of 0.05. To mitigate potential bias and loss of efficiency due to

missing data, bootstrap GLM analysis was combined with multiple

imputation using the “Boot MI” approach of (Schomaker & Heumann,

2018): bootstrap samples were drawn from the full dataset (including

missing data) and for each sample, imputation was done M = 10 times

to generate 10 coefficient estimates, which were averaged to obtain a

point estimate. The set of coefficient point estimates were treated as

a conventional bootstrap empirical distribution, from which summary

statistics were calculated. Imputation was done using the fitted LMM

to generate simulated log-cumulant values. To evaluate the impact of

imputation, results of MI analyses were also compared to unimputed

bootstrap parameter estimates in Table S1.

2.7 | Effects of clinical covariates

A secondary set of analyses, performed within the concussed cohort,

tested for effects of clinical covariates on log-cumulant values over

the course of recovery. This included (a) total symptom severity at

acute injury and (b) days to RTS. Given the high correlation between

these variables (see Section 3.1), a pair of orthogonal composite

scores (CS) were defined. After the two variables were renormalized

via the inverse empirical distribution function and mean centered,

composite score one (CS1) was computed as the average of the two

variables (symptoms + days to RTP), which quantified overall clinical

outcome. Composite score two (CS2) was computed as the difference

(symptoms − days to RTP), which quantified discrepancy between the

two measures of concussion outcome (i.e., a positive score denoting

high symptom burden but rapid recovery, and a negative score

denoting the converse).

The effects of these covariates on log-cumulant values were

assessed within the previously established bootstrapped LMM

framework. In addition to fixed-effect covariates of imaging session

(SUB, RTS, 1MO, 1YR) and demographics (age, sex, concussion his-

tory), the model was augmented by adding interaction effects of

CS1 and CS2 at each imaging session (i.e., measuring the simple

effects on concussed athletes). Bootstrap resampling was done to

obtain empirical p-values on the fixed-effect regression coefficients

b. The ROIs showing a significant effect of imaging session were

then identified at an FDR threshold of 0.05. Afterwards, log-

cumulant values were averaged across significant ROIs and the

values reanalyzed with a bootstrapped LMM to obtain summary sta-

tistics, including a fixed-effect coefficient b with a 95%CI, BSR, and

p-value.

3 | RESULTS

3.1 | Demographic and clinical data

The demographic and clinical data are summarized in Table 1. Both

concussed and control groups were of similar age, and included simi-

lar proportions of male and female athletes, with and without prior

history of concussion. At baseline, concussed athletes had symptom

scores comparable to controls. At ACU, both total symptoms and

symptom severity were significantly elevated relative to their base-

line values (p < .001 for both), whereas at RTS they were signifi-

cantly lower than baseline (p < .001 for both), with all effects

significant at an FDR of 0.05. For other cognitive and balance tests,

no significant effects were identified at acute injury or at RTS

(p ≥ .31 for all tests). Median time to RTS, which included symptom

resolution and completion of a graded exercise protocol, was

approximately 1 month, with an interquartile range of 2 weeks to

2 months. These times tended to be slightly long compared to con-

sensus guidelines (McCrory et al., 2017), but not unreasonable given

the young age and heterogeneous mixture of male and female ath-

letes drawn from contact and noncontact sports. The symptom

severity scores at early injury had a relatively high Spearman correla-

tion with days to RTS of 0.561 (95%CI = 0.379–0.696; p < .001),

indicating that individuals with greater initial symptoms also tended

to have a more prolonged recovery.
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3.2 | Scaling behavior in healthy controls

Figure 1 illustrates BOLD scaling behavior for representative time

series data obtained from ROIs in the right precuneus (medial area

7 [PEp], CoM = −4, −66, 50) and right basal ganglia (dorsolateral

putamen, CoM = 30, −2, 4) of healthy control athletes. Figure 1a

shows sample BOLD time series of a single athlete, where the

precuneus exhibits more complex behavior, with faster small fluctu-

ations superimposed on slower, smooth signal variations. Con-

versely, the putamen exhibits more random fluctuations, better

approximating white noise. This difference in dynamics is expressed

in the log-scale plots of Figure 1b–d, obtained by averaging over all

control athletes. When comparing the precuneus relative to the

putamen, a steeper negative slope is evident in the plot of log(Px(f ))

versus log(f ) and a steeper positive slope is evident in the plot of

log2(dx(2
j)) versus j used for DWT estimation. Similarly, the plots of

multifractal spectrum D(h) versus h obtained using WLM techniques

show that the spectrum peak (i.e., c1) of the precuneus is shifted to

the right, denoting increased scaling behavior relative to the puta-

men. In addition, these spectra show relatively broad curves,

F IGURE 1 Illustration of BOLD scaling behavior, comparing example ROIs in the right precuneus (blue) and right putamen (red) for healthy
control athletes. (a) Sample BOLD time series data from a representative participant. (b) Log–log plot of spectral power versus frequency used to
estimate PSD scaling. (c) Log-linear plot of wavelet power versus timescale for DWT estimation. (d) Plot of estimated Hausdorff dimensionality D
(h) versus Hölder exponent h, obtained using WLM techniques. The precuneus ROI is located in right medial area 7 (PEp); CoM = 4, −66, 50, and
the basal ganglia ROI is located in the right dorsolateral putamen; CoM = 30, −2, 4. BOLD, blood-oxygenation-level-dependent; DWT, discrete
wavelet transform; ROI, region of interest; WLM, wavelet leader multifractal
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denoting the presence of multifractal scaling in both regions

(i.e., nonzero c2).

One-sample tests of the log-cumulants established significance

for both scaling parameter c1 and multifractal parameter c2 for all

brain ROIs, at an FDR of 0.05. For c1, the global average value com-

puted over all ROIs was near unity (median, [Q1, Q3]: 0.911, [0.843,

0.969]), denoting highly scale-free resting-state BOLD fMRI signals.

For c2, the global average value computed over all ROIs was small in

magnitude but consistently negative (−0.037 [−0.049, −0.026]),

denoting significant multifractality with a concave characteristic func-

tion τ(q), as expected. Figure 2 displays regional group means and

standard errors of the log-cumulants, for the control athlete cohort.

The highest c1 and lowest c2 values were predominantly in frontal,

parietal and cingulate regions. Conversely, lower c1 and higher c2

values are generally observed subcortically, along with the temporal

poles. In general, there was modest but significant spatial correlation

between the mean c1 and c2 maps, with a Spearman correlation of

−0.431 (95%CI: −0.484, −0.274), indicating that brain regions with

greater fMRI signal scaling behavior also tended to exhibit greater

multifractality.

The GLM analyses of controls revealed significant effects of

demographics on c1, with ROIs summarized in Table 2, whereas no

significant effects on c2 were identified. Among control athletes,

greater age was significantly associated with increased c1 in somato-

sensory and motor areas. Averaging over significant brain regions, a b

coefficient value of 0.031 was obtained (95%CI: 0.020, 0.041;

BSR = 6.18; p < .001). Sex was associated with more spatially exten-

sive differences, as female athletes had lower c1 values compared to

male athletes throughout the brain, including prefrontal, occipital, and

subcortical regions. Averaging over significant regions, a b value of

−0.111 was obtained (95%CI: −0.142, −0.077; BSR = −6.73;

p < .001). No significant effects of history of concussion on c1 were

identified.

3.3 | Main effects of concussion

The LMM analyses of concussed athletes showed significant effects

of imaging session on c1, with ROIs summarized in Table 3, whereas

no significant effects on c2 were identified. Significant changes in c1

relative to ACU were predominantly seen at RTS, with a single ROI

(left medioventral occipital cortex), remaining significant at 1MO and

two additional ROIs (left superior frontal and inferior frontal gyri)

emerging as significant at this time; no significant effects were

F IGURE 2 Depiction of scaling coefficient values c1 and c2 for healthy control athletes, including group mean and standard error of the mean
(SE). Regions of interest (ROIs) are shown as square patches and the MNI z-axis coordinate is listed below each slice
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TABLE 2 Summary of ROIs identified in control athletes that show significant effects on c1 for demographic factors of age, sex or history of
concussion (conc.hx.). Standardized effect sizes are reported in terms of BSRs. Significant effects are noted with “*” (FDR = 0.05 threshold). Brain
regions are defined based on the BNA

Brain region Center of mass (MNI coordinates)

BSR

Age Sex conc.hx.

1 Middle frontal gyrus L (A9/46d) −27 42 30 −1.05 −4.81* 1.10

2 Orbital gyrus L (A14m) −6 54 −9 −0.11 −3.21* 1.48

3 Precentral gyrus R (A4ul) 36 −18 57 3.56* −1.22 0.09

4 Precentral gyrus R (A4t) 15 −21 72 3.95* 0.14 1.39

5 Paracentral lobule R (A4ll) 6 −21 60 3.79* −2.01 0.16

6 Fusiform gyrus R (A20rv) 33 −15 −30 −0.54 −4.77* 1.24

7 Postcentral gyrus L (A1/2/3tru) −21 −33 69 3.65* −0.63 0.53

8 Medioventral occipital cortex L (cLinG) −12 −81 −12 0.80 −3.32* 0.23

9 Lateral occipital cortex L (iOccG) −30 −87 −12 −0.24 −3.34* 1.89

10 Basal ganglia L (vmPu) −24 6 −3 1.04 −3.48* 1.75

11 Basal ganglia R (dlPu) 30 −3 3 0.71 −3.59* 0.41

Note: A9/46d = dorsal area 9/46, A14m = medial area 14, A4ul = area 4 (upper limb region), A4t = area 4 (trunk region), A4ll = area 4 (lower limb region),

A20rv = rostroventral area 4, A1/2/3tru = area 1/2/3 (trunk region).

Abbreviations: BNA, Brainnetome Atlas; BSR, bootstrap ratio; cLinG, caudal lingual gyrus, dlPu, dorsolateral putamen; FDR, false discovery rate; iOccG,

inferior occipital gyrus; vmPu, ventromedial putamen.

TABLE 3 Summary of ROIs identified in concussed athletes that show significant longitudinal change in c1 relative to ACU, as displayed in
Figure 4. Standardized effect sizes are reported in terms of BSRs. Significant effects are noted with “*” (FDR = 0.05 threshold). Brain regions are
defined based on the BNA

Brain region

Center of mass BSR

(MNI coordinates) SUB RTS 1MO 1YR

1 Superior frontal gyrus L (A10m) −9 57 15 0.97 0.85 3.10* 0.06

2 Inferior frontal gyrus L (A45r) −48 36 −3 −0.16 0.64 3.15* 0.70

3 Middle temporal gyrus R (ASTS) 57 −15 −9 1.69 3.33* 1.90 1.50

4 Fusiform gyrus L (A37mv) −30 −63 −15 −0.08 3.52* 1.48 1.28

5 Fusiform gyrus R (A37mv) 30 −60 −15 0.62 4.06* 1.54 1.16

6 Fusiform gyrus R (A37lv) 42 −51 −18 1.14 2.60* 1.72 1.55

7 Posterior superior temporal sulcus L (rpSTS) −54 −39 3 0.23 2.81* 2.72 1.25

8 Medioventral occipital cortex L (rLingG) −18 −60 −6 0.39 5.18* 3.70* 0.78

9 Medioventral occipital cortex L (vmPOS) −12 −69 12 0.72 3.32* 2.78 0.74

10 Medioventral occipital cortex R (vmPOS) 15 −63 12 0.51 3.07* 2.22 1.05

11 Lateral occipital cortex L (mOccG) −30 −90 12 1.42 3.29* 1.34 2.19

12 Lateral occipital cortex R (mOccG) 36 −87 12 0.54 3.56* 1.65 1.76

13 Lateral occipital cortex L (V5/MT+) −45 −75 3 1.44 3.07* 1.97 1.36

14 Lateral occipital cortex R (V5/MT+) 48 −69 0 2.27 3.57* 2.73 2.59

15 Lateral occipital cortex L (iOccG) −30 −87 −12 1.11 2.83* 0.73 1.23

16 Lateral occipital cortex R (msOccG) 15 −84 36 0.94 2.94* 0.32 1.44

17 Thalamus L (cTtha) −12 −21 12 1.89 3.07* 1.94 1.27

Note: A10m = medial area 10, A45r = rostral area 45, ASTS = anterior temporal sulcus, A37mv = medioventral area 37, A37lv = lateroventral area

37, V5/MT+ = area V5/MT+.

Abbreviations: BNA, Brainnetome Atlas; BSR, bootstrap ratio; cTtha, caudal temporal thalamus; iOccG, inferior occipital gyrus; mOccG, middle occipital

gyrus; msOccG, medial superior occipital gyrus; rLingG, rostral lingual gyrus, rpSTS, rostroparietal superior temporal sulcus; vmPOS, ventromedial

parietooccipital sulcus.
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identified at 1YR. Figure 3a depicts the brain areas of significant longi-

tudinal change. The ROIs were predominantly within occipital brain

areas, with a smaller set in temporal and thalamic areas. All significant

ROIs had uniformly positive BSRs, denoting a longitudinal increase in

c1 from ACU to RTS. Figure 3b plots the distribution of participant c1

values as a function of imaging session, averaged over significant

ROIs. The c1 values had increased from ACU to RTS, followed by a

decline until 1YR. Table 4 reports the LMM summary statistics for c1

values averaged over significant brain regions, showing that the

greatest change relative to ACU was at RTS, in both absolute and

standardized differences. Examining demographic covariates within

the significant ROIs, age did not show significant effects on c1 after

concussion (b = 0.001; 95%CI: −0.011, 0.013; BSR = 0.02; p = .962),

but female athletes had lower values (b = −0.105; 95%CI: −0.152,

−0.061; BSR = -4.56; p < .001), as did athletes with a history of con-

cussion (b = −0.060; 95%CI: −0.109, −0.007; BSR = -2.28; p = .028).

Table 4 also reports the two-sample analysis results comparing con-

cussed athletes to controls. The c1 values for concussed athlete were

lower than controls at ACU, but the effects were nonsignificant. How-

ever, the c1 values for concussed athletes were significantly elevated

relative to controls at RTS, before becoming nonsignificant at later

imaging sessions.

TABLE 4 longitudinal effects of concussion on c1, averaged over all significant ROIs in Table 3. (left) longitudinal analysis using an LMM to
compare postacute imaging sessions (SUB, RTS, 1MO, 1YR) to ACU. (Right) Cross-sectional analysis using a GLM to compare concussed imaging
sessions (ACU, SUB, RTS, 1MO, 1YR) to uninjured controls. Statistics include coefficients of effect b, 95% confidence intervals (95% CIs), BSRs,
and p-values. Significant longitudinal change relative to ACU is noted with “*” and significant cross-sectional difference relative to controls is
noted with “**” (FDR = 0.05 threshold)

Longitudinal (LMM) Cross sectional (GLM)

b 95%CI BSR p b 95%CI BSR p

ACU — — — — −0.030 −0.077, 0.016 −1.24 .206

SUB 0.038 −0.014, 0.102 1.43 .152 −0.006 −0.047, 0.037 −0.29 .782

RTS 0.118 0.077, 0.163 5.38 <.001* 0.083 0.037, 0.129 3.58 <.001**

1MO 0.079 0.024, 0.135 2.86 .008* 0.047 0.003, 0.090 2.06 .032

1YR 0.071 0.005, 0.137 2.03 .046 0.039 −0.011, 0.086 1.58 .124

Abbreviations: BNA, Brainnetome Atlas; BSR, bootstrap ratio; FDR, false discovery rate; GLM, general linear model; LMM, linear mixed model; ROI, region

of interest.

F IGURE 3 (a) Brain regions of interest (ROIs; square patches) showing significant longitudinal change in c1 over the course of concussion
recovery. (b) Distribution of concussed athlete c1 values, averaged over significant ROIs, plotted for each imaging session. For the distribution

plot, horizontal red lines denote group means and boxes indicate 95% confidence intervals; distribution means are connected between sessions
by solid red lines; the mean c1 value for controls is plotted as the thick horizontal black line. The c1 values were obtained from ROIs showing
significant longitudinal change from ACU to RTP, noted with “*” and significant cross-sectional difference relative to controls is noted with “**”
(false discovery rate [FDR] = 0.05 threshold)
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3.4 | Covariate effects

The clinical CS1 (symptoms + days to RTP) was associated with sig-

nificant effects on c1 during concussion recovery, with positive

effects seen at RTS within the left inferior frontal gyrus (rostral area

45; CoM = −39, −6, 6; BSR = 3.61), left cingulate gyrus (caudal area

23; CoM = −6, −24, 42; BSR = 2.82), right cingulate gyrus (caudal

area 23; CoM = 6, −21, 42; BSR = 2.62) and left thalamus (rostral

temporal; CoM = 18, −21, 3; BSR = 3.07), depicted in Figure 4a.

Averaging over significant brain regions, a positive effect was seen

at RTS (b = 0.038; 95%CI: 0.022, 0.056; BSR = 4.43; p < .001), indi-

cating that concussed athletes with greater CS1 scores had higher c1

values in these areas at RTS. Figure 4b plots the distribution of par-

ticipant c1 values as a function of imaging session, averaged over sig-

nificant ROIs. For athletes with CS1 < 0 (lower symptoms, fewer

days to RTS) average c1 was below the average control value from

ACU to RTS and slightly elevated from 1MO to 1YR, whereas for

athletes with CS1 > 0 (higher symptoms, more days to RTS) average

F IGURE 4 (a) Brain regions of interest (ROIs; square patches) where c1 during concussion recovery is significantly affected by CS1.
(b) Distribution of concussed athlete c1 values, averaged over significant ROIs, plotted for each imaging session; distributions are plotted for
CS1 < 0 and CS1 > 0 subgroups. (c) Brain ROIs (square patches) where c1 during concussion recovery is significantly affected by CS2.
(d) Distribution of concussed athlete c1 values, averaged over significant ROIs, plotted for each imaging session; distributions are plotted for
CS2 < 0 and CS2 > 0 subgroups. For the distribution plots, horizontal red/blue lines denote group means and boxes indicate 95% confidence
intervals; distribution means are connected between sessions by solid red/blue lines; the mean c1 value for controls is plotted as the thick
horizontal black line. The c1 values were obtained from ROIs showing significant interaction with CS1 or CS2, noted with “*” (false discovery rate
[FDR] = 0.05 threshold)
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c1 was elevated at RTS, followed by a decline below control values

by 1YR.

Significant effects of clinical CS2 (symptoms − days to RTP) on c1

were also identified, with negative effects seen at ACU in the left cin-

gulate gyrus (subgenual area 32; CoM = −3, 39, −3; BSR = −2.64),

right cingulate gyrus (subgenual area 32; CoM = 6, 42, 6; BSR = −3.67)

and left amygdala (medial; CoM = −18, −3, −18; BSR = −2.91), as

shown in Figure 4c. Averaging over significant brain regions, a nega-

tive effect was seen at ACU (b = −0.071; 95%CI: −0.106, −0.042;

BSR = −4.76; p < .001), indicating that concussed athletes with

greater CS2 scores had lower c1 values in these brain regions at early

injury. Figure 4d plots the distribution of participant c1 values as a

function of imaging session, averaged over significant ROIs. For ath-

letes with CS2 < 0 (lower symptoms, more days to RTS) average c1

was above the average control value at ACU but declined toward con-

trol values in later imaging sessions, whereas for athletes with

CS2 > 0 (higher symptoms, fewer days to RTS) average c1 was below

control values at ACU but increased toward controls in later imaging

sessions.

4 | DISCUSSION

There is growing evidence that scaling analysis of functional brain

dynamics captures important information about cognition and brain

health. However, to date, most of the BOLD fMRI research in this

domain has focused on healthy adults and has examined how scal-

ing is modulated by cognitive tasks and other sources of effort

(Barnes et al., 2009; Churchill et al., 2016; Ciuciu et al., 2012; He,

2011). The present study is the first to examine the relationship

between scaling behavior in resting-state fMRI and sport-related

concussion, with reference to a large control group. This study is

also the first to show that functional brain dynamics are signifi-

cantly altered in the course of concussion recovery, with effects

that are modified by clinical variables of acute symptom severity

and time to RTS.

The initial analyses of uninjured control athletes identified strong

BOLD scaling behavior (c1) with significant multifractality (c2) through-

out the healthy resting brain. Both log-cumulant values had highest

absolute values in cortical regions, particularly frontal, parietal and cin-

gulate, whereas absolute values tended to be lowest in subcortical

regions. This is consistent with an earlier monofractal scaling analysis

of resting-state fMRI (He, 2011), which reported high H values for

nodes of the default mode and frontoparietal attention networks,

along with low H values for noncortical network nodes. A previous

multifractal scaling analysis of resting-state fMRI (Ciuciu et al., 2012)

also reported the highest scaling in networks encompassing dors-

oparietal, visual, and parieto-cingulate regions. Given the large control

cohort in this study and the supporting literature, we may therefore

conclude that BOLD scaling shows consistent spatial organization in

the brain, with the highest values for cortical regions implicated in

higher level processing, for example, executive function, attention,

and interoception (Behrmann, Geng, & Shomstein, 2004; Critchley,

Wiens, Rotshtein, Öhman, & Dolan, 2004; Fuster, 2000) and the low-

est values in subcortical regions.

Further analyses of the controls identified significant demo-

graphic effects on scaling (c1) but not multifractality (c2). Greater age

was associated with increased c1, albeit for a spatially limited set of

ROIs, likely due to the narrow age band being studied. Nevertheless,

results are consistent with a large-scale study of resting electrophysi-

ology and brain maturation (Smit et al., 2011), which reported increas-

ing long-range dependence with age until a plateau at 25–30 years,

with similar trends in functional brain topology (Dosenbach et al.,

2010). The observed effects were mainly localized in somatosensory

and motor areas. One explanation is that athletes are improving skills

involving these domains during their training, leading to increased

neural efficiency (Guo, Li, & Yu, 2017; Wei & Luo, 2010) and therefore

more scale-free signal among older athletes. In addition, female ath-

letes exhibited lower BOLD scaling than male athletes, within a dis-

tributed set of prefrontal, occipital, and subcortical regions. Previous

studies have reported sex differences in functional brain topology

(Tian, Wang, Yan, & He, 2011; Zuo et al., 2010); however, to our

knowledge, sex differences in resting-state BOLD scaling dynamics

have not been previously examined. History of concussion had no sig-

nificant effects on BOLD scaling, which aligns with nonsignificant

findings in studies of resting-state functional connectivity and task-

based activation for athletes with a history of concussion (Churchill,

Hutchison, Leung, Graham, & Schweizer, 2017; Terry et al., 2012).

Similarly, among concussed athletes, c1 in posterior brain regions did

not show significant effects of age but did show effects of sex that

were comparable to uninjured controls. In contrast with the controls,

however, concussed athletes with a history of concussion had signifi-

cantly reduced posterior c1, suggesting a cumulative effect of

repeated brain injury on BOLD dynamics during concussion recovery.

This is consistent with prior literature, in which a history of concus-

sion was associated with greater disturbances in functional connectiv-

ity and neurometabolites during recovery from subsequent sport-

related concussion (Johnson et al., 2012; Vagnozzi et al., 2008).

The analyses of concussed athletes identified significant longitu-

dinal changes in BOLD scaling (c1), whereas multifractality (c2) showed

no evidence of longitudinal change. These findings partly support our

first study hypothesis, as BOLD scaling values were lowest at acute

injury and increased in later imaging sessions. The findings are also

congruent with prior literature, in which reduced BOLD scaling is

associated with greater cognitive burden (Barnes et al., 2009;

Churchill et al., 2016; Ciuciu et al., 2012; He, 2011) and mental dis-

tress (Churchill et al., 2015; Tolkunov et al., 2010). Unlike conven-

tional BOLD measures of task-related activity and functional

connectivity, which may show either increases or decreases, scale-free

dynamics consistently show suppression associated with these cogni-

tive and psychological stressors. This has been observed as a common

feature of many biological systems, where a reduction in scaling behav-

ior signals a loss of system complexity (Goldberger et al., 2002) and

thus a more constrained, less adaptive system. The present study find-

ings suggest that acute concussion, which is associated with impair-

ments across multiple domains, including cognition (Echemendia,
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Putukian, Mackin, Julian, & Shoss, 2001) and emotion regulation

(McCrory et al., 2017), may similarly involve disruptions in the scale-

free dynamics of underlying brain function. However, our second study

hypothesis was not supported, for although the c1 values of concussed

athletes were low relative to controls, the difference was nonsignifi-

cant. This is consistent with previous literature which has reported het-

erogeneous effects of concussion on resting brain function in the first

week post-injury (Churchill et al., 2017a). These findings also reinforce

that the effects of concussion on brain function are modest, compared

to more severe forms of TBI (McAllister, Flashman, McDonald, &

Saykin, 2006).

Intriguingly, post-RTS findings for concussed athletes differ from

those predicted by our first study hypothesis. Instead of a continual

increase in c1 over time, the values for concussed athletes peaked at

RTS, followed by a decline up to 1 year post-RTS. The c1 values of

concussed athletes at RTS were also significantly elevated compared

to uninjured controls. These findings suggest that persistent

concussion-related disturbances in brain function are present at RTS,

which is consistent with prior studies which reported elevated

resting-state functional connectivity and task-based activation after

RTS (Churchill, et al., 2017b; Lovell et al., 2007). The results are sur-

prising, as elevated scaling is thought to indicate a less taxed, more

adaptive brain (Barnes et al., 2009; Churchill et al., 2016). The ele-

vated c1 values may therefore reflect adaptive changes that serve to

maintain brain function postconcussion, similar to functional hyper-

connectivity often reported after TBI (Hillary & Grafman, 2017). Alter-

natively, these elevations may reflect an improved disposition relative

to “normal” controls, as the athletes had recently been declared fit for

unrestricted sport participation. This is supported by the athletes hav-

ing significantly lower symptom scores at RTS compared to their pre-

season baseline. Such an effect was also observed in a previous study,

where recently cleared athletes scored higher on multiple psychologi-

cal measures relative to matched athletic controls (Hutchison et al.,

2017). Another potential contributor may be interruption in sport

practice, that is, increased physiological rest. We believe it unlikely to

be the primary driver of the observed effects, however. Despite sub-

stantial variability in time to RTS, the brain regions with significantly

elevated c1 at RTS did not show significant effects of CS, which is

highly correlated with recovery time; nevertheless, further work is

needed to validate these conclusions. Irrespective of the underlying

mechanism, concussion-related abnormalities seen at RTS gradually

dissipated over subsequent sessions, indicating that concussion-

related disturbances in BOLD dynamics had largely dissipated by

1 year post-RTS.

The effects of concussion on BOLD fMRI scaling values were

mainly observed in posterior brain regions implicated in visual function

and processing, with less frequently identified effects in temporal and

thalamic regions. This has significant implications, particularly given the

frequent reporting disturbances in visual function following concussion

and mild TBI (Brahm et al., 2009; Capó-Aponte, Urosevich, Temme, Tar-

bett, & Sanghera, 2012). However, an alternative explanation for the

spatial distribution of effects is that the dense vascularization and rela-

tive functional homogeneity within these brain regions may better

facilitate the accurate estimation of subtle changes in scaling behavior

for BOLD signals. The localization of concussion effects in this study

are nevertheless consistent with a meta-analysis conducted by (Eierud

et al., 2014), which showed that mild TBI is associated with enhanced

posterior functional brain connectivity, supporting a distinct pattern of

functional response in these brain regions after a concussion.

The analysis of CS1 and CS2 supported our third study hypothe-

sis, as the course of brain recovery for c1 showed significant effects of

symptom severity and time to RTS. Based on the analysis of CS1, ath-

letes with greater acute symptom burden and prolonged recovery

(CS1 > 0) had elevated c1 at RTS followed by a decline 1 year later. As

the differences in brain response in this subgroup are observed at

medical clearance, it remains unclear whether they represent greater

adaptive neural response to injury, greater elevation in mood at RTS

due to the protracted nature of recovery, or a consequence of greater

physiological rest. The significant brain regions, which include inferior

frontal, anterior midcingulate and rostral thalamic ROIs, are consis-

tently implicated in motor control (Hoffstaedter et al., 2014; Lissek

et al., 2007; Peyron et al., 2007). These findings suggest that motor

function may be a key aspect of recovery in athletes with greater

overall severity of clinical outcomes. This hypothesis is supported by a

previous study of concussed athletes, which found that athletes with

longer time to RTS had significantly elevated functional connectivity

of motor networks at RTS (Churchill, et al., 2017b). Nonetheless, given

the spatial sparsity of results, further research is needed to replicate

and validate these study findings.

For the analysis of CS2, athletes with a greater acute symptom

burden but relatively fast recovery (CS2 > 0) tended to have reduced

c1 at acute injury, while those with lower symptoms but a relatively

slow recovery (CS2 < 0) had the opposite response. In both cases, the

effects were only present at acute injury and had normalized to near-

control values at the time of subacute injury. The significant brain

regions, which included subgenual anterior cingulate and amygdala

ROIs, are both involved in emotion regulation (Etkin, Egner, & Kalisch,

2011; Haas, Omura, Constable, & Canli, 2007; LeDoux, 2003). Hence,

acute disturbances in BOLD scaling for brain regions involved in emo-

tion regulation may be an early indicator of atypical recovery time, rel-

ative to what is anticipated from symptom assessments. A possible

interpretation is that athletes with CS2 > 0 have high initial worry

about postconcussion outcomes, with a tendency toward greater

overall symptom reporting, while those with CS2 < 0 have less worry

and tend to underreport symptoms. This hypothesis is supported by

prior literature showing reduced BOLD scaling in individuals with

greater self-reported worry and anxiety (Churchill et al., 2015). Given

the complex interplay between concussion pathophysiology, anxiety,

and emotion (Mainwaring, Hutchison, Camper, & Richards, 2012;

Sandel, Reynolds, Cohen, Gillie, & Kontos, 2017), future work should

combine functional neuroimaging with more detailed assessments of

emotional state from acute injury to RTS, in order to validate these

study findings.

In terms of clinical utility, our understanding of BOLD dynamics

and their relationship with concussion as a clinical syndrome remain in

its early stages. Nevertheless, this study provides new insights into
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cerebral pathophysiology, and the relationship between brain recov-

ery and clinical determinants of RTS. As previously noted, this study

provides further convergent evidence of incomplete recovery of brain

function at RTS (Churchill, et al., 2017b; Lovell et al., 2007), which

may be relevant in the refinement of concussion management guide-

lines. This is also a promising tool for future investigation of sport-

related concussion, as analyses can be conducted on resting-state

data and do not require the selection of seed regions and/or networks

of interest, as in more ubiquitous measures of functional connectivity.

Even more promising, scale-free brain dynamics are, by definition,

conserved across a range of timescales and potentially across differ-

ent measures of brain function, as scale-free electrophysiological fluc-

tuations are thought to underlie scale-free BOLD dynamics (Van de

Ville et al., 2010). This suggests that the present findings may be read-

ily translated into lower-cost and more portable devices, such as func-

tional near-infrared spectroscopy (fNIRS) and electroencephalography

(EEG), which are more easily implemented for patient assessment in a

clinical setting.

This study provided evidence that the temporal dynamics of

spontaneous BOLD fluctuations evolve over the course of concus-

sion recovery. Nevertheless, study findings should be interpreted

in the context of its limitations. There was some attrition of con-

cussed athletes, which may lead to biased parameter estimates.

However, as noted in Section 2.1, drop out was not significantly

dependent on demographics (age, sex, and concussion history) or

clinical factors (symptom severity, time to RTS). Moreover, to miti-

gate bias and improve estimation efficiency, longitudinal analyses

used LMMs and cross-sectional analyses used multiple imputation

techniques. Further work is also needed to determine whether the

present study findings generalize beyond university-level athletes.

We identified significant demographic effects on BOLD scaling

within a relatively homogeneous athlete cohort, highlighting the

importance of evaluating scaling behavior across a broader range

of ages and other sport and nonathlete cohorts. In addition,

although history of concussion was incorporated into analyses of

both control and concussed athletes, this was based on self-

reported history, which may be subject to errors and/or reporting

bias. Future work should include more comprehensive documenta-

tion of concussion history and long-term follow-up to better

understand the cumulative effects of multiple concussions on

BOLD scaling.

In conclusion, these findings present the first examination of con-

cussion recovery and BOLD fMRI multifractal scaling behavior, show-

ing longitudinal effects related to recovery predominantly in brain

regions involved in visual function and processing. These effects were

most extensive at RTS, providing further evidence of ongoing func-

tional brain changes beyond medical clearance. Future research

should examine other measures of brain physiology in the concussion

context, such as fNIRS and EEG, thereby assessing scaling of brain

activity over different timescales. In addition, the effects of concus-

sion on scaling should also be examined during cognitive tasks, to bet-

ter understand how concussion affects the brain's ability to regulate

mental effort. Overall, these results underscore the promise of such

analysis techniques in future research and suggest that they should

complement standard connectivity-based analyses of resting-state

fMRI data.
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