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SYMPOSIUM

INTRODUCTION 

The development of  combination vaccines for protection 
against multiple diseases began with the combination 

of  individual diphtheria, tetanus, and pertussis (DTP) 
vaccines into a single product; this combined vaccine 
was first used to vaccinate infants and children in 1948. [1] 
It has become the cornerstone of  pediatric and adult 
immunization programs, and over the years we have seen 
the addition of  other vaccines to the combination and the 
replacement of  components to improve its reactogenicity 
profile. An important advancement was the replacement 
of  whole-cell pertussis antigens (wP) with less reactogenic 
acellular antigens (aP) in the early 1990s. This paved the way 
for the combination of  diphtheria, tetanus, and acellular 
pertussis antigens (DTaP) with other routine vaccines such 
as inactivated polio vaccine (IPV), Haemophilus influenzae 
vaccine (Hib), and hepatitis B vaccine (HepB). In this 
article, we will describe in detail the composition of  DTaP-
based vaccines and provide an overview of  the different 
variations of  this combination that are licensed and in 
use. Furthermore, we will extensively review the technical 
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challenges that have been faced as additional vaccines have 
been added to these combinations and speculate on the 
future developments for this group of  vaccines.

Another significant combination vaccine that protects against 
more than one disease is the measles, mumps, and rubella 
vaccine (MMR). However, this vaccine will not be discussed 
extensively here as, unlike the DTaP combination, MMR 
has not been built upon with the inclusion of  additional 
vaccines. For almost 40 years, the MMR vaccine has remained 
a trivalent vaccine that is given as a single product.

THE NEED FOR COMBINATION VACCINES

The number of  immunizations recommended for children 
in the first 2 years of  life has dramatically increased over 
time. In the United States the recommended immunization 
schedules for 2010 indicate that in the first 2 years children 
are expected to receive vaccines against 14 diseases [Figure 1]. 
Even with the use of  the available pentavalent combination 
vaccine DTaP-IPV/Hib we have calculated that this 
recommendation can be achieved through a minimum of  17 
injections.[2] In a single visit to the pediatrician, infants may 
need to receive as many as six injections to comply with these 
recommendations.[2] With such a complex immunization 
schedule, it becomes increasingly more challenging to 
incorporate new vaccines into the schedule. 

The combination of diphtheria, tetanus, and pertussis vaccines into a single product has been central to the protection of the 
pediatric population over the past 50 years. The addition of inactivated polio, Haemophilus influenzae, and hepatitis B vaccines 
into the combination has facilitated the introduction of these vaccines into recommended immunization schedules by reducing 
the number of injections required and has therefore increased immunization compliance. However, the development of these 
combinations encountered numerous challenges, including the reduced response to Haemophilus influenzae vaccine when given 
in combination; the need to consolidate the differences in the immunization schedule (hepatitis B); and the need to improve the 
safety profile of the diphtheria, tetanus, and pertussis combination. Here, we review these challenges and also discuss future 
prospects for combination vaccines. 
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Simplifying immunization schedules by combining multiple 
vaccines into a single syringe has been reported to have 
numerous positive effects [Table 1]. Reducing injections 
by combining vaccines reduces trauma to the infant and 
has been found to lead to higher rates of  compliance with 
complex vaccination schedules.[3,4] A number of  studies 
have also reported increased vaccine coverage with the 
use of  combination vaccines. An example of  this is a US 
study reporting increased coverage rates with a pentavalent 
DTaP-HepB-IPV (PediarixTM) vaccine than with multiple 
lower-valent vaccines containing the same antigens.[3]

COMPOSITION OF DTAP VACCINES

DTaP vaccines from different manufactures are very 
similar in their composition, with the main differences 
being related to the number, amount, and detoxification 
method of  the pertussis components.[5] Furthermore, some 
combinations contain additional vaccines such as HepB, 
Hib, and IPV in addition to the DTaP base. Here, we will use 
GlaxoSmithKline’s (GSK) hexavalent vaccine InfanrixTM-
hexa as a model to describe the different components of  
DTaP-based combination vaccines, as this represents the 

latest advance in licensed combination vaccine development 
[Table 2]. There is no other licensed combination vaccine 
on the market that protects against as many indications 
as InfanrixTM-hexa, which combines diphtheria, tetanus, 
acellular pertussis, hepatitis B, Haemophilus influenzae, and 
inactivated poliovirus vaccines (DTaP-HepB-Hib/IPV).[6] 
Thus, this is composed of  diphtheria, tetanus, and acellular 
pertussis antigens; hepatitis B surface antigen; inactivated 
poliovirus; and Haemophilus influenzae polyribosylribitol 
phosphate antigen conjugated to tetanus toxoid. Detailed 
descriptions of  these antigens together with common 
abbreviations are summarized in Table 2. InfanrixTM-hexa 
is adjuvanted with both aluminum hydroxide and aluminum 
phosphate adjuvants, which is due to the combination of  

Figure 1: Recommended immunization schedule for children aged 0 through 6 years. This schedule has been adapted from the recommended 
immunization schedule from the Centers for Disease Control and Prevention.[2] Recommendations are for all children except certain high-risk 
age-groups. For more information please consult original source.[2]

Table 1: Potential advantages of combination 
vaccines
1.	 Fewer injections

2.	 Reduced trauma to the infant

3.	 Higher rates of compliance with complex vaccination schedules[3,4]

4.	 Better vaccine coverage[5]

5.	 Timely vaccination – vaccination schedule completed on time[5]

6.	 Reduced administration costs

7.	 Lower storage space requirements

8.	 Allows incorporation of new vaccines into immunization schedules[7]
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DTaP vaccine adsorbed onto aluminum hydroxide and 
HepB vaccine adsorbed onto aluminum phosphate.

Over view of  l icensed DTP-based pediatric 
combinations in the US and Europe

In the US, three diphtheria, tetanus, and acellular pertussis 
(DTaP) combinations are licensed for use in the pediatric 
population: TripediaTM and DaptacelTM from Sanofi 
Pasteur and InfanrixTM from GSK. Two larger licensed 
combinations currently in use are pentavalent PediarixTM, 
a DTaP-HepB-IPV vaccine from GSK and pentavalent 
PentacelTM, a DTaP-IPV/Hib combination from Sanofi 
Pasteur. In addition, there is the tetravalent booster DTaP-
IPV vaccine KinrixTM for use in 4- to 6-year-old children 
and adult booster DTaP vaccines AdacelTM and BoostrixTM. 
Further details of  these vaccines are outlined in Table 3. 
DTaP-based combinations currently in use outside the 
US include several other vaccines built upon Sanofi’s five-
pertussis antigen DTaP vaccine DaptacelTM and GSK’s 
three-pertussis antigen DTaP vaccine InfanrixTM. InfanrixTM 
is the leading DTaP vaccine used worldwide[7] and provides 
the backbone of  the hexavalent vaccine InfanrixTM-hexa 
which is licensed in Europe and protects against six 
different diseases and, as mentioned previously, defines 
the latest advance in combination vaccine development. 
Hexavalent DTaP combination vaccines are yet to gain 
licensure in the US, the authorities’ reluctance stemming 
from reported reductions in antibody titers to Hib.[8]

TECHNICAL CHALLENGES FACED WHEN 
COMBINING VACCINES

Although there are clear benefits with combination 
vaccines, the main challenge in their development is the 

risk that the efficacy or safety of  the combination would be 
less than that seen with the administration of  the vaccines 
separately. New combinations cannot be less immunogenic, 
less efficacious, or more reactogenic than the previously 
licensed uncombined vaccines. Immunological, physical, 
and/or chemical interactions between the combined 
components have the potential to alter the immune 
response to specific components. Furthermore, if  the 
vaccines to be combined have differing immunization 
schedules, consolidation of  these should also not negatively 
affect immunogenicity, efficacy, or safety. Finally, and 
ideally, the many advantages of  combination vaccines 
should not be achieved at the cost of  reduced product 
stability. From a practical standpoint, uncommon transport 
and storage conditions and complicated bedside mixing 
could hamper the development of  a combination vaccine.

In this section, we discuss in depth some of  the key 
technical challenges that have faced the development and 
implementation of  DTaP-based combination vaccines. 
With the use of  specific examples, we highlight cases where 
putting together vaccines in DTaP-based combinations has 
affected the immunogenicity or safety of  the final product.

Reduced Hib response when combined with DTaP

The most commonly reported example of  immune 
interference in DTaP-based combination vaccines is the 
reduction in antibody titers to the Hib component of  the 
vaccine polyribosylribitol phosphate antigen.[9–11] This has 
been reported for many DTaP-based vaccines, including 
the hexavalent vaccine DTaP-HBV-IPV/Hib. [12,13] The 
interference has not been reported to the same extent for 
DTwP-based combination vaccines, mainly, it has been 
suggested, due to the adjuvant effect of  the whole-cell 
pertussis (wP) component.[10,14,15] However, the adjuvant 

Table 2: Antigen components of InfanrixTM-hexa
Vaccine 
abbreviation

Indication Infectious agent Antigens Antigen 
abbreviation

Clinical correlate of protection: 
surrogate markers for seroprotection

Production

IPV Poliomyelitis* Poliovirus types 1, 
2 and 3

Trivalent formaldehyde-inactivated 
poliovirus types 1, 2, and 3 

IPV Serum titer level ≥1:8 (WHO 
microneutralization assay)

Continuous Vero cell line

D Diphtheria* Corynebacterium 
diphtheriae

Formaldehyde-inactivated toxoid DT Serum antibody level ≥0.1 IU/mL Corynebacterium 
diphtheriae culture

T Tetanus* Clostridium tetani Formaldehyde-detoxified tetanus toxoid TT Serum antibody level ≥0.1 IU/mL Clostridium tetani culture

Hib H influenzae 
disease*

H influenzae H influenzae type b polysaccharide 
(polyribosylribitol phosphate) conjugated 
to TT 

PRP Serum anti-PRP antibody levels: 0.15 
µg/mL for short-term protection; 1.0 
µg/mL for long-term protection

Purified H. influenzae 
type b polysaccharide

aP Whooping 
cough

Bordetella 
pertussis

Formaldehyde- or glutaraldehyde-
detoxified pertussis toxoid and surface 
adhesins (filamentous hemagglutinin and 
pertactin)

PT, FHA, FIM 
types 2 and 3, 
PRN

Serological correlates are not well 
defined

Bordetella pertussis 
culture

HepB Hepatitis B Hepatitis B virus Hepatitis B surface antigen HBsAg Serum antibody levels ≥10 mIU/mL Produced in yeast 
cells (Saccharomyces 
cerevisiae) by recombinant 
DNA technology

*Data from[8]
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effect simply masks the underlying interference, and 
the mechanism by which the Hib response is reduced 
after combination with DTaP is complex and is still not 
completely understood. 

Consistent with clinical data, this reduction in Hib 
immunogenicity has also been demonstrated in preclinical 
animal models. Studies in a rat model looking at the 
interference of  TT and different aP antigens with Hib 
reported reduced anti-PRP response with combined 

administration of  Hib and TT, or Hib and FHA (a 
component of  aP vaccine).[16] The level of  this reduction 
was reported to be comparable to that observed for 
combined administration of  DTaP and Hib.[16] The 
interference of  TT with Hib is of  particular interest, as 
TT is also present in the Hib vaccine as a carrier protein 
conjugated to the capsular polysaccharide PRP. Possible 
mechanisms for the effect of  free unconjugated TT 
on the Hib PRP-TT conjugate includes competition 
between TT-specific and PRP-specific B cells for the Hib 

Table 3: Avaliable DTaP-based vaccines in the US*
Vaccine Trade name Manufacturer Adjuvant No. of doses in series Schedule Antigen doses†

Childhood vaccines

DTaP TripediaTM Sanofi Pasteur 
Inc.

Alum 5 2, 4, 6, 15–18 
months, 4–6 

years

6.7 Lf DT
5 Lf TT

23.4 µg PT
23.4 FHA

InfanrixTM GlaxoSmithKline 
Biologicals

Aluminum 
hydroxide

5 2, 4, 6, 15–20 
months, 4–6 

years

25 Lf DT
10 Lf TT
25 µg PT

25 µg FHA
8 µg PRN

DaptacelTM Sanofi Pasteur, 
Ltd.

Aluminum 
phosphate

5 2, 4, 6, 15–20 
months, 4–6 

years

15 Lf DT
5 Lf TT

10 µg PT
5 µg FHA

3 µg Pertactin
5 µg Fimbriae types 2 and 3 

DTaP-HepB-IPV PediarixTM GlaxoSmithKline 
Biologicals

Aluminum 
hydroxide 
and 
aluminum 
phosphate

3 2, 4, 6 
months

25 Lf DT
10 Lf TT
25 µg PT

25 µg FHA
8 µg PRN

10 µg HBsAg
40 D-antigen units type 1 poliovirus (Mahoney strain)

8 D-antigen units type 2 poliovirus (MEF-1 strain)
32 D-antigen units type 3 poliovirus (Saukett strain)

DTaP- IPV KinrixTM GlaxoSmithKline 
Biologicals

Aluminum 
hydroxide

1 1 dose: 4–6 
years (to be 

used as a 
booster)

25 Lf DT
10 Lf TT

25 mcg PT
25 µg FHA
8 µg PRN

40 D-antigen units type 1 poliovirus (Mahoney strain)
8 D-antigen units type 2 poliovirus (MEF-1 strain)

32 D-antigen units type 3 poliovirus (Saukett strain)

DTaP-IPV-Hib PentacelTM Sanofi Pasteur 
Ltd.

Aluminum 
phosphate

4 2, 4, 6, 15–18 
months

15 Lf DT
5 Lf TT

20 µg PT
20 µg FHA

3 µg Pertactin
5 µg Fimbriae types 2 and 3 

40 D-antigen units type 1 poliovirus (Mahoney strain)
8 D-antigen units type 2 poliovirus (MEF-1 strain)

32 D-antigen units type 3 poliovirus (Saukett strain)
10 µg PRP conjugated to 24 mcg TT

Adult

DTaP AdacelTM Sanofi Pasteur, 
Ltd.

Aluminum 
phosphate

1 1 dose: at 
ages 11–64 
years (to be 

used as a 
booster)

2 Lf DT
5 Lf TT

2.5 µg PT
5 µg FHA
3 µg PRN

5 µg Fimbriae types 2 and 3

BoostrixTM GlaxoSmithKline 
Biologicals

Aluminum 
hydroxide

1 1 dose: at 
ages 10–64 
years (to be 

used as a 
booster)

2.5 Lf DT
5 Lf TT
8 µg PT

8 µg FHA
2.5 µg PRN

*Information taken from ‘Complete List of Vaccines Licensed for Immunization and Distribution in the US’ and supporting documents at www.fda.com; †Lf: Limits of flocculation
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conjugate antigen, suppression of  PRP response by clonal 
expansion of  TT-specific B cells, and physical prevention 
of  binding of  the conjugate antigen to PRP-specific B 
cells by the TT carrier protein.[17] The reduced anti-PRP 
response with FHA is in line with the finding that it is 
a potent suppressor of  IL-12 and IFN-γ production in 
vivo and in vitro, suppressing immune responses to co-
injected antigens. [16,18] Another explanation for the reduced 
Hib response when combined with DTaP vaccines is 
incompatibility with the alum adjuvant. Experiments in 
the rat model with Hib alone have reported 5- to 11-fold 
lower levels of  anti-PRP antibodies when adsorbed to 
aluminum hydroxide adjuvant. [16] Taken together, the 
reduced Hib response in DTaP/Hib combinations is at 
least in part a result of  the interaction of  Hib with TT, 
FHA, and aluminum hydroxide adjuvant. 

The reduced immunogenicity of  Hib in DTaP-based 
combination vaccines vs DTwP-based combination 
vaccines has been suggested to be a contributory factor 
in the increase in Hib disease incidence observed in 
the UK between 1999 and 2002 and a similar increase 
observed in Ireland.[19–21] It must be stated however that 
other factors have been suggested to explain the increased 
incidence, including decreasing herd immunity, the short 
UK immunization schedule, and the lack of  a booster 
immunization in the second year of  life.[21] Despite 
multiple reports of  lowered Hib antibody responses with 
DTaP combination vaccines containing Hib, the effect of  
changing from whole-cell to acellular pertussis was actively 
monitored in Canada and this shows that among children 
1–4 years of  age incidence rates of  pertussis disease has 
been reduced by 85% in the acellular-pertussis vaccine 
era.[22] Furthermore, extensive data generated by Eskola 
and coworkers[10] indicate that the current serological 
correlate of  efficacy for Hib vaccines, which is set at anti-
PRP levels of  1.0 µg/mL, is too high and that antibody 
responses below this threshold are reported which are not 
associated with impaired antibody function and loss of  
immune memory. These findings led to the approval of  
many DTaP-based Hib combinations in Europe.[7]

Combining the dif fering HepB and DTaP 
immunization schedules

Another significant technical issue in the implementation 
of  combination vaccines is consolidation of  the different 
immunization schedules of  the vaccines to be combined. 
For example, hepatitis B is often transmitted from mothers 
to their newborns at the time of  birth.[23] Therefore, in 
countries where a high percentage of  HBV infections 
are acquired, the WHO recommends that the first HepB 

vaccine dose be administered <24 hours after birth. 
Furthermore, the Advisory Committee on Immunization 
Practices (ACIP) recommends a birth dose of  hepatitis 
B vaccine for all US infants. This is to be followed by 
second and third doses of  the HepB vaccine at 1 and 
6 months. The primary immunization series of  DTaP, 
on the other hand, requires doses at 2, 4, and 6 months. 
Therefore, combination of  HepB and DTaP still requires 
administration of  monovalent HepB at birth followed by 
doses in combination with DTaP at 2, 4, and 6 months, 
resulting in an unnecessary fourth dose of  HepB at the 
6th month. A study comparing DTaP-HepB combination 
administered a 2, 4, and 6 months against separate 
administration of  HepB at birth, 1 and 6 months and DTaP 
at 2, 4, and 6 months showed significantly lower HepB 
antibody titers with the combined vaccine.[24] However, 
antibody levels were still above serologically recognized 
levels of  protection in 99% of  the subjects.[25] Furthermore, 
administration of  a DTaP-HBV-IPV/Hib vaccine at 2, 4, 
and 6 months after a dose of  HepB vaccine shortly after 
birth did not impact protective anti-HBs titers and was not 
more reactogenic than the same combination given without 
the birth dose of  HepB.[26] Nevertheless, reduced efficacy 
for hepatitis B antigen was the reason for the suspension 
of  another hexavalent combination vaccine, Hexavac™, 
by the EMEA in 2005.[27] Of  particular concern was the 
reduction in long-term protection, which is important in 
hepatitis B, as individuals immunized as infants need to have 
protective levels of  antibody when they reach adolescence 
and adulthood.[28,29]

Improving the safety and tolerability profile of  
DTP-based vaccines 

Safety and tolerability is another important consideration 
and a potential technical hurdle to overcome when 
combining vaccines. An improvement for DTP-based 
vaccines in this respect has been the substitution of  wP 
with aP antigens. Acellular pertussis combinations were 
first licensed in 1992 and eventually replaced wP vaccines 
in the USA, primarily due to their improved reactogenicity 
profile.[30] Significantly higher incidence of  localized redness 
and swelling was reported with wP in studies comparing 
DTwP-IPV/Hib and DTaP-HBV-IPV/Hib vaccines.[31] 
Also, increased frequency of  adverse events with whole-
cell pertussis vaccine was observed in a study comparing 
DTwP-IPV/Hib and DTaP-IPV/Hib.[8] 

When compared to DTwP vaccines, DTaP vaccines are 
considered to have a good safety profile with low incidence 
of  systemic adverse events such as fever, fatigue, or 
appetite loss.[32,33] However, reactions are still seen with all 
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DTaP vaccines, notably increased frequency and severity 
of  swelling with the booster immunizations given as the 
fourth or fifth dose.[34] These were first reported in 1997[35] 
and despite several hypotheses regarding the cause of  
these reactions[34,36–39] the immunological mechanisms 
responsible remain unexplained. For example, incidences 
of  local symptoms were higher after administration of  a 
booster dose of  hexavalent DTaP-HBV-IPV/Hib in the 
second year of  life than following the primary doses.[40] 
Other examples include redness (erythema) at the site 
of  injection (reported in up to 37% of  subjects) and 
swelling (seen in up to 27% of  individuals) following a 
fifth dose of  DTaP.[34,36,41] Also, more local responses were 
observed with a fourth dose of  DTaP-IPV/Hib vaccine 
than following the primary series given in the first 6 
months of  age.[8,42] Although most countries continue to 
use full-dose DTaP vaccines for booster doses, there is a 
growing body of  reactogenicity and immunogenicity data 
to support the use of  reduced antigen content in the 4–6 
year age-group. [43–45] This has already been implemented 
in the UK and Germany, where reduced-dose DTaP or 
DTaP-IPV booster vaccines are administered in the 3–6 
year age-group.[46,47]

FUTURE PERSPECTIVES ON DTAP-BASED 
VACCINES

Until recently there has been reluctance in the US to 
license pentavalent DTaP combination vaccines and, at 
the time of  writing, hexavalent vaccines still have not 
gained licensure despite approval for use in Europe. This 
reluctance stems from reported decreases in antibody titers 
to Hib when combined with other components in a single 
syringe.[8] However, clinical data generated with hexavalent 
vaccines combining DTaP-HepB-Hib/IPV is consistent, 
with efficacy and safety profiles comparable to that with 
separate administration of  these antigens.[6] 

The ACIP recommends that combination vaccines be used 
whenever possible. As new vaccines that target previously 
unaddressed diseases are added to the vaccination 
calendar, the use and improvement of  currently available 
combination vaccines will be paramount if  high vaccine 
coverage is to be maintained.

In the final section below we will discuss future developments 
in this area, speculating on the possibility of  addition of  
more vaccines to DTaP-based combinations as well as 
improvements to current combinations by increasing the 
compatibility of  antigens, the addition of  more potent 
adjuvants, or development of  new methods for monitoring 
vaccine production.

Addition of  pneumococcal or meningococcal 
vaccines to DTaP-based vaccines

Although described as hexavalent on the basis of  the 
number of  diseases the vaccine targets, the currently 
available vaccine in this class, InfanrixTM-hexa, carries 
nine antigens plus inactivated polio virus. Other vaccines 
which protect solely against pneumococcal infections carry 
more antigens: for example, the 23-valent pneumococcal 
polysaccharide vaccine Pneumovax 23™; the updated 
conjugate vaccine Prevenar™ will contain 13 valences. It is 
likely that new combination vaccines will reach the market 
in the coming years, targeting additional diseases such as 
pneumococcal or meningococcal infections. Although 
there is no clinical data for DTaP-based combinations 
containing pneumococcal or meningococcal vaccine, there 
is considerable experience with the co-administeration of  
these vaccines. 

Multiple clinical studies evaluating concurrent administration 
of  DTaP-based combination vaccines with a seven-valent 
pneumococcal conjugate vaccine found no significant 
immunological interference between the vaccines.[8,48,49] 

For larger combinations, a study looking at co-
administration of  DTaP-HepB-Hib/IPV with a seven-
valent pneumococcal conjugate vaccine found that 
after three primary immunizations and a fourth booster 
dose, titers for several of  the antigens were reduced 
compared to administration of  DTaP-HepB-Hib/IPV 
or pneumococcal vaccine separately according to their 
respective immunization schedules.[40] However, there was 
minimal effect on seroprotection/vaccine response rates, 
with these ranging from 96.8%–100%.[40]

As seen with DTaP vaccines, increased local reactions are also 
observed with pneumococcal polysaccharide vaccines, which 
may pose another hurdle to combining these vaccines. [50] 
A couple of  studies with seven-valent pneumococcal 
conjugate vaccine co-administered with hexavalent DTaP-
HepB-Hib/IPV reported increased incidence of  systemic 
reactions, specifically fever, compared to administration of  
the two vaccines separately. [40,51] Encouragingly, a review of  
the data available on this topic by Tozzi and coworkers[52] 
identified no negative effects of  particular note in the few 
published studies that have examined the co-administration 
of  pneumococcal or meningococcal conjugate vaccines with 
hexavalent DTaP-HepB-Hib/IPV. 

Studies looking at co-administration of  DTaP-HepB-
Hib/IPV with meningococcal serogroup C vaccines 
have found that the combination is well tolerated and 
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remains immunogenic with both CRM197-conjugated 
vaccines (MeningitecTM and MenjugateTM) and the 
tetanus toxoid conjugate vaccine (NeisVac-CTM).[53–56] A 
significant increase in antibody titers to the meningococcal 
antigens was observed in one study when the vaccines 
were administered on separate schedules. This was 
attributed to the ‘priming’ effect of  the diphtheria 
toxoid in the DTaP-HepB-Hib/IPV vaccine, enhancing 
the response to subsequent immunizations with the 
CRM197-conjugated meningococcal vaccine.[53] Another 
study, monitoring co-administration of  DTaP-IPV/Hib 
vaccines with meningococcal conjugate (MCC) vaccine 
showed no negative effects on antibody responses.[57] A 
study in adolescents and young adults receiving Novartis’s 
MenACWY polysaccharide conjugate vaccine (Menveo™) 
found the response to be the same whether administered 
alone or in combination with DTaP.[58]

New carrier protein strategies for conjugate vaccines

It is generally the case that each of  the vaccines contained 
in DTP-based combination vaccines have usually been 
previously licensed either as a stand-alone vaccine or as part 
of  a simpler combination. As well as the addition of  more 
vaccines to existing combinations, the future could also see 
reformulation of  existing combinations by changing either 
the antigens or the carrier proteins used for conjugates. The 
problems associated with combining conjugate vaccines 
with carrier proteins which are also present as antigens in 
the combination have been discussed above. To address 
this, the future could see new approaches to carrier protein 
technology, with novel carrier proteins replacing TT. One 
strategy described for a candidate 11-valent pneumococcal 
conjugate vaccine has been to use two carrier proteins, 
TT and DT, and to further reduce the amount of  TT by 
conjugating the polysaccharides that required the largest 
carrier amounts to DT.[59] 

Another approach has been to replace full-length protein 
carriers such as DT and TT with peptides containing T 
helper cell epitopes and lacking B cell epitopes. Universal 
CD4+ T cell epitopes could enable a strong helper effect 
to the conjugated antigen without inducing an antibody 
response to the carrier itself. One example of  this approach 
is the N19 recombinant polyepitope made up of  CD4+ T 
cell epitopes from Clostridium tetani, Plasmodium falciparum, 
HBV, and influenza virus.[60] When evaluated in the mouse 
model as a carrier protein for a combination of  capsular 
polysaccharides from Neisseria meningitides serogroups 
A, C, W, and Y, good antibody responses to all four 
polysaccharides were obtained after a single immunization. 
Importantly N19-specific antibodies do not cross-react 

with TT or influenza virus hemagglutinin, the parent 
proteins from which N19 is obtained.[61]

Novel approaches to adjuvants

Another future challenge will be to extend the period 
of  protection from pediatric vaccine combinations 
administered in infancy, beyond childhood into adolescence 
and adulthood. Improvements in this area may involve 
optimization of  vaccine formulation and schedule and the 
use of  adjuvants more potent than alum. Many studies have 
reported that antibody responses to Hib are reduced when 
delivered in combination with DTaP. One explanation for 
this is incompatibility with alum adjuvant, and experiments 
with Hib alone have reported 5- to 11-fold lower levels of  
anti-PRP antibodies when adsorbed to aluminum hydroxide 
adjuvant.[16] Furthermore, reduction in Hib response has 
come to the fore since the substitution of  wP antigens 
with aP antigens and, with it, the removal of  the adjuvant 
properties of  the endotoxin-containing wP antigens. Use of  
alternative adjuvants may be able to improve immunogenicity 
and overcome the reduced responses observed with Hib 
and HepB in DTaP combinations. Novel adjuvants can 
potentially bring a range of  other advantages to combination 
vaccines, such as antigen dose reduction and reduction in 
the number of  immunizations in the schedule.[62]

Singh and coworkers[63] explored the use of  alternative 
adjuvant formulations, including the oil-in-water emulsion 
MF59 and polylactide co-glycolide (PLG) microparticles, 
with established vaccine antigens such as DT, TT, HepB 
(HBsAg), N meningitides serotype C conjugate (MenC), and 
a N meningitides serotype B recombinant antigen (MenB). 
MF59 emulsion stood out as a good alternative to alum 
for TT, HBsAg, MenC, and MenB vaccines, with the 
indication that it may be possible to replace alum with 
MF59 and improve immune responses to these antigens. 
PLG microparticles also showed promise, with responses 
comparable to or better than alum with both MenC and 
MenB vaccines.

Improved in vitro assays for measuring batch-to-
batch consistency

Another future trend, whilst not limited to combination 
vaccines, will be the development of  improved in vitro 
assays for measuring batch-to-batch consistency of  vaccine 
production. For combination vaccines in particular, where 
one or more components may affect immunogenicity, in vivo 
potency testing remains the gold standard for evaluation of  
the final vaccine product. However, efforts are on to reduce 
the number of  animals used in in vivo potency testing (e.g., 
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many laboratories rely on a single-point potency test) and 
this may lead to increased difficulty in monitoring trends.[64] 
In vitro approaches as a correlate to in vivo protection have 
already been applied for some components of  combination 
vaccines, e.g., HepB.[65,66] For other components of  DTP-
based vaccines, a recent example is the development of  an 
enzyme-linked immunosorbent assay (ELISA) to quantify 
diphtheria toxoid antigen in DTP-based combination 
vaccines.[64] Similar assays for tetanus toxoid have also 
been described.[67,68] Specific antibody-based assays such 
as these have multiple advantages over other biochemical 
and biophysical tests applied to these toxins, such as 
gel electrophoresis, size-exclusion chromatography, and 
circular dichroism.[69–72] These tests are often limited to 
characterization of  unformulated bulk antigens due to 
interference from other components in the final vaccine 
product. This can be overcome in antibody-based assays 
that are specific for the target antigen. Furthermore 
antibody-based assays are very sensitive and can detect 
very low concentrations of  target antigen as may be found 
in booster vaccines.[64] Finally, a significant advantage 
of  antibody-based assays is that they have the potential 
to measure antigen that is adsorbed to alum, avoiding 
potentially destructive methods otherwise required for the 
elution of  antigens prior to quantification. For monovalent 
vaccines, this has recently been reported by a direct alum 
formulation immunoassay (DAFIA), which was able to 
quantify alum-bound malaria antigen AMA1-C1 over a 
linear detection range of  0.16–10 µg/mL.[73] 

CLOSING REMARKS

Disease prevention and eradication are the ultimate and 
immediate goals of  immunization, and central to reaching 
these goals is achieving vaccine coverage. Combination 
vaccines can help overcome some of  the key challenges 
to maintaining coverage through simplification of  vaccine 
schedules and reduction of  injections required. However, 
there are multiple technical challenges in maintaining 
immunogenicity and safety when combining vaccines. 
Continuing vaccine development will only increase the 
need for the use of  combination vaccines, and the future 
development of  larger combinations appears inevitable. 
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