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Abstract: Rhizobia are soil bacteria that can establish a symbiotic association with legumes. As
a result, plant nodules are formed on the roots of the host plants where rhizobia differentiate to
bacteroids capable of fixing atmospheric nitrogen into ammonia. This ammonia is transferred to
the plant in exchange of a carbon source and an appropriate environment for bacterial survival.
This process is subjected to a tight regulation with several checkpoints to allow the progression of
the infection or its restriction. The type 3 secretion system (T3SS) is a secretory system that injects
proteins, called effectors (T3E), directly into the cytoplasm of the host cell, altering host pathways or
suppressing host defense responses. This secretion system is not present in all rhizobia but its role in
symbiosis is crucial for some symbiotic associations, showing two possible faces as Dr. Jekyll and
Mr. Hyde: it can be completely necessary for the formation of nodules, or it can block nodulation in
different legume species/cultivars. In this review, we compile all the information currently available
about the effects of different rhizobial effectors on plant symbiotic phenotypes. These phenotypes are
diverse and highlight the importance of the T3SS in certain rhizobium–legume symbioses.
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1. Introduction

A group of soil α- and β-proteobacteria, called rhizobia, and legumes can establish a
nitrogen-fixing symbiotic interaction [1,2]. Rhizobia live as saprophytes in soils but, in the
presence of an appropriate legume partner, can transition to an endosymbiotic form, called
a bacteroid, inside nodules, which are new organs formed by the plant in response to the
presence of these bacteria [3]. Bacteroids, in contrast to free-living rhizobia, express genes
required for nitrogen fixation. Thus, bacteroids provide an assimilable form of nitrogen
(ammonia) to the plant, which, in turn, feeds (supplying a carbon and energy source) and
houses them inside a stable environment.

The symbiotic interaction between rhizobia and legumes involves bacterial coloniza-
tion of the rhizosphere, infection of legume roots, and invasion of the symbiotic nodule
plant cells, which eventually host thousands of bacteroids. This interaction is specific: each
rhizobial strain can nodulate (i.e., establish a nitrogen-fixing symbiosis) with a definite set
of legumes (known as the host-range), which can vary from a few legumes to more than one
hundred of the legume genera [3–5]. This specificity relies in two main (and related) facts.
On the one hand, rhizobia must overcome several checkpoints during root colonization
and infection and nodule invasion, synthesizing the right molecular signals that will be
recognized by the plant to assure the progression of symbiosis [1,2,5–8]. The nature and
mode of action of these rhizobial molecular signals have been mainly studied in a limited
number of model plants and model rhizobia, and many variations can be found when other
symbiotic couples are analyzed [9]. On the other hand, rhizobia, since they are infecting
and invading plant tissues, must suppress and overcome plant immune responses [10,11].
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As we will briefly describe below, different rhizobial molecular signals participate
in symbiosis: nod factors, surface polysaccharides and effector proteins delivered by
specialized secretion systems (Figure 1). However, this review focuses on the effector
proteins delivered by rhizobial type 3 secretion systems (T3E) and provides a description
of the different T3E proteins described so far as well as an exhaustive compilation of their
role (positive, neutral, or negative) in symbiosis with specific counterparts.
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Figure 1. General checkpoints in rhizobia–legumes symbiosis. (A) Specificity in nod factor and
flavonoid production and detection during rhizobial colonization, infection, and invasion throughout
the nodulation process. (B) Rhizobial surface polysaccharides [exopolysaccharides (EPS), lipopolysac-
charides (LPS), K-antigen polysaccharides (KPS) and cyclin glucans (CG)] play a role either as signal
molecules required for the progression of symbiosis and/or as protective agents against plant defense
responses. (C) Effectors translocated through the rhizobial type III secretion system (T3SS), type IV
secretion system (T4SS) or type VI secretion system (T6SS) can modulate plant defense responses to
facilitate bacterial infection of the host. The T6SS can also be used as a killing machine devoted to
outcompeting other rhizosphere bacteria.

1.1. Rhizobial Nod Factors and Surface Polysaccharides Are Key Signal Molecules in Most
Symbiotic Interactions with Legumes

Flavonoids present in legume root exudates and, when appropriate, interact with
rhizobial LysR regulatory proteins (NodD proteins), promoting the expression of rhizobial
nodulation genes (nod genes), which results in the biosynthesis and secretion of molecular
signals called nodulation factors (NF) or lipochitooligosaccharides (LCO) [4,8,12]. NF,
which are N-acetyl-glucosamine oligosaccharides harboring different molecular decora-
tions, when compatible, are recognized by plant LysM receptors, allowing root infection
and colonization of the symbiotic cells within nodules [1,2]. Perception of NF by plant LysM
receptors triggers a very complex regulatory cascade that has been detailed in several recent
reviews [1,6,9,13]. Therefore, the two above-mentioned molecular interaction/recognition
events (flavonoids–NodD and NF–LysM receptors) are key factors for the specificity of the
rhizobium–legume interaction.

Rhizobia must penetrate the root epidermal barrier to reach the developing nodule.
To date, two different mechanisms have been described for this infection event: entry by
infection threads (IT) or through intercellular infection [14,15]. These mechanisms take
place in approximately 75% and 25% of the legume genera, respectively [15]. Root hair IT-
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mediated infection, which is considered a mode of infection more evolved than intercellular
infection, is an NF-dependent process: perception of these signal molecules by root hair
receptors is required for root hair deformation and the entrapping of rhizobial cells, and
for root hair plasmatic membrane invagination, which initiates the formation of the tubular
structure that will elongate and branch, as the way for rhizobia to reach nodule primordia.
However, NF are also required in later steps of the nodulation process [16–18].

In contrast to IT formation, intercellular infection remains poorly understood [14,15,19].
In some legumes, such as Sesbania spp. and Lotus spp., the natural mode of infection is
through IT, but intercellular infection occurs under certain growth conditions, such as
flooding, for Sesbania spp., or interacting with specific rhizobial partners, such as the
symbiosis between Lotus burttii and Sinorhizobium fredii HH103 [20,21]. In other legumes,
such as Arachis hypogaea and Aeschynomene evenia, intercellular infection is the natural
method of rhizobial entry. In any case, intercellular infection can develop via a crack-
entry mechanism, typically through epidermal fissures of emerging lateral roots, such
as in Sesbania, Aeschynomene or Arachis, or in root zones where massive root hair curling
and twisting takes place, such as in the interaction of strain IRBG74 with L. japonicus [19].
Several studies indicate NF are required in some but not all the intercellular infection
processes described so far [15,19,22–24].

Rhizobial NF synthesis is a very complex process, and the regulatory circuits involved
vary from one rhizobial species (or strain) to another [4,5,8]. In fact, there are several
different possibilities of regulation: (i) the number of different NodD proteins may vary
from one to five and different NodD proteins may recognize different signal molecules
from the plant [4,16,25,26]. Moreover, R. tropici CIAT899 can induce NF synthesis not
only in response to flavonoids but also under osmotic stresses [27–29]; (ii) in some cases,
some NodD variants may even have a negative effect on NF production [4,30,31]; (iii) in
Sinorhizobium spp. and R. leguminosarum, the global regulator NolR acts as a repressor of NF
production [31–34]; and (iv) another LysR regulatory protein, SyrM, is involved in positive
and negative regulation of NF production in S. meliloti and S. fredii, respectively [35–37].

As mentioned above, NF are important for specificity in rhizobium–legume symbioses,
since in most cases infection will only proceed when appropriate NF are recognized by
plant receptors. However, it is not only a question of the specific NF produced but also of
its quantity. This is the case of L. burttii, which is infected by IT or by intercellular infection
in its interaction with its natural endosymbiont Mesorhizobium loti and with S. fredii HH103,
respectively [21]. In this legume, overproduction of NF by HH103, caused by the inactiva-
tion of the transcriptional regulators NodD2, NolR, or SyrM, likely accounts for the switch
of the mode of infection to IT formation (observed for HH103 mutants in these regulators)
and gaining effective nodulation with L. japonicus and Phaseolus vulgaris [31,37,38].

Several rhizobial surface polysaccharides (RSP) are also important in symbiosis [5,7,8].
In general, RSP can act either as signal molecules required for progression of the symbiosis
and/or as protective agents against plant defense responses [7,8,39]. Four RSP have been
deeply studied in relation to the symbiotic interaction with legumes: cyclin glucans (CG),
lipopolysaccharides (LPS), and exopolysaccharides (EPS). The latter, which are homo- or
heteromeric acidic polysaccharides secreted to the extracellular environment and located
on the cell surface but with little or no cell association, show a complex regulation that
is frequently influenced by flavonoids, either positively or negatively depending on the
rhizobial strain. For example, nod gene-inducing flavonoids and NodD stimulate or repress
EPS production in R. leguminosarum bv. trifolii and S. fredii HH103, respectively [40,41].
In symbioses with legumes forming indeterminate nodules, such as Trifolium spp. and
Medicago spp., EPS-derived oligosaccharides have a signaling role in root infection and
nodule invasion [7,8,39]. In interactions with determinate nodule-forming legumes, EPS
has typically been considered dispensable, and even slightly detrimental in the interaction
between S. fredii HH103 and soybean [7,8,39,42]; however, recent works carried out in
the symbiotic couple M. loti-L. japonicus have revealed a more complex situation [43–46].
In this interaction, recognition of M. loti R7A NF by plant receptors (NFR1 and NFR5)
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triggers a regulatory cascade leading to the early steps of infection and nodule development,
including the expression of EPR3, which functions as an EPS receptor that works in different
steps of the symbiotic interaction, so that EPS recognition is reiterated along the nodulation
process. M. loti R7A EPS is therefore recognized as adequate by this receptor, allowing
successful infection and colonization.

1.2. Some Rhizobia Can Deliver Effector Proteins into Their Hosts through Bacterial Secretion
Systems to Counteract Plant Immune Responses

Pathogenic or mutualistic Gram-negative bacteria that interact with eukaryotic organ-
isms can deliver effector proteins into the cytosol of their host cells through specialized
secretion systems such as the Type 3 (T3SS), Type 4 (T4SS), and Type 6 (T6SS) secretion
systems [47–50]. Although these effectors have very different biochemical activities, their
main function is to suppress plant defense responses to facilitate bacterial infection and
survival inside the host.

Some rhizobial strains, but not all, use secretion systems to deliver these effector
proteins. The most extended secretion system among rhizobia is the T3SS, which is present
in some strains of the Mesorhizobium, Bradyrhizobium, Rhizobium, and Sinorhizobium genera,
its presence being predominant in some cases such as in Bradyrhizobium spp. and S. fredii
and scarce in S. meliloti [8,49]. The presence of symbiotic T4SS and T6SS appears to be
less extended in rhizobia, at least in the strains characterized so far [51]. A symbiotic
T4SS has been described in M. loti R7A and many S. meliloti and S. medicae strains [52,53].
The symbiotic effect, either neutral, positive, or negative, of mutations in the T4SS clearly
depends on the symbiotic host, as demonstrated with T4SS mutants of S. meliloti and S.
medicae in symbiosis with different genotypes of Medicago spp. [53]. Similarly, M. loti T4SS
mutants showed delayed nodulation on L. corniculatus but extended host-range to Leucaena
leucocephala [52].

The T6SS is mostly used by Gram-negative bacteria as a killing nanomachine devoted
to outcompeting surrounding bacteria [48]. However, this secretion system is present in
some rhizobia in which it acts as a determinant of host compatibility. It has been found
in different strains belonging to the Bradyrhizobium, Mesorhizobium, and Rhizobium genera,
as well as in S. fredii USDA257. In R. leguminosarum, the T6SS seems to restrict host
compatibility since mutants in this secretion system gain the ability to effectively nodulate
new hosts, whereas in R. etli Mim1 and Bradyrhizobium sp. LmicA16 it exerts a positive role
in nodulation with Phaseolus spp. and Lupinus spp., respectively [54–56].

In the case of bacterial pathogens, the role of protein secretion systems is generally clear,
whereas for beneficial bacteria the functions of such kinds of system remain in some cases
elusive [10,11,51,57]. Different plant receptors recognize conserved motifs present on the
surface of microbes/pathogens, which are collectively called microbe/pathogen-associated
molecular patterns (MAMP/PAMP). This recognition triggers a rapid cell response called
MAMP/PAMP-triggered immunity (MTI/PTI). Typical surface components that can induce
this defense response are flagella and surface polysaccharides. In the case of rhizobia,
flagella lack MAMP activity [10,57]. Instead, surface polysaccharides, mainly EPS and LPS,
appear to play important roles in suppressing plant immune responses, although it is not
clear yet how they inhibit plant defenses and whether their action is general or restricted to
a specific symbiotic couple [8,10,57]. It is noteworthy that one of the responses mediated by
MTI, the production of reactive oxygen species (ROS), also acts as mechanism important
for symbiosis progression, and RSP have been shown to protect against these ROS [9,10].

In L. japonicus and M. truncatula, MAMP chitin oligomers are perceived by different,
but related, LysM receptors other than NF receptors. This fact allows discrimination of
chitin oligomers from pathogens or symbionts [58]. Moreover, it has been found that NF
can partially suppress MTI, both in legumes and nonlegumes such as the model plant A.
thaliana [59], although other studies showed opposite results in which NF may promote
plant defense reactions [57]. Interestingly, T3SS effectors (T3E) can also suppress this
early defense response to promote infection, as in the case of the S. fredii HH103-soybean



Int. J. Mol. Sci. 2022, 23, 11089 5 of 26

interaction [60]. In summary, an early MTI response, which is quickly suppressed, appears
to be necessary for optimal rhizobium–legume symbiotic interaction [10,57].

On the other hand, rhizobial T3E can be very specifically perceived by plant intra-
cellular receptors, with very different results: either allowing symbiosis progression, or
triggering a very robust immune response called effector-triggered immunity (ETI), which
blocks nodulation [10,51]. Because of this, the set of effectors of each specific rhizobial
strain delivered by T3/T4/T6SS may be a key feature for the success or fail of the symbiotic
interaction with each specific legume.

2. The Symbiotic Type 3 Secretion System

Among all bacterial protein secretion systems, the T3SS is probably the best charac-
terized. The T3SS is a nanomachine present in many Gram-negative bacteria that delivers
proteins into the cytosol of eukaryotic host cells to, in most cases, manipulate their func-
tions [61]. Its structure is composed of a set of proteins that spans the inner and outer
membranes that serves as a basal complex to polymerize the extracellular component of
the system, a long hollow tube of pilins that culminates in a translocon that recognizes host
cell membranes where it forms a pore for protein delivery. The whole complex resembles a
syringe that injects effector proteins directly from the cytosol of the bacterium to the cytosol
of host cell. Although this system has been mainly studied in animal pathogens such as
Salmonella, Yersinia, or Escherichia coli [62], its presence in numerous phytopathogens, such
as strains of Pseudomonas, Xanthomonas or Ralstonia, has also been explored in depth [63].
Due to the obvious differences among animal and plant host-cell surfaces, T3SS reveals
structural differences in the bacteria invading each kind of host, being longer and thinner
in the case of plant-interacting bacteria [49]. Analogously, T3SS shows genetic differences
among plant-interacting bacteria whether they are beneficial or pathogenic based on gene
composition, arrangement, and transcriptional regulation [64].

In rhizobia, genes coding for the T3SS are usually contained on symbiotic plasmids
(pSym) or in symbiotic islands in the chromosome. Genes encoding the core machinery are
named rhc (Rhizobium conserved) and the secreted proteins (effectors, pilins, and proteins
forming the translocon) are known as nodulation outer proteins (Nops) [65]. The rhc loci
are quite conserved in most rhizobia and are clustered in regions ranging from 22 to 50 Kb,
while genes encoding Nops can also be found dispersed throughout the genome. These
Nops sometimes show similarities with T3E secreted by (phyto) pathogens suggesting, in
some cases, a similar role in the host cell and even a common ancestor. However, other T3E
can be considered Rhizobium-specific. In these cases, it is likely that their function is more
associated with specific stages of the symbiotic process [66].

As part of the phylogenetic analysis, four subgroups of rhizobial rhc regions have
been identified, where only the Rhc-I (containing members of S. fredii, M. loti, and B.
japonicum) has been directly associated with symbiosis [64]. Rhc-II group is restricted to
different Sinorhizobium strains (such as NGR234, HH103, and USDA257) but its role is still
unclear. The Rhc-III subgroup is characterized by a completely different genetic organi-
zation compared to other rhizobia and includes strains of R. etli, R. leguminosarum, and
some strains of R. rhizogenes or R. radiobacter. Finally, the β-Rhc gene cluster is represented
only by the β-proteobacterium Cupriavidus taiwanensis that harbors a non-canonical genetic
organization [64]. Very interestingly, rhizobial T3SS expression is co-regulated with NF
production; it is activated by NodD and flavonoids through the induction of the ttsI gene,
whose encoded product acts as the positive transcriptional regulator of genes coding for
the T3SS apparatus and T3E [67,68]. A recent work showed that T3SS is absolutely required
for genistein-induced surface motility in S. fredii HH103, revealing a new and unexpected
function of T3SS in rhizobia [69].

3. Rhizobial Type 3 Secretion System Effectors

Although traditionally the assignment of the term “effector” to a putative secreted pro-
tein was based on its regulation through NodD and TtsI together with inducer flavonoids,
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and its translocation to a host cell, the new advances in the combination of multi-omics
approaches (transcriptome and quantitative shotgun proteome analysis) with the experi-
mental validation of obtained candidates will provide an ample amount of rhizobial T3E
as recently described [70]. However, an interesting observation is that while pathogens
secrete a plethora of effectors to overcome the different defense responses of target plants
(as in the case of P. syringae, which secretes more than 80 effectors), rhizobia have limited
their arsenal to a much lower number, especially in Sinorhizobium strains, which has about
ten T3E [49,71]. A question arises from this fact: are those rhizobial T3E and their functions
very closely related and perfectly coupled to develop the symbiotic process?

Even though several rhizobial T3Es have been identified, to date, only a restricted
number of those T3Es have been described and their roles validated in plants (Table 1).

Table 1. List of described rhizobial type three secretion system effectors.

T3E Gene Present in Domains Protein
Homology

Subcellular
Localization Function/Target Refs.

ErnA Bradyrhizobium sp.
ORS3257 - Rhizobium-

specific

Nucleus
(Bradyrhizobium

sp. ORS3257)
- [72]

GunA/GunA2

Sinorhizobium spp.
Bradyrhizobium spp.

R. leguminosarum
M. amorphae

Glycoside
hydrolase family

12 (GH12)

Rhizobium-
specific -

Cellulase
(xyloglucan
hydrolase)

(S. fredii HH103 and
USDA257

B. diazoefficiens
USDA110)

[73–76]

InnB Bradyrhizobium spp.
M. loti MAFF303099 - Rhizobium-

specific - - [77,78]

NopC T
Sinorhizobium spp.
Bradyrhizobium sp.

BRP14
- Rhizobium-

specific - - [79]

NopD family

NopD/Bel2-
5/Blr1693/

Bll8244/Blr1705

Sinorhizobium spp.
Bradyrhizobium spp.

C48 cysteine
protease * /EAR
motif/IRS/NLS

XopD (X.
campestris)/PsvA

(P. syringae)

Nucleus
(Bradyrhizobium
sp. XS115 and B.
elkanii USDA61)

SUMOylation/
deSUMOylation/

AtSUMO1-2,
GmSUMO and

PvSUMO
(Bradyrhizobium sp.

XS1150)

[66,80–83]

MA20_12780 Bradyrhizobium spp. C48 cysteine
protease XopD - - [84]

Mlr6316 Mesorhizobium spp. C48 cysteine
protease XopD - - [85]

BRAD325_v2_7792 Bradyrhizobium spp. C48 cysteine
protease XopD - - [70]

NopE1/NopE2 Bradyrhizobium spp. DUF1521 - -

Reduces
phytohormone-

mediated ETI-type
response (B.
diazoefficiens
USDA110)

[86–88]

NopF Bradyrhizobium spp.
Acyl-CoA

N-acyltransferase
superfamily

HopBG1 (P.
syringae) - - [89]

NopI
Sinorhizobium spp.

Bradyrhizobium spp.
Microvirga spp.

- Rhizobium-
specific - - [90]

NopJ ( = Y4lO)
S. fredii NGR234

Bradyrhizobium spp.
M. amorphae

C55 cysteine
protease
Ser/Thr

acetyltransferase

YopJ/AvrRxv
family - - [66,91]
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Table 1. Cont.

T3E Gene Present in Domains Protein
Homology

Subcellular
Localization Function/Target Refs.

NopD family

NopL T Sinorhizobium spp.
Bradyrhizobium spp. Ser-pro motifs Rhizobium-

specific
Nucleus (S. fredii

NGR234)

MAPK substrate (S.
fredii NGR234)

SIPK (SA-induced
protein kinase) (S.

fredii NGR234)

[92–95]

NopM/NopM1 T

/NopM2/NopM3

Sinorhizobium spp.
Bradyrhizobium spp.

Microvirga spp.

NEL E3-ubiquitin
ligase

Leucine rich
repeat (LRR)

IpaH-like family Nucleus (S. fredii
NGR234)

NEL E3 ubiquitin
ligase (S. fredii

NGR234)/
NtSIPK (S. fredii

NGR234)

[96,97]

NopP T Sinorhizobium spp.
Bradyrhizobium spp. - Rhizobium-

specific

Plasma
membrane (M.

amorphae
CCNWGS0123)

MAPK substrate (S.
fredii NGR234)
TRAPPC13 (M.

amorphae
CCNWGS0123)

[98–101]

NopT T

/NopT1/NopT2

Sinorhizobium spp.
Bradyrhizobium spp.
Mesorhizobium spp.

C58 cysteine
protease

N-term predicted
to be

myristoylated
and

palmitoylated in
plant cells

AvrPphB (P.
syringae)

YopT (Yersinia sp.)

Plasma
membrane (S.
fredii NGR234)

ATP-citrate
synthase α chain

protein
2/HR-induced

response protein
from R. pseudoacacia

(M. amorphae
CCNWGS0123)
Soybean kinase

GmPBS1-1 (S. fredii
NGR234)

[102–110]

Shikimato kinase-like family

Mrl6331
Mesorhizobium spp.
Bradyrhizobium spp.
Sinorhizobium spp.

Shikimato
kinase-like - - - [85,111]

Mlr6361 Mesorhizobium spp.
Sinorhizobium spp.

Shikimato
kinase-like - - [111]

Mrl6358
Mesorhizobium spp.
Bradyrhizobium spp.

S. psoraleae
- - - - [111]

* Ubiquitin-like protease; (ULP)-like. T Translocated effector (validated). EAR motif: Ethylene-responsive
element-binding factor-associated amphiphilic repression. NLS: Nuclear localization signal. IRS: Internal repeat
sequences.

Rhizobial T3E, as well as in pathogens, can be composed by different modules with
specific functional domains, and targets a single or diverse subcellular localizations into
the plant cell [47,103,112]. Very interestingly, a great number of the studied T3E localize
to the plant nucleus, where they can develop their functions. These are the cases of
ErnA of Bradyrhizobium sp. ORS3257 [72], NopD of Bradyrhizobium sp. XS1150 and Bel2-
5 of B. elkanii USDA61 [81–83], and even NopL and NopM of S. fredii NGR234 [93,97].
Some rhizobial T3Es seem to be phosphorylated by plant kinases in vitro, such as NopP,
NopL, and NopM of S. fredii NGR234 [92–97,100]. More specifically, NopL and NopM
are phosphorylated in planta by the mitogen-activated protein kinases (MAPK), salicylic
acid-induced protein kinase (SIPK) of Nicotiana tabacum (NtSIPK) [93,96,97]. However,
only the physical interactions of NopL and NtSIPK within the plant cell nucleus has been
described [93]. Some T3E possess specific domains for the modulation of posttranslational
modifications, such as ubiquitinylation or SUMOylation, which can influence diverse plant
aspects. Those T3E includes NopM of S. fredii NGR234, and NopD of Bradyrhizobium sp.
XS1150 and Bel2-5 of B. elkanii USDA61 from the NopD family of T3E, respectively [66,80,
83,96,97]. Finally, some T3E possess proteolytic activity, although the nature of this activity
seems to be different. In this regard, NopE1 of B. diazoefficiens USDA110 and NopT of S.
fredii NGR234 display autoproteolytic activity, and very interestingly, NopT also cleaves
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the protein kinase Arabidopsis AvrPphB Susceptible 1 (AtPBS1) and its homologous in
soybean, GmPBS1-1, and thus can activate these target proteins [106].

4. The Role of the Rhizobial Type 3 Secretion System in Symbiosis

The first evidence of the existence of a rhizobial T3SS was obtained after the con-
firmation that S. fredii USDA257 secreted some proteins to the extracellular milieu upon
flavonoids induction. This protein secretion determines the incapacity of this strain to nodu-
late agronomically improved American soybean varieties [113,114]. Since that time, the role
of the T3E in symbiosis has been extensively studied in Meso-, Brady-, and Sinorhizobia
by different research groups [8,47,49,64] focusing their research mainly on the symbiotic
interaction with soybean, and Vigna and Lotus species (Table 2). As previously mentioned,
in some cases, the recognition of rhizobial T3E by legume plant protein receptors blocks
nodulation. This phenotype resembles the gene-for-gene resistance of the phytopathogen–
plant relationship, which in the case of rhizobia–legume interaction is translated to the
determination of the host specificity [115]. However, the latest findings indicate that other
effectors exert exactly the opposite effect: they are essential for nodulation [72,78,82]. The
effect of the different T3E on the symbiotic phenotype will vary from beneficial, to neutral,
to detrimental and will always depend on the effector studied and the final balance of the
different effects of the different effectors on the symbiotic process. In Table 2, a compendium
of positive or negative effects of the effectors analyzed to date is shown.

Table 2. Symbiotic phenotypes observed due to the presence of a functional T3SS or to secretion of
T3SS effectors in different legumes.

Plant

Positive Effect
(Including

Host-Range
Extension)

Neutral Effect

Negative Effect
(Including

Nodulation-
Blocking

Phenotype/T3E
Involved)

Refs.

Legume plants

Genera species cultivar

Aeschynomene

americana
T3SS (Bradyrhizobium

sp. SUTN9-2 and
DOA9)

[116,117]

afraspera
T3SS

(Bradyrhizobium
ORS285)

T3SS (Bradyrhizobium
sp. DOA) [117,118]

evenia T3SS (Bradyrhizobium
ORS285) [118]

indica

T3SS and ErnA
(B. vignae

ORS3257 and B.
elkanii USDA61)

NopT and
NopAB

(Fix*)/NopM1
and NopP1 (B.

vignae ORS3257)

NopL, NopP2,
BRAD3257_v2_7792
(B. vignae ORS3257)

T3SS (Bradyrhizobium
ORS285)

NopAO (B. vignae
ORS3257) [70,72,118]

sensitiva T3SS (Bradyrhizobium
ORS285) [118]

nilotica T3SS (Bradyrhizobium
ORS285) [118]

uniflora T3SS (Bradyrhizobium
ORS285) [118]

Amorpha fruticosa
T3SS (M.
amorphae

CCNWGSO123)
[119]
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Table 2. Cont.

Plant

Positive Effect
(Including

Host-Range
Extension)

Neutral Effect

Negative Effect
(Including

Nodulation-
Blocking

Phenotype/T3E
Involved)

Refs.

Legume plants

Arachis hipogaea Thai Nan T3SS (Bradyrhizobium
sp. DOA9) [117]

Cajanus cajan
T3SS (B.

diazoefficiens
USDA110)

T3SS (S. fredii HH103)
GunA and GunA2 (B.

diazoefficiens
USDA110)

T3SS (S. fredii
USDA191) [65,73,120]

Crotalaria

juncea

NopJ, NopL, NopM
and NopP (S. fredii

NGR234)
T3SS (S. fredii HH103)

T3SS (Bradyrhizobium
sp. DOA9)

T3SS (Fix*)/NopT (S.
fredii NGR234)

[65,100,102,105,117]

pallida NopT (S. fredii
NGR234) [106]

Desmodium tortuosum T3SS (Bradyrhizobium
sp. DOA9) [117]

Erythrina variegata NopP (S. fredii
HH103)

T3SS (Fix*) (S. fredii
HH103 and
USDA257)

[65,121–123]

Flemingia congesta

T3SS, NopL,
NopP † and

NopX
(S. fredii NGR234)

NopL and NopP † (S.
fredii NGR234)

[65,98,100,124]

Glycine max

Akishirome
T3SS (B.

japonicum
USDA122)

MA20_12780 (B.
japonicum Is-34) [84,125]

Aobako (Rj2) T3SS (B. japonicum
USDA122) [125]

Amphor
NopE1 and NopE2 (B.

diazoefficiens
USDA110)

[86]

Baimaodou NopD (S. fredii
HH103)

NopL (S. fredii
HH103) [95,126]

Baipidou GunA (S. fredii
HH103) [76]

Baoqingheidou GunA (S. fredii
HH103) [76]

BARC-2 (Rj4) InnB (B. elkanii
USDA61)

T3SS and Bel 2-5 (B.
elkanii USDA61) [77,81,82,127,128]

BARC-3 (rj4) T3SS (B. elkanii
USDA61) [128]

Bayuezha NopL (S. fredii
HH103) [95]

C08 (Rfg1) T3SS and NopP (S.
fredii CCBAU25509) [129]

Charleston GunA and NopD
(S. fredii HH103)

NopL (S. fredii
HH103) [76,95,126]

Chidou1 NopD (S. fredii
HH103) [126]

Chizuka Ibaraki 1
(Rj2)

T3SS (B. japonicum
USDA122) [125]

Clark (rj1) T3SS (B. elkanii
USDA61) [130]
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Table 2. Cont.

Plant

Positive Effect
(Including

Host-Range
Extension)

Neutral Effect

Negative Effect
(Including

Nodulation-
Blocking

Phenotype/T3E
Involved)

Refs.

Legume plants

Glycine max

COL/Ehime/1983/
Utsunomiya 37

T3SS (B. japonicum
USDA122) [125]

Danzhidou GunA (S. fredii
HH103) [76]

Date Cha Mame
(Rj2)

T3SS (B. japonicum
USDA122) [125]

D51 (Rj3) T3SS (Fix*) (B. elkanii
BLY3-8) [131]

Dongnong594 NopD (S. fredii
HH103)

NopL and GunA (S.
fredii HH103) [76,95,126]

EMBRAPA-48 T3SS (B. elkanii
SEMIA587) [132]

En1282 (Nfr1)
T3SS and Bel 2-5

(B. elkanii
USDA61)

[82]

Enrei T3SS (B. elkanii
USDA61) [133]

Fengdihuang GunA (S. fredii
HH103) [76]

Hill (Rj4) T3SS (B. elkanii
USDA61) [130]

Fukuyutaka (Rj4) MA20_12780 (B.
japonicum Is-34) [84]

Hardee (Rj2) T3SS (B. vignae
ORS3257)

NopP2 (B. vignae
ORS3257)

T3SS (B. japonicum
USDA122) [134,135]

Heidou NopL (S. fredii
HH103) [95]

Heihe 13 GunA (S. fredii
HH103) [76]

Heinong 33 T3SS (S. fredii
HH103) [122]

Heinong 35 NopD (S. fredii
HH103) [126]

Himeshirazu T3SS (B. japonicum
USDA122) [125]

Huangpishanzibai NopL (S. fredii
HH103) [95]

JD17
T3SS and NopP (S.
fredii CCBAU25509
and CCBAU83666)

[136]

Jihei 4 GunA (S. fredii
HH103) [76]

Kenjian28 NopD (S. fredii
HH103) [126]

Kochi T3SS (S. fredii
HH103) [122]

Kumaji 1 (Rj2) T3SS (B. japonicum
USDA122) [125]

Kurakake 1 (Rj2) T3SS (B. japonicum
USDA122) [125]
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Table 2. Cont.

Plant

Positive Effect
(Including

Host-Range
Extension)

Neutral Effect

Negative Effect
(Including

Nodulation-
Blocking

Phenotype/T3E
Involved)

Refs.

Legume plants

Glycine

max

Lee (rj2) T3SS and NopP2 (B.
vignae ORS3257) [135]

Maetsue Zairai 90B
(Rj2)

T3SS (B. japonicum
USDA122) [125]

Mancangjin GunA (S. fredii
HH103) [76]

Peking

T3SS (S. fredii
HH103)

NopA (S. fredii
USDA257)

T3SS (B. elkanii
SEMIA587)

T3SS (S. fredii NGR234
and USDA257)

NopB (S. fredii
USDA257)

[65,121,122,132,137,
138]

Qingdou NopD (S. fredii
HH103)

NopL (S. fredii
HH103) [95,126]

Qingpi GunA (S. fredii
HH103) [76]

Shakkin Nashi T3SS (B. japonicum
USDA122) [125]

SN14 T3SS and GunA (S.
fredii HH103) [139]

Suinong14 NopD (S. fredii
HH103)

NopL (S. fredii
HH103) [95,126]

Suinong 15 GunA (S. fredii
HH103) [76]

Tokachi Nagaha T3SS (B. japonicum
USDA122) [125]

Tribune T3SS (S. fredii HH103) [122]

Wanhuangdadou NopL (S. fredii
HH103) [95]

Williams 82 and
McCall (Rfg1/rj2)

T3SS, GunA, NopC
and NopI (S. fredii

HH103)

T3SS (B. elkanii
SEMIA587)

T3SS, NopA and
NopB (S. fredii

USDA257)
NopL and NopP (S.

fredii HH103)

[60,65,79,121–
123,132,137,138,

140–143]

Zheng9525 NopD (S. fredii
HH103) [126]

ZYD00006 NopD and NopL (S.
fredii HH103) [95,126]

soja

Rj2 (JP90448,
JP9052, JP231394,

JP231659)

T3SS (B. japonicum
USDA122) [125]

rj2 (JP110740,
JP231372, JP231659)

T3SS (Bradyrhizobium
sp. DOA9) [125]

rj2 (JP233152) T3SS (B. japonicum
USDA122) [117]

CH2 T3SS (S. fredii
NGR234) T3SS (S. fredii HH103) [144]

CH3

T3SS (S. fredii
NGR234)

T3SS (S. fredii
HH103)

[144]
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Table 2. Cont.

Plant

Positive Effect
(Including

Host-Range
Extension)

Neutral Effect

Negative Effect
(Including

Nodulation-
Blocking

Phenotype/T3E
Involved)

Refs.

Legume plants

Glycine soja CH4
T3SS (S. fredii
HH103 and

NGR234)
[144]

Glycyrrhiza uralensis T3SS (S. fredii
HH103) [122]

Indigofera tintorea T3SS (Bradyrhizobium
sp. DOA9) [117]

Lablab purpureus
T3SS, NopM,

NopP and NopX
(S. fredii NGR234)

NopL and NopT (S.
fredii NGR234)

NopJ (S. fredii
NGR234) [96,105,124]

Leucaena leucocephala

T3SS, NopA and
NopL (S. fredii

NGR234)
Mlr6361 (M. loti
MAFF303099)

Atypical T3SS (C.
taiwanensis
LMG19424)

T3SS and Mlr6316
(M. loti MAFF303099)

[52,65,111,145,146]

Lotus

burttii

T3SS, GunA, NopC,
NopD, NopI, NopL,
NopM, NopP and

NopT (S. fredii
HH103)

T3SS and
NopM/NopF (Fix*)
(B. elkanii USDA61)

T3SS (Bradyrhizobium
sp. SUTN9-2)

[89,147,148]

corniculatus frondosus T3SS (M. loti
MAFF303099)

Mlr6316, Mlr6331,
Mlr6358 and Mlr6361
(M. loti MAFF303099)

[111,149]

filicaulis T3SS (M. loti
MAFF303099) [149]

halophilpus
Mlr6316, Mlr6331 and

Mlr6358 (M. loti
MAFF303099)

T3SS and Mlr6361 (M.
loti MAFF303099) [111,149]

japonicus

Gifu

NopM (B. elkanii
USDA61)

NopD, NopI, NopM
and NopT (S. fredii

HH103)
NopL (S. fredii

NGR234)

T3SS (Fix*) (B. elkanii
USDA61 and 14k062)
NopF (Fix*) (B. elkanii

USDA61)
T3SS (Bradyrhizobium

sp. SUTN9-2)
T3SS and

NopC/GunA, NopL
and NopP (Fix*) (S.

fredii HH103)

[89,92,147,148]

MG-20 T3SS (M. loti
MAFF303099)

T3SS and NopM
(Fix*) (B. elkanii

USDA61)
[85,89,97]

Miyakojima NopF (B. elkanii
USDA61)

T3SS (Bradyrhizobium
sp. SUTN9-2)

T3SS and NopM (B.
elkanii USDA61)

[147]

peregrinus carmeli T3SS (M. loti
MAFF303099) [149]

subbiflorus T3SS (M. loti
MAFF303099) [149]

tenuis
INTA Pampa T3SS (M. loti

MAFF303099) [85]

Esmeralda Mrl6316 (M. loti
MAFF303099)

T3SS (M. loti
MAFF303099) [85]
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Table 2. Cont.

Plant

Positive Effect
(Including

Host-Range
Extension)

Neutral Effect

Negative Effect
(Including

Nodulation-
Blocking

Phenotype/T3E
Involved)

Refs.

Legume plants

Macroptiluim artropurpureum T3SS (B. elkanii
USDA61)

NopE1 and NopE2 (B.
diazoefficiens
USDA110)

T3SS (B. elkanii
SEMIA587)

T3SS (Bradyrhizobium
sp. SUTN9-2 and

DOA9)
NopB (S. fredii

USDA257)

[86,116,117,130,132,
138]

Mimosa pudica
Atypical T3SS (C.

taiwanensis
LMG19424)

[146]

Pachyrhizus tuberosus
NopP † and

NopX (S. fredii
NGR234)

NopJ, NopL, NopP †

and NopT † (S. fredii
NGR234)

T3SS (Fix*), NopA,
NopB, NopM and
NopT † (S. fredii

NGR234)

[98,100,105,124,142,
145,150–152]

Phaseolus vulgaris NopT (S. fredii
NGR234)

T3SS (S. fredii
NGR234)

NopL (S. fredii
NGR234) [93,102,153]

Robinia

hispida
T3SS (M.
amorphae

CCNWGSO123)

NopP (M. amorphae
CCNWGSO123) [101,119,154]

pseudoacacia
T3SS (M.
amorphae

CCNWGSO123)
[119]

Sophora
japonica T3SS (M. amorphae

CCNWGSO123) [119]

xanthantha T3SS (M. amorphae
CCNWGSO123) [119]

Stylosantes hamata
T3SS

(Bradyrhizobium
sp. DOA9)

[117]

Tephrosia vogelii

T3SS, NopA,
NopB, NopP,

NopT and NopX
(S. fredii NGR234)

NopL, NopM and
NopJ (S. fredii

NGR234)

NopD (Bradyrhizobium
sp. XS1150)

[65,83,100,102,105,
124,145,150–152]

Vigna

aconitifolia T3SS and InnB (B.
elkanii USDA61) [155]

angularis T3SS (B. elkanii
USDA61)

InnB (B. elkanii
USDA61) [155]

mungo

cv. PI173934
T3SS, InnB, NopL

and NopP2 (B.
elkanii USDA61)

Bel2-5 and NopP1 (B.
elkanii USDA61) [78,155]

MASH

T3SS and
NopL/Bel2-5 and
NopP2 (B. elkanii

USDA61)

InnB and NopP1 (B.
elkanii USDA61) [155]

IBPGR2775-3

T3SS and
NopL/Bel2-5 and
NopP2 (B. elkanii

USDA61)

NopP1 (B. elkanii
USDA61)

InnB (B. elkanii
USDA61) [155]

MAFF2002M3 T3SS and InnB (B.
elkanii USDA61) [155]

OSUM745 T3SS (B. elkanii
USDA61)

InnB (B. elkanii
USDA61) [155]

VM3003 InnB (B. elkanii
USDA61)

T3SS (B. elkanii
USDA61) [155]
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Table 2. Cont.

Plant

Positive Effect
(Including

Host-Range
Extension)

Neutral Effect

Negative Effect
(Including

Nodulation-
Blocking

Phenotype/T3E
Involved)

Refs.

Legume plants

Vigna

mungo

U-THONG2 InnB (B. elkanii
USDA61)

T3SS (B. elkanii
USDA61) [155]

CQ5785 T3SS and InnB (B.
elkanii USDA61) [155]

-
T3SS and NopP2

(B. vignae
ORS3257)

Brad7238, ErnA,
NopBW and NopL (B.

vignae ORS3257)
[135]

trinervia InnB (B. elkanii
USDA61)

T3SS (B. elkanii
USDA61) [155]

radiata

CN36 T3SS (B. elkanii
USDA61) [130]

CN72

T3SS
(Bradyrhizobium

sp.
SUTN9-2)
T3SS (B.

diazoefficiens
USDA110)

T3SS (B. vignae
ORS3257)

T3SS (Bradyrhizobium
sp. DOA9)

[156]

KPS1 T3SS and InnB (B.
elkanii USDA61) [77,78,130,155]

KPS2

NopE1 and
NopE2 (B.

diazoefficiens
USDA110)

T3SS (B. vignae
ORS3257 and B.

diazoefficiens
USDA110)

T3SS (Bradyrhizobium
sp. SUTN9-2 and

DOA9)

[86,156]

SUT1

Brad7238, ErnA,
NopBW, NopL and

NopP1 (B. vignae
ORS3257)

T3SS and NopP2 (B.
vignae ORS3257) [135]

SUT4 T3SS (B. diazoefficiens
USDA110)

T3SS (B. vignae
ORS3257)

T3SS (Bradyrhizobium
sp. SUTN9-2 and
Bradyrhizobium sp.

DOA9)

[116,117,156]

V4718
T3SS (Bradyrhizobium

sp.
SUTN9-2)

T3SS (B. vignae
ORS3257 and DOA9
and B. diazoefficiens

USDA110)

[156]

V4758

T3SS (Bradyrhizobium
sp. SUTN9-2 and

DOA9 and B.
diazoefficiens
USDA110)

T3SS (B. vignae
ORS3257) [156]

V4785
T3SS (Bradyrhizobium

sp.
SUTN9-2)

T3SS (B. vignae
ORS3257 and DOA9
and B. diazoefficiens

USDA110)

[156]

-
GunA and GunA2 (B.

diazoefficiens
USDA110)

[73]
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Table 2. Cont.

Plant

Positive Effect
(Including

Host-Range
Extension)

Neutral Effect

Negative Effect
(Including

Nodulation-
Blocking

Phenotype/T3E
Involved)

Refs.

Legume plants

Vigna unguiculata

T3SS and NopAB
(B. elkanii
USDA61)

T3SS and NopT
(B. vignae
ORS3257)

T3SS, NopC and
NopI (S. fredii

HH103)

Brad7238, Brad7707,
ErnA, NopAO,

NopBW, NopL and
NopP2 (B. vignae

ORS3257)
T3SS, NopA, NopB
and NopP (S. fredii

NGR234)
NopB (S. fredii

USDA257)

InnB (B. elkanii
USDA61)

T3SS (B. elkanii
SEMIA587)

GunA, NopA, NopL
(S. fredii HH103)

[65,98,132,135,137,
138,145,151,155]

Non legume plants

Oryza

sativa L. ssp.
indica Phatum Thani 1

T3SS
(Bradyrhizobium
sp. SUTN9-2)-
colonization

T3SS (Bradyrhizobium
sp. DOA9)

T3SS (Bradyrhizobium
sp. SUTN9-2)-growth

promotion

[116,117]

sativa L. ssp.
japonica Nipponbare

T3SS (Bradyrhizobium
sp. SUTN9-2)-growth

promotion

T3SS (Bradyrhizobium
sp. SUTN9-2)-
colonization

[116]

In bold: Nodulation gaining or nodulation-blocking phenotypes. Fix*: Mutants induce uninfected nodules.
†: Contradictory results.

4.1. Soybean and Wild Soybeans

Glycine max L. Merr. (soybean) cultivation is extended worldwide due to its economical
and agronomical importance. In terms of the study of symbiotic signals, soybean is probably
the model for the study of T3E function in the rhizobium–legume symbiosis. In fact, all
Brady- and Sinorhizobia able to nodulate soybean possess a functional T3SS (but not all
rhizobial strains with a T3SS can nodulate soybean). Symbiotic phenotypes vary from
nodulation blocking to host-range extension, and even promoting nodulation in the absence
of NF (Table 2).

During soybean domestication, many natural phenotypic changes affecting plant
development, flowering time, seed size and protein and oil content, among others, have
occurred [157]. In this process of domestication, traits controlling the formation of symbiotic
root nodules by several host resistance (R) genes, referred to as Rj/rj genes, have been
maintained in agronomically improved soybean cultivars. Four Rj genotypes control
nodulation in soybean: (i) Rfg1 soybeans restrict nodulation with some S. fredii strains such
as USDA257, USDA205, and USDA193 [143,158]. The Rfg1 gene encodes a member of the
Toll-interleukin receptor/nucleotide-binding site/leucine-rich repeat class (TIR-NBS-LRR)
of plant resistance proteins; (ii) Rj2 soybeans, carrying an allelic variant of Rfg1, also restrict
nodulation with B. japonicum USDA122 [143]; (iii) Rj3 soybeans cannot be nodulated by
some B. elkanii strains such as USDA33, BLY3-8, or BLY6-1 [159]; and (iv) strains such as
B. japonicum Is-34 or B. elkanii USDA61 cannot nodulate Rj4 soybeans. Intriguingly, the
soybean Rj4 gene codes for a thaumatin-like protein (TLP) that belongs to pathogenesis-
related (PR) protein family 5 [160–162] and it is not clear yet the mechanisms by which
these proteins impede nodulation. In these cases, the recognition of rhizobial T3E by these
R proteins would trigger a soybean ETI response to block nodulation [128,163].

The Rj2/Rfg1 protein is the soybean determinant restricting nodulation by some
B. japonicum, B. diazoefficiens, and S. fredii strains. Polymorphisms of seven amino acid
residues (E452K, I490R, Q731E, E736N, P743S, E756D, and R758S) define three allelic
groups of Rj2/Rfg1. Whereas Rj2/rfg1 restricts nodulation with some B. japonicum and B.
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diazoefficiens strains, rj2/Rfg1 restricts nodulation with strains of S. fredii. On the other hand,
rj2/rfg1 allows most B. japonicum, B. diazoefficiens, and S. fredii to form nodules [143,158].
Recent works have associated the incapacity of some rhizobial strains to nodulate certain
soybean cultivars with secretion of T3E, mainly with members of the NopP family of
effectors. Thus, the incapacity of some B. japonicum strains to nodulate Rj2 soybeans is
mediated by the rhizobium-specific effector NopP, in which three amino acid residues (R60,
R67, and H173) are involved [163]. With respect to the legume partner, it has been reported
that only the isolecucine residue (I490) in Rj2 is responsible for the incompatibility [125].
Recently, Rehman et al. [129] found that NopP from S. fredii CCBAU25509, but not that from
CCBAU45436, is responsible for the incapacity of this strain to nodulate the rj2/Rfg1 allelic
group of soybeans. However, there are no clear differences in the sequences of NopP from
different S. fredii strains able or unable to nodulate these soybeans and no direct interaction
between Rfg1 and NopP was found. Very recently, a new soybean R gene, Glycine max
Nodule Number Locus 1 (GmNNL1), has been described. GmNNL1 is similar to Rj2 and
Rfg1, a TIR-NBS-LRR protein, and interacts with the B. japonicum USDA110 NopP to inhibit
nodulation during root hair infection [164].

On the other hand, the inability to nodulate Rj4 soybeans is mediated by proteins with
a C48 protease domain present in the NopD family of rhizobial effectors [84,127,165]. The
catalytic C48-peptidase domain is involved in SUMOylation and de-SUMOylation of host
proteins. Small ubiquitin-modifiers (SUMO) are small proteins used by eukaryotic cells to
posttranslational modify substrate proteins in a specific manner. These modifications can
alter protein stability and activity. While SUMOylation causes the activation/repression
of certain transcription factors, de-SUMOylation causes the opposite effect [166]. NopD
from B. japonicum is delivered to the nucleus of the host cell and can SUMOylate and
de-SUMOylate soybean proteins [83]. It is thought that the isopeptidase activity shown by
NopD would mimic the activity of a host protease that eliminates SUMO modifications,
while the peptidase activity would be necessary to activate SUMO precursors [167].

It is worth mentioning here that there have been described several cases in which
rhizobia can effectively nodulate their host plants in the absence of NF, in a process mediated
by T3E and carried out through intercellular infection. This is the case for some of the
photosynthetic Bradyrhizobium strains (those harboring a T3SS) able to nodulate tropical
Aeschynomene species [23,72] or for a nodC mutant of B. elkanii USDA61, unable to produce
NF, with G. max cv. Enrei [133]. The protein responsible for the capacity of B. elkanii USDA61
to nodulate soybean in the absence of NF, Bel2-5, possesses the C48 peptidase domain
present in the NopD family of effectors. Recent efforts could not determine which B. elkanii
USDA61 Bel2-5 domains are involved in blocking/inducing nodulation in soybean [81],
although the structure and presence of the different NopD domains is similar in other
rhizobial species.

Finally, and despite the specific effector involved having not yet been identified, it
has been reported that the T3SS of B. elkanii BLY3-8 is responsible for the incapacity of this
strain to nodulate Rj3 soybeans [131].

Glycine soja (Siebold and Zucc.) is the wild ancestor of the domesticated soybean [168].
Studies carried out by Temprano-Vera et al. [144] indicate that inactivation of the T3SS
significantly impacts symbiosis with several G. soja accessions. Thus, accession CH2 from
northern China forms nodules with S. fredii NGR234 but not with S. fredii HH103. While
T3SS mutants of NGR234 lose their capacity to nodulate this accession, HH103 T3SS
mutants gain nodulation. Therefore, one or more T3E secreted by NGR234 can promote
CH2 nodulation while the combination of Nops secreted by HH103 prevents it. In the
case of accession CH3, also from northern China, HH103 T3SS mutants retain nodulation.
However, inactivation of the NGR234 T3SS totally abolishes nodulation. The different effect
of the T3SS mutations in the symbiosis with the different G. soja accessions suggests that
these wild soybeans could have different Rj/rj genotypes or even new R genes that could
have been transferred to cultivated soybeans during the process of domestication.
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4.2. Vigna spp.

One of the two most widely consumed types of legumes, together with soybean,
belongs to the genus Vigna. Among all the species only a very few have been domesticated
so far [169,170]. Vigna unguiculata L. Walp. (cowpea) is one of the most important grain
legume crops in the world with a larger zone of occurrence and cultivation, while Vigna
radiata L. Wilczek (mung bean) and Vigna mungo var. mungo L. Hepper (black gram) are
consumed and produced especially in Asia [170,171].

Rhizobial T3SS induce positive, neutral, and negative effects in symbiosis with Vigna
spp. This scenario is well reflected in the Sinorhizobium/Bradyrhizobium–cowpea symbiotic
interactions. However, observations turn more interesting with findings from studies about
Bradyrhizobium and other Vigna spp. symbiotic relationships. In this sense, this plant could
be a very good model to study the role of Bradyrhizobial T3E, because their T3SS are
responsible for the symbiotic compatibility/incompatibility phenotype in these legumes
and because they possess a wide range of T3E.

Regarding the negative impact on symbiosis, rhizobial T3SS can cause a nodulation-
blocking phenotype, as occurs in the symbiosis between B. elkanii USDA61 and V. mungo
cv. VM3003 and U-THONG2, V. aconitifolia or V. trinervia [155]. Impressively, the T3SS
renders incompatible the symbiotic interaction between various Bradyrhizobia species
with several V. radiata cultivars, such as B. vignae ORS3257 with CN72, KPS2, SUT1, SUT4,
V4758, and V4785; B. diazoefficiens USDA110 with KPS2, V4718, and V4785; Bradyrhizobium
sp. DOA9 with V4718 and V4758; and B. elkanii USDA61 with KPS1 [130,135,156]. So
far, the genetic basis of how each T3SS is involved in the suppression of nodulation in a
specific symbiotic interaction has not been clearly elucidated. Nevertheless, one possibility
is that the plant recognizes a specific T3E by a resistance protein inducing a very strong
ETI, which finally blocks nodulation. In this regard, it is worth remarking that the T3E
InnB from B. elkanii USDA61, which causes nodulation restriction in V. radiata cv. KPS1,
could be recognized specifically by this plant, as well as by V. aconitifolia, but not by other
Vigna spp. or Rj4-soybeans [77,78,130,155]. In line with this background, NopP2 seems to
be responsible for the symbiotic incompatibility between B. vignae ORS3257 and V. radiatia
cv. SUT1. This T3E shares 71.9% of identity with NopP from the B. japonicum strains
USDA122 and USDA110 but does not conserve all amino acids required in USDA122 NopP
for Rj2-soybean incompatibility [135]. This finding could be explained by the possibility
that V. radiata and soybean Rj2 orthologs evolved differently during the rhizobium–plant
coevolution process. Thus, plants could monitor the compatibility of their symbionts by
the recognition of different specific NopP variations.

On the other hand, some Bradyrhizobial T3SS are also required for a successful
nodulation, being involved in host-range extension. This is the case of the symbiotic
interactions between B. diazoefficiens USDA110 with V. radiata cv. CN72, and B. elkanii
USDA61 with V. mungo cv. MASH or IBPGR2775-3 cultivars [155]. Very interestingly,
although USDA61 possesses various T3E that are positive for nodulation in these V. mungo
cultivars, NopL has been found to be a key determinant for the T3SS-triggered nodulation
phenotype. Specifically, this T3E is required for the early nodule development in an NF-
dependent manner [155]. However, the molecular mechanisms underlying USDA61 NopL
mode of action are yet to be elucidated.

4.3. Lotus spp.

Lotus japonicus, together with Medicago truncatula, are the model plants commonly
used to study the molecular basis of the symbiotic process due to their small size and the
availability of a high variety molecular biology tools. T3E play important and distinct roles
in the interaction of Lotus spp. with different rhizobial partners. Regarding the natural
partner of Lotus, Mesorhizobium loti, the T3SS (present in MAFF303077 but not in R7A)
may play different roles in symbiosis [85,149]: positive with L. corniculatus, L. filicaulis, and
L. tenuis INTA PAMPA; neutral with L. japonicus MG-20, and negative with L. halophilus,
L. peregrinus, L. subbiflorus, and L. tenuis Esmeralda [85,149]. Regarding S. fredii strains,
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NGR234 NopL and NopM have a neutral and a positive role with L. japonicus Gifu and
MG-20, respectively [92,97], whereas the T3SS have a negative role in the symbiosis of
HH103 with L. burttii. Interestingly, S. fredii HH103 cannot nodulate L. japonicus GIFU.
However, T3SS mutants gain the capacity to nodulate this legume. When analyzing the
effect of the mutation of each T3E secreted by HH103, NopC was revealed to be the one
involved in blocking nodulation [148]. With respect to Bradyrhizobium, there are several
works regarding the role of T3SS in the symbiosis of Lotus spp. with B. elkanii USDA61 and
Bradyhizobium sp. SUTN9-2 [89,147]. In general, the T3SS of these Bradyrhizobium strains
have a negative role in symbiosis with different Lotus species. The analysis of the individual
effects in symbiosis of the different T3E found NopF of B. elkanii USDA61 to be the effector
responsible for blocking nodulation with L. japonicus Gifu and NopM as the T3E involved
in triggering a nodule early-senescence response. Authors suggest that there are at least
three checkpoints that control infection and the development of the nodulation process in
the different Lotus accessions [89].

4.4. Aeschynomene spp.

Aeschynomene species are tropical plants nodulated by Bradyrhizobial strains. Some
interactions were initially considered peculiar cases in Rhizobium–legume symbiosis, since
these rhizobia possess a functional T3SS but are incapable of producing NF [23]. Thus, an
alternative nodulation process can be developed by an NF-independent pathway in a T3SS-
dependent manner. However, growing studies on symbiotic interactions have broken this
exception of the rule, due to the occurrence of the symbiotic interaction between B. elkanii
USDA61 and G. max cultivar Enrei, as previously mentioned [133]. In general, the T3SS
and its T3E exert neutral or positive effects in the Bradyrhizobium-Aeschynomene symbioses
studied so far (Table 2). Remarkably, Bradyrhizobium sp. ORS3257 and B. elkanii USDA61
T3SS are strictly required for nodulation in A. indica [72,118]. Findings from ORS3257
studies support the notion that T3E play complementary roles in nodulation with A. indica.
Very interestingly, the T3E ErnA triggers the nodulation process in this legume and, when
transferred to Bradyrhizobium DOA9, confers on this strain the ability to nodulate this plant
and promotes the formation of nodule-like structures on its roots when ernA is ectopically
expressed [72].

5. Conclusions and Perspectives

The findings summarized in this review point to an increasing interest in the identifi-
cation and determination of the functions of the different rhizobial T3E. Dozens of different
legume cultivars have been tested to determine the symbiotic effect of blocking T3SS secre-
tion or the inactivation of single T3E genes. Thus, we have made an exhaustive compilation
of all the symbiotic phenotypes published so far and classified them into neutral, positive,
or negative effects in symbiosis. In some cases, host-range is extended (positive effects) or
nodulation is blocked (negative effect). In this sense, T3E show different facets depending
on the host plant and thus resemble Dr. Jekyll and Mr. Hyde in symbiosis.

Due to the important effects on their hosts caused by T3E, efforts are currently made
to identify new T3E by proteomics, transcriptomics and bioinformatic analyses. However,
functions of the T3E are complex and often simultaneous. Thus, experimental trials focused
on a single T3E cannot expose their multiple functions and the interconnections established
among them during the symbiotic process. Symbiotic and pathogenic bacteria share several
structural and functional similarities in terms of the T3E, even during the bacterium–plant
coevolution process, where some T3E are recognized by specific R proteins that block
infection/nodulation. The identification and eventual modification of new plant R proteins
could be one of the next challenges for extending the use of rhizobia as biofertilizers since
their presence in certain species or cultivars permit or abort infection. On the other hand, it
is very remarkable that a single mutation in a T3E gene could block/allow nodulation in a
host plant, given the complexity of the nodulation process. Thus, it could be considered
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a highly valuable tool for the selection of broader host-range rhizobial strains used as
inoculants [172].

In addition, it is striking that several T3Es are capable of triggering nodulation per se,
which provides, together with other findings summarized in this review, new perspectives
on tackling plant breeding programs, and even the challenge of extending the nitrogen
fixation capacity to other non-legume plants, such as cereals. Up to now, the current
knowledge about the effects of T3E on cereals is extremely limited, having only shown that
the symbiotic T3SS causes an effect in rice colonization [116,117]. Therefore, more efforts
should be made to enrich our knowledge about rhizobial T3SS, and thus creating a future
reference for the sustainable agriculture strategies based on the reduction in the use of
nitrogen fertilizers.
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