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Abstract

Background

Listeria monocytogenes is an intracellular foodborne pathogen that employs a number of

strategies to survive challenging gastrointestinal conditions. It proliferates in the gut and

subsequently causes listeriosis in high-risk individuals. Therefore, inhibition of its adherence

to the intestinal receptors is crucial in controlling its infection. In this study, the effect of our

previously developed recombinant Lactobacillus casei strain expressing invasion protein,

Internalin AB of L. monocytogenes (LbcInlAB) on epithelial infection processes of the latter

under simulated intestinal conditions was investigated.

Materials and methods

The confluent Caco-2 cell monolayer was pre-exposed to different L. casei strains at a multi-

plicity of exposure (MOE) of 10 for various periods before infection with L. monocytogenes

at a multiplicity of infection (MOI) of 10 under simulated intestinal conditions. Subsequently,

L. monocytogenes adhesion, invasion, and translocation, cytotoxicity and impact on tight

junction integrity of the Caco-2 cells were analyzed.

Results

Under the simulated gastrointestinal condition, LbcInlAB showed a significant increase

(p<0.0001) in adherence to, invasion and translocation through the Caco-2 cells when com-

pared with the wild type strain. Although LbcInlAB strain exhibited enhanced inhibition of L.

monocytogenes, it was not able to displace L. monocytogenes cells already attached to the

monolayer. Additionally, pre-exposure to LbcInlAB reduced L. monocytogenes-mediated

cytotoxicity and protected the tight junction barrier function.
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Conclusion

The recombinant L. casei expressing InlAB shows potential for use as a prophylactic inter-

vention strategy for targeted control of L. monocytogenes during the intestinal phase of

infection.

Introduction

Listeria monocytogenes is abundant in nature and has proven to proliferate under various envi-

ronmental conditions [1] including temperatures between -1.5 to 45˚C and broad pH range of

4.0 to 9.6. It is well suited to survive in foods, and transit through the gastrointestinal tract. In

immunocompromised individuals and pregnant women, it causes a disease generally referred

to as listeriosis, while it results in self-limiting gastroenteritis in healthy individuals. L. monocy-
togenes employs different survival strategies in the challenging microenvironments of the gas-

trointestinal tract [2–4]. It enters the body through gastrointestinal mucosal surfaces to cause

infection [5]. During disease progression, L. monocytogenes employs the Listeria adhesion pro-

tein (LAP), to aid adhesion and transmigration across the epithelial barrier in the gut [6,7]. It

also uses the surface protein Internalin A (InlA) [8,9] and InlB [10,11] to attach to and gain

entry into host cells for systemic spread. This invasion has also been shown to be associated

with murine M cells both in vivo and in vitro [12].

Attenuated strains of foodborne pathogens such as L. monocytogenes have been used as vac-

cines for their control. However, such strains present the two most important risks. Firstly, the

attenuated strain has a potential for reversion to its virulent phenotype post administration.

Secondly, they can be virulent in partially immunocompetent (young infants; elderly) or

immunocompromised individuals as they retain residual virulence [13]. These risks prompted

an interest in a search for alternative strategies for pathogen control. Non-pathogenic transient

bacteria in the digestive tract were then suggested as an alternative that can be used to substi-

tute the attenuated pathogens [14,15]. Probiotics are candidates of choice as they have been

reported to confer a health benefit on the host (FAO/WHO, 2002) [16] and to competitively

inhibit foodborne pathogen infection [17,18]. Their advantages include tolerance to acid and

bile salts allowing for survival, transition through the gastrointestinal tract (GIT) and coloniza-

tion of the mucosal surface [19]. However, several studies have reported that probiotics some-

times fail to produce desirable effects. McCarthy et al. [20] reported the same levels of the anti-

inflammatory cytokine TGF-β in untreated mice suffering from colitis and those to which pro-

biotic Lactobacillus salivarius and Bifidobacterium infantis were orally administered. Koo et al.
[21] reported inefficiency of wild type probiotic strains in preventing the attachment of L.

monocytogenes to intestinal epithelial monolayers in vitro.

In an effort to enhance the effectiveness or antipathogenic effects of probiotics, bioengi-

neering has been used as an alternative strategy [19,22], where a virulent gene of the specific

pathogen is cloned and expressed to create a recombinant probiotic strain that is subsequently

used to competitively exclude that pathogen. The bioengineered probiotics were reported by

different researchers to possess enhanced antipathogenic effects when compared to their wild-

type counterparts [21,23,24]. Chu et al. [23] reported the ability of a recombinant L. acidophi-
lus strain carrying the K99 fimbriae from enterotoxigenic Escherichia coli (ETEC) to reduce

attachment of ETEC to the porcine intestinal brush border in a dose-dependent manner. In

another study, Wu et al. [25] cloned and expressed the heat stable (ST) and heat labile (LT)

enterotoxins of ETEC under the nisin-inducible promoter into probiotic Lactobacillus reuteri.
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They reported that the recombinant strain successfully prevented enterotoxicity in a mouse

model. Koo et al. [21] cloned and expressed the Listeria adhesion protein (LAP) from L. mono-
cytogenes into probiotic L. paracasei and demonstrated that the recombinant strain was able to

exclude Listeria colonization and epithelial cell damage in vitro. Depending on the virulence

genes that are cloned and expressed, these genetically engineered probiotics can be used either

as prophylactic or treatment alternatives for the specific pathogens. Due to promising results

reported in these aforementioned studies, we also recently cloned and expressed the invasion

operon inlAB into Lactobacillus casei (LbcInlAB) for the inhibition of L. monocytogenes adhe-

sion, invasion and translocation in vitro, using the Caco-2 cells grown and maintained in the

cell culture media, Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with fetal

bovine serum (FBS) [26]. The resultant recombinant probiotic showed enhanced inhibition of

L. monocytogenes compared to the wild type L. casei. Although the results were positive, they

were still not appropriate for making inferences about how the recombinant L. casei would

affect the L. monocytogenes intestinal infection phase, as the media used did not sufficiently

simulate the intestinal conditions.

The Caco-2 cell line, a colon adenocarcinoma cell origin differentiates into the enterocyte-

like cell and is a widely used model to assess intestinal permeability [27,28]. Different media

such as the buffered salt solution, Hanks’ balanced salt solution (HBSS) buffered with HEPES

(10 mM) at pH 7.4, and the DMEM containing amino acids and vitamins, both supplemented

with glucose, have been commonly used in permeability studies. However, these media have

been criticized for supporting cell growth, which renders them inappropriate models for the

epithelial infection process [29,30]. This raised the need for alternative media that can address

this shortcoming and thereby give a better simulation of the intestinal conditions. In order to

address this, simulated intestinal fluids (SIF), namely, the Fed State SIF (FeSSIF) originally

proposed for evaluation of drug dissolution kinetics [31], and Fasted State SIF (FaSSIF), were

evaluated for their compatibility with Caco-2 monolayer. It was found that FeSSIF exhibited

cytotoxicity to Caco-2 while FaSSIF was compatible with the Caco-2 monolayer [27,28,32].

Brouwers et al., [33] reported that data generated using FaSSIF were similar to that obtained

with actual human intestinal aspirates collected in the fasted state. Hence, in order to deter-

mine the effect of the recombinant LbcInlAB on the epithelial infection process of L. monocyto-
genes in vitro, we used a Caco-2 cell culture model and FaSSIF as the medium.

Materials and methods

Bacterial strains, plasmids and growth conditions

Listeria monocytogenes F4244 (serovar 4b, epidemic strain), Lactobacillus casei (LbcWT), L.

casei expressing InlAB (LbcInlAB) and LAP (LbcLAP, unpublished), and L. casei carrying the

pLP401T empty vector (LbcV) were used in this study. Cloning and expression of inlAB gene

of L. monocytogenes in L. casei (LbcInlAB) has been reported before [26] where the pLP401T

vector [34] contains the origin of replication of Lactobacillus and the α-amylase promoter gene

(Pamy). The promoter is mannitol inducible, therefore, modified MRS supplemented with 1%

mannitol was used to induce the expression of InlAB in L. casei [21]. The vector also has an

anchor peptide (117 aa) gene of L. casei and transcription terminator of the cbh (conjugated

bile acid hydrolase) gene (Tcbh). The surface expression of InlAB on LbcInlAB is envisaged to

covalently link to the cell wall/peptidoglycan via anchor peptide and LPxTG motif [26]. L.

monocytogenes culturewas grown in Tryptone Soy broth supplemented with 0.6% yeast extract

(TSA-YE) at 37˚C for 18 h. LbcWT was grown in de Man Rogosa Sharpe (MRS) broth while

LbcV and recombinant LbcInlAB and LbcLAP strains were grown anaerobically at 37˚C for 16 h

in MRS broth containing 2 μg/ml erythromycin.
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Preparation of the FaSSIF

The fasted state simulated intestinal fluid (FaSSIF) was prepared as per Dressman et al., [35].

Briefly, 0.78 g potassium hydrogen phosphate (KH2PO4), 3.28 g of potassium chloride (KCl), 5

mM sodium taurocholate (representative bile salt) and 1.5 mM lecithin were suspended in 150

ml distilled water. The pH of the solution was adjusted to pH 6.8 with 1M NaOH or 1M HCl,

and then its volume was made up to 200 ml with distilled water. The FaSSIF was sterilized by

filtering through a 0.2 μm filter to avoid thermal denaturation of the media components. The

FaSSIF was stored at 4˚C and then used within 24 h post preparation.

Adhesion and invasion of Caco-2 cells by recombinant L. casei
Human colon adenocarcinoma cell line Caco-2 (HTB37; American Type Culture Collection)

was cultured in Dulbecco’s modified eagle’s medium (DMEM with high glucose, HyCloneTM,

GE, Logan, UT) supplemented with 10% Fetal Bovine Serum (FBS Atlanta Biologicals, GA)

(D10F). The cells were grown in flasks (Greiner- Bio-One) for up to 10–12 days, trypsinized

and then seeded in 12 well plates at a density of 1 × 105 cells/well. The plates were incubated at

37˚C in the presence of 7% CO2 in a cell culture incubator for 10–12 days to allow for mono-

layer formation and cell differentiation (106 cells/ well) [21,36].

Overnight (18 h) bacteria pre-cultivated in their respective broths were washed twice with

PBS, their absorbance adjusted to OD600 = 1 and then they were suspended in FaSSIF to a final

concentration of 1 × 107 CFU/ml (MOE or MOI, 10). The Caco-2 cell monolayers were

washed three times with DMEM and then exposed separately to the L. casei strains (LbcWT,

LbcV, LbcInlAB or LbcLAP) and L. monocytogenes and incubated at 37ºC with 5% CO2 for 1 h

[21]. Excess media were removed and the cell monolayers were washed three times with

DMEM. To enumerate the adhered bacterial cells, cell monolayers were treated with 0.1% Tri-

ton X-100, incubated at 37ºC for 10 min. For the invasion assay, the monolayers were exposed

to L. monocytogenes and L. casei and then washed as was done in the adhesion assay, treated

with gentamycin (50 μg/ml, 1 h) and with 0.1% Triton X-100 (37ºC, 10 min). The lysed cell

suspensions from both adhesion and invasion experiments were serially diluted in PBS before

plating on MRS, MRS supplemented with erythromycin (2 μg/ml) and Modified Oxford

(MOX) agar for LbcWT, recombinant L. casei, and L. monocytogenes, respectively. All the plates

were incubated at 37ºC for 24–48 h before bacterial enumeration.

Determination of L. monocytogenes exclusion by L. casei
The competitive exclusion assay was done as per Koo et al. [21] with minor modifications. The

absorbance of the bacterial cultures was adjusted to OD600 = 1 after they were washed twice

with PBS, and then they were suspended in FaSSIF to a final concentration of 1 × 107 CFU/ml

(MOI, 10). For competitive adhesion, L. monocytogenes was co-inoculated with each of the L.

casei strains (LbcWT, LbcV, LbcInlAB or LbcLAP) to Caco-2 cell monolayer and incubated for 1

h. Adherent bacteria were enumerated as before.

In the inhibition of adhesion assay, the Caco-2 cell monolayers were first inoculated with

each L. casei strain and incubated for 1 h. Unbound bacteria were removed by washing of the

wells four times using DMEM. L. monocytogenes was then added to the wells and plates were

incubated for one more hour. Adhered bacteria were released and plated as above. For dis-

placement of adhesion, Caco-2 monolayers were first inoculated with L. monocytogenes and

incubated for 1 h. Then unbound bacteria were washed off as in the inhibition of adhesion

assay. L. casei strains were then added to the wells and plates incubated for another 1 h.

Adhered bacteria were released and plated on MRS, MRS supplemented with 2 μg/ml of

InlAB-expressing Lactobacillus prevents infection under simulated intestinal conditions
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erythromycin and MOX agar plates for enumeration of LbcWT, recombinant L. casei, and L.

monocytogenes, respectively [21].

Inhibition of L. monocytogenes adhesion and invasion by L. casei
Bacteria were pre-cultivated in their respective broths for 18 h. The bacterial cultures were

washed twice with PBS after adjusting their absorbance to OD600 = 1, followed by their resus-

pension in FaSSIF to the final concentration of 1×107 CFU/ml (MOE/MOI, 10). The Caco-2

cell monolayers were washed and then exposed to the L. casei strains for 1, 4, 16 and 24 h at

37˚C in the humidified incubator with 5% CO2. Excess medium in the wells containing

unbound L. casei was removed and replaced with 500 μl of L. monocytogenes suspended in FaS-

SIF, and the plates incubated for 1 h at 37˚C with 5% CO2. The cells were then washed thrice

using DMEM. To enumerate the adhered bacterial cells, cell monolayers were treated with

0.1% Triton X-100, incubated at 37ºC for 10 min before plating onto the respective microbio-

logical media as already mentioned.

For inhibition of L. monocytogenes invasion, the Caco-2 cell monolayers were washed three

times with DMEM and then exposed to each L. casei strain for 1, 4, 16 and 24 h at 37˚C with

5% CO2. Excess L. casei cells were removed and replaced with 500 μl of L. monocytogenes sus-

pended in FaSSIF and then incubated for 1 h at 37˚C with 5% CO2. To remove the non-

adhered bacteria, the cell monolayers were washed three times with DMEM and then treated

for 1 h with gentamycin (50 μg/ml). The invading bacterial counts were determined by plating

as above.

Caco-2 cytotoxicity assay

To determine Caco-2 cytotoxicity induced by L. monocytogenes after pre-exposure to L. casei
over time, we performed the LDH assay [21]. The supernatants after infection with L. monocy-
togenes for 1 h were collected and used to analyze for lactate dehydrogenase (LDH) enzyme

release. Caco-2 cells that were treated with 500 μl of 0.1% Triton X-100 per well were used as

positive control while those treated with DMEM were used as the negative control. From the

supernatants collected, 100 μl were transferred to the 96-well flat bottom plate in triplicates

and was analyzed using Pierce LDH cytotoxicity assay kit (Thermo Scientific, USA) following

the protocol from the manufacturer.

Transcellular translocation of L. casei strains and subsequent inhibition of

L. monocytogenes transepithelial translocation by recombinant L. casei
The Caco-2 cells were grown in 12 well trans-well filter inserts (3-μm pore size) for 20–25 days

to reach confluence [6]. TEER of Caco-2 cells was quantified using the Millicell ERS system

(Millipore, Billerica, MA) and a TEER value of more than 200 was used for all the experiments.

Overnight (18 h) bacteria pre-cultivated in their respective broths were used. The bacterial cul-

tures were washed twice with PBS and then suspended in FaSSIF (MOE, 10). For determining

baseline translocation by L. casei or L. monocytogenes, the cell monolayers were washed three

times with DMEM and then the bacteria were added separately to the apical wells, followed by

incubation of microwell plates at 37˚C with 5% CO2 for 2 h. The liquid from the basal well was

collected, serially diluted in PBS and then plated for the enumeration of viable cells (CFU/ ml).

For the inhibition of L. monocytogenes translocation, L. casei strains were first added to the

apical wells and incubated for 1, 4, 16 and 24 h at 37˚C with 5% CO2. The liquid from the basal

wells was collected, serially diluted in PBS and then plated onto MRS plates for enumeration of

L. casei as described. Subsequently, excess L. casei cells were removed and replaced with 500 μl

of L. monocytogenes suspended in FaSSIF (MOI, 10) and then incubated for 2 h at 37˚C with

InlAB-expressing Lactobacillus prevents infection under simulated intestinal conditions
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5% CO2. The liquid from the basal wells was removed and serially diluted in PBS and then

plated on MOX plates for the enumeration L. monocytogenes.

Epithelial tight junction integrity analysis

Transepithelial electrical resistance (TEER) of Caco-2 cells was measured before and after the

exposure to the bacteria using the Millicell ERS system (Millipore, Billerica, MA). Further-

more, we analyzed the epithelial tight junction integrity as per Koo et al. [21]. After exposure

to L. monocytogenes, the tight junction permeability was analyzed using DextranFITC (Mr 3–5

kDa; Sigma) permeability through the transwell filter inserts. Fluorescence of the samples col-

lected from the apical and basolateral chambers was read in a SpectraMax Gemini EM fluores-

cent plate reader (Molecular Devices; Sunnyvale, CA).

Statistical analysis

All data were analyzed using Prism 7 software (GraphPad Software Inc., United States), and

significance was assigned at p< 0.05. Where appropriate, Tukey’s multiple comparisons, with

p<0.005 as the significant difference was used to identify statistically significant differences.

Results

Adhesion, invasion and translocation profiles of Listeria monocytogenes
(Lm) and Lactobacillus casei (Lbc) strains

Probiotics and foodborne pathogens colonize the gastrointestinal tract to exert beneficial

effects or cause infection, respectively. It was therefore imperative that we determine how the

expression of L. monocytogenes invasion genes by L. casei would affect its ability to adhere to,

invade and translocate the Caco-2 cells under simulated intestinal conditions when compared

to L. monocytogenes. Fig 1A depicts the adhesion profiles of the L. casei strains and L. monocy-
togenes to Caco-2 cells in simulated intestinal fluid. There were no statistically significant dif-

ferences in the adhesion of L. monocytogenes F4244 versus LbcWT (p = 0.4436) or LbcV

(p = 0.9914) to the Caco-2 cells, which showed adhesion percentages of 7%, 8%, and 7.8%,

respectively. Conversely, recombinant L. casei strains expressing the different genes of L.

monocytogenes adhered to Caco-2 cells at levels significantly higher than those of L. monocyto-
genes (p = 0.0002 for LbcInlAB vs L. monocytogenes and p<0.0001 for LbcLAP vs L. monocyto-
genes). It is worth noting, adhesion of LbcLAP was significantly higher than that of LbcInlAB

(p = 0.0229).

Invasion (Fig 1B) and translocation (Fig 1C) profiles of the L. casei strains and L. monocyto-
genes in simulated intestinal conditions were investigated. The strains LbcWT and LbcV dis-

played similar trends in invasion and translocation through the Caco-2 cells, both showing

0.08% and 0.13% for invasion and translocation, respectively. There was an increase in levels

of both invasion and translocation by the recombinant L. casei strains (LbcInlAB and LbcLAP).

LbcInlAB invaded and translocated through the Caco-2 cells at levels significantly higher com-

pared to those of LbcWT and LbcV. Invasion and translocation levels for LbcLAP were not sig-

nificantly different from those of LbcWT and LbcV (p<0.79), but significantly lower than those

for LbcInlAB (p<0.0001). L. monocytogenes was able to invade and translocate the Caco-2 cell

monolayer at significantly higher levels than all the L. casei strains. What was worth noting is

that invasion and translocation of LbcInlAB through the Caco-2 cells was at significantly higher

levels than all the other L. casei strains.
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Mechanisms of L. monocytogenes exclusion by the L. casei strains

Probiotics employ competitive adhesion, inhibition or displacement mechanisms to inhibit or

reduce adhesion of pathogens to the intestinal cells. In order to determine which mechanism

is employed by L. casei strains (LbcWT, LbcV, LbcInlAB and LbcLAP) against L. monocytogenes,
we evaluated each under simulated intestinal conditions (Fig 2). Adhesion of L. monocytogenes
to Caco-2 cells in the absence of the L. casei strains was recorded as 100% in all the assays and

was used to calculate the relative adhesion in the presence of the L. casei strains.

Fig 2A shows that adhesion of L. monocytogenes to Caco-2 cells was insignificantly reduced

when it was co-inoculated with LbcWT and LbcV (p = 0.9941). We recorded reductions of

5.67% and 6% in adhesion of L. monocytogenes by LbcWT and LbcV, respectively. When co-

inoculated with the recombinant strains (LbcInlAB and LbcLAP), there was a significant reduc-

tion (p< 0.0001) in the adhesion of L. monocytogenes. There was a 20.48% and 22.34%

Fig 1. Adhesion (A), Invasion (B) and Translocation (C) of Listeria monocytogenes (Lm) and Lactobacillus casei (LbcWT, LbcV,

LbcInlAB and LbcLAP) to Caco-2 cells. Percentages were calculated relative to the inocula that were added to the Caco-2 cells. Data are

average (SD) of three independent experiments performed in duplicate. Error bars are standard deviations of averages of the three

independent experiments. Bars marked with different letters (a, b, c) indicate significant difference at p<0.05.

https://doi.org/10.1371/journal.pone.0220321.g001

Fig 2. Competitive exclusion of Listeria monocytogenes (Lm) adhesion to Caco-2 cells by L. casei strains (LbcWT, LbcV, LbcInlAB and

LbcLAP), analyzed by three different exclusion mechanisms. (A) Competitive adhesion: Caco-2 cells were exposed to L. casei strains with Lm

simultaneously, (B) Inhibition of adhesion: Caco-2 cells were pre-exposed to L. casei strains for 1 h before infection with Lm, and (C)

Displacement of adhesion: Caco-2 cells were infected with Lm for 1 h before L. casei strains (1 h). Adhesion of Lm alone to Caco-2 cells was

presented as 100% and percentage adhesion was calculated relative to that. Data are averages of three experiments run in duplicates. Error bars

are standard deviations of averages of the three independent experiments. Bars marked with different letters (a, b, c, d) indicate significant

difference at p<0.05.

https://doi.org/10.1371/journal.pone.0220321.g002
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adhesion reduction by LbcInlAB and LbcLAP, respectively. Although both LbcInlAB and LbcLAP

reduced the adhesion of L. monocytogenes, there was no statistical difference in their reduction

levels (p = 0.2620).

In the inhibition of adhesion assay (Fig 2B), adhesion of L. monocytogenes to the Caco-2

cells was reduced by 2.92% and 3.05% due to their pre-exposure to LbcWT and LbcV, respec-

tively. The reductions recorded were significant for both LbcWT (p = 0.0494) and LbcV

(p = 0.0391), however, as expected, there was no significant difference when comparing the

inhibition of L. monocytogenes adhesion by LbcWT vs. LbcV (p = 0.4588). Adhesion of L. mono-
cytogenes was reduced by 18.9% and 14.4% due to pre-exposure of the Caco-2 cells to the

recombinant strains LbcInlAB and LbcLAP, respectively. Interestingly, these recorded reduction

levels were significantly higher when compared to the adhesion of L. monocytogenes alone

(p<0.0001). Furthermore, there was a significant difference (p< 0.0033) in the reduction of

adhesion between the two recombinant strains, with LbcLAP showing higher inhibition of

adhesion than LbcInlAB. Significant differences (p<0.0001) were also obtained when compar-

ing inhibition of adhesion by LbcWT or LbcV versus LbcInlAB or LbcLAP. In the displacement of

adhesion experiment (Fig 2C), there were no significant differences in the adhesion of L.

monocytogenes alone when compared to in the presence of any of the L. casei strains. Further-

more, there were no statistical differences among all the L. casei strains in the displacement of

L. monocytogenes. Thus, the results show that inhibition of adhesion is the mechanism of com-

petition used by the recombinant L. casei strains to reduce interaction of L. monocytogenes
with Caco-2 cells.

Inhibition of L. monocytogenes adhesion, invasion, and translocation by L.

casei over time

In order to determine how inhibition of L. monocytogenes adhesion to Caco-2 in FaSSIF will

be influenced by duration of pre-exposure of the cell monolayer to L. casei strains, we investi-

gated adhesion, invasion, and translocation of Caco-2 cells under simulated intestinal condi-

tions by L. monocytogenes over a 24 h period. The effect of different exposure periods to L.

casei strains on adhesion of L. monocytogenes to Caco-2 cells is presented in Fig 3A. Adhesion

of L. monocytogenes was more reduced the longer the Caco-2 cells were pretreated with

LbcWT, with reductions of 3.29%, 4.51%, and 12.96% recorded for 4, 16 and 24 h pre-exposure

times, respectively. Significant reductions due to LbcWT were recorded after 4 h (p = 0.0007)

and 16–24 h (p<0.0001). Improved reductions were obtained due to pre-exposure to recombi-

nant L. casei strains, with reduced levels of 14.36% and 18.58% after 1 h, as well as of 57.66%

and 61.52% after 24 h, recorded for LbcInlAB and LbcLAP, respectively. Contrary to what was

observed for LbcWT, significant reductions in adhesion (p<0.0001) were obtained for LbcInlAB

and LbcLAP for all exposure periods. Furthermore, even though prolonged exposure to either

of the recombinant L. casei strains enhanced inhibition of adhesion, it was interesting to

observe that pre-exposure to LbcLAP maintained significantly higher reduction levels than

LbcInlAB throughout the 24 h (p<0.0001) period.

Similar trends were observed for invasion (Fig 3B) and translocation (Fig 3C) of Caco-2

cells by L. monocytogenes subsequent to their prolonged pre-exposure to L. casei strains. Pre-

exposure of the Caco-2 cells to LbcWT for 1 to 16 h showed no significant reduction of invasion

(p = 0.3088); however, the 24-h exposure time resulted in a significant reduction (p<0.0001)

(Fig 3B). Translocation of L. monocytogenes was significantly reduced (p<0.0001) by this strain

from 1 h up to 24 h pre-exposure times (Fig 3C). No significant reduction in invasion was

obtained due to pre-exposure of the Caco-2 cells to LbcInlAB or LbcLAP for 1–4 h, while the sig-

nificant reduction (p<0.0001) was evident for 16 h to 24 h pre-exposure period to these

InlAB-expressing Lactobacillus prevents infection under simulated intestinal conditions
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strains. Similarly, when comparing the recombinant L. casei strains, there were no significant

differences at 1 and 4 h pre-exposure, however, they exhibited significant differences after 16

and 24 h pre-exposure (p<0.0001). Pre-exposure to LbcInlAB and LbcLAP for 24 h showed sig-

nificant (p<0.0001) reductions of L. monocytogenes invasion, with 48.96% and 32.22% reduc-

tions recorded for LbcInlAB and LbcLAP, respectively (Fig 3B).

For translocation assays (Fig 3C), after 24 h of pre-exposure, reductions of 17.81% and

15.67% were recorded for LbcInlAB and LbcLAP, respectively. Prolonged exposure of the Caco-2

cells to the recombinants showed an even significantly (p<0.0001) enhanced reduction of

translocation. Overall, the results indicate that the longer the Caco-2 cells were pre-exposed to

L. casei strains before their infection with L. monocytogenes, the more adhesion, invasion, and

translocation of L. monocytogenes were reduced.

Cytotoxicity of L. monocytogenes to Caco-2 cells in the presence of L. casei
strains

L. monocytogenes-mediated cytotoxicity to the Caco-2 was investigated (Fig 4) using the lactate

dehydrogenase (LDH) assay. In the absence of L. casei strains, L. monocytogenes treatment for

1 h induced 70.25% cytotoxicity to Caco-2 cells. Pre-exposure of the cells to L. casei strains

resulted in a reduction of cell cytotoxicity. L. monocytogenes induced 63.7% and 65.42% cyto-

toxicity levels after 1 h and 24 h, respectively, when Caco-2 cells were pre-exposed to LbcWT

while 8.45% and 30.45% cytotoxicity levels were recorded after pre-exposure to LbcInlAB for 1

and 24 h, respectively (Fig 4). When the cells were pre-exposed to LbcLAP for 1 and 24 h, L.

monocytogenes induced only 0.34% and 18.25% cytotoxicity levels for these exposure periods,

respectively. These data indicate that recombinant L. casei strains provide significant protec-

tion (p<0.0001) against the cytotoxic effect of L. monocytogenes than LbcWT.

Epithelial tight junction integrity analysis

The integrity of the Caco-2 cells infected with L. monocytogenes alone or after their exposure

to L. casei strains in the FaSSIF was measured using the transepithelial electrical resistance

(TEER) (Fig 5) and DextranFITC (Fig 6) analyses. The results obtained for both analyses com-

plemented those for cytotoxicity test. When the Caco-2 cells were pre-treated with L. casei
strains for all exposure periods tested, there were lower TEER reduction changes than that of

Fig 3. Inhibition of Listeria monocytogenes (Lm) adhesion (A), invasion (B) and translocation (C) by L. casei strains (LbcWT, LbcInlAB and LbcLAP) over

time. Caco-2 cells were pre-exposed to the L. casei strains for 1, 4, 16 and 24 h before infection with Lm for 1 h for adhesion and invasion and 2 h for

translocation. Data are averages of three experiments run in duplicates. Error bars are standard deviations of averages of the three independent experiments.

For each time point bars marked with different letters (a, b, c, d, e, f, g, h, I, j, k, l) indicate significant difference at p<0.05.

https://doi.org/10.1371/journal.pone.0220321.g003
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cells treated with L. monocytogenes alone (Fig 5). TEER reduction changes were also lower due

to pre-exposure to recombinant L. casei strains than that due to their wild type counterpart.

When comparing recombinant strains, TEER reductions were lower for LbcLAP than LbcInlAB.

These results showed that under simulated intestinal conditions, recombinant L. casei strains

protected the integrity of tight junctions between the Caco-2 cells, with LbcLAP showing better

protection than LbcInlAB. However, as was also observed for cytotoxicity analysis, prolonged

exposure of Caco-2 cells to the probiotics in FaSSIF had negative effects on Caco-2 cells as it

resulted in higher TEER reductions when compared to shorter exposure periods. Nevertheless,

even after 24 h, the TEER reductions for Caco-2 cells pre-exposed to L. casei strains were still

lower than that of L. monocytogenes treatment alone.

The results of the DextranFITC permeability analysis indicated that pre-treatment of the

Caco-2 cells with L. casei strains reduced their permeability induced by L. monocytogenes since

the amount of DextranFITC recovered from the basal chamber of the transwell plate was always

higher for cells infected with L. monocytogenes alone than that for those pre-exposed to L. casei
strains (Fig 6). Comparing the amount of dye recovered in the basal chamber for cells pre-

exposed to L. casei strains, recombinants (LbcInlAB and LbcLAP) showed better protection than

LbcWT, however, LbcLAP showed better protection than LbcInlAB. These differences are in

agreement with those found in the inhibition of translocation and the TEER reduction tests,

meaning that LbcLAP was better at protecting the integrity of Caco-2 cells under simulated

intestinal conditions. The amount of dye recovered increased with an increase in the duration

of exposure to L. casei strains, with levels higher after 24 h than after 2 h for all the strains.

These results confirmed observations from the cytotoxicity and TEER reduction assays, which

Fig 4. Cytotoxicity of Listeria monocytogenes (Lm) on Caco-2 cells pre-exposed to L. casei over time. Cytotoxicity

value for L. monocytogenes treatment in the absence of L. casei strains was 70.25%. Data are averages of three

experiments run in duplicates. Error bars are standard deviations of averages of the three independent experiments.

Bars marked with different letters (a, b, c, d, e, f) indicate significant difference at p<0.05.

https://doi.org/10.1371/journal.pone.0220321.g004
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showed that prolonged exposure of Caco-2 cells to the L. casei strains in FaSSIF affected them

negatively.

Discussion

There is a dire need for safe alternative methods for the prevention or treatment of foodborne

diseases due to the ever-increasing development of microbial resistance to antibiotics. Inacti-

vated or attenuated pathogens were initially used as vaccines; however, the risks associated

with their use sparked an increased interest in using safe nonpathogenic bacteria as a substitute

[15]. These risks include possible reversion of the attenuated pathogen to virulent phenotypes

in hosts as well as the possibility for becoming virulent, especially in immunocompromised

individuals [15,37]. Probiotics have been reported to offer beneficial health-promoting effects

on the host and are generally regarded-as-safe (GRAS), attributes that predispose them as an

attractive alternative [38]. The use of probiotics for inhibition of pathogens has been reported

in the literature, however, with inconsistent outcomes whereby in certain cases, they have been

reported to be less effective against some pathogens. In an effort to eliminate or lessen the limi-

tations of conventional probiotics and enhance the efficacy of probiotics against pathogens,

probiotic bioengineering, which is used to design and develop recombinant probiotic strains

harboring certain virulence factors of the targeted pathogen, is currently being explored.

We used probiotic L. casei strain for bioengineering since it does not possess any virulent

genes and has been used as probiotic before [39]. We used pLP401T as a vector to clone and

express InlAB and this vector has been used before [21,40] and the recombinant L. casei strains

exhibited desired beneficial effects compared to the wild type strain. Furthermore, the recom-

binant strains did not exhibit any cytotoxic response in the in vitro experiments [21,26]

Fig 5. Caco-2 cell permeability analysis using transepithelial electrical resistance (TEER) in simulated intestinal

conditions. TEER reduction by L. monocytogenes in the absence of L. casei strains was 20.5%. Bars marked with

different letters (a, b, c, d, e, f, g, h) indicate significant difference at p<0.05, error bars are standard deviations of

average TEER reductions of the three independent experiments.

https://doi.org/10.1371/journal.pone.0220321.g005
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including this study suggesting these recombinant strains possibly does not have negative

effect. However, animal studies are needed to fully validate their health beneficial effects. For

successful application of recombinant probiotic strains, it is necessary to design and construct

new suitable expression vectors that will not contain antibiotic markers for selection, prefera-

bly integrative vectors.

These genetically engineered probiotics, depending on the virulence genes they express and

their mechanism of action can be used as either prophylactics or therapeutics for control of the

specific pathogens. Although there have been concerns regarding probiotic bioengineering, it

was reported that the probiotics retain their GRAS status even after the expression of heterolo-

gous genes [41].

During the infection process, L. monocytogenes employs the LAP for its adhesion and trans-

cellular migration across the epithelial barrier [5–7] and invasion proteins, InlA and InlB to

invade a wider range of mammalian cells [3]. Therefore, in order to construct a probiotic strain

with an enhanced ability for targeted control of L. monocytogenes, we have recently cloned and

expressed InlAB into L. casei which showed enhanced ability to adhere to, invade and translo-

cate through Caco-2 cells in vitro compared to that of the wild type strain [26]. Internalins

belong to a group of surface exposed leucine rich repeat proteins. They comprise of N-terminal

cap domain and also harbour both an N-terminal signal peptide and a C-terminal LPxTG

motif followed by a hydrophobic transmembrane region, marking them as extracellular pro-

teins, covalently attached to the bacterial cell wall peptidoglycan [42]. Cloning of inlAB using

pLP401T allowed anchoring and surface expression of InlAB on the recombinant LbcInlAB

strain [26,34].

Fig 6. Tight junction integrity analysis using DextranFITC permeability assays. DextranFITC recovery after exposure

to L. monocytogenes alone was 3.72± 0.03%. Bars marked with different letters (a, b, c, d, e, f) indicate significant

difference at p<0.05, error bars are standard deviations of average DextranFITC recovered from the three independent

experiments.

https://doi.org/10.1371/journal.pone.0220321.g006

InlAB-expressing Lactobacillus prevents infection under simulated intestinal conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0220321 July 29, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0220321.g006
https://doi.org/10.1371/journal.pone.0220321


One shortcoming of our earlier study is that the experiments were performed in vitro using

the Caco-2 cells grown and maintained in the standard cell culture media, DMEM supple-

mented with fetal bovine serum. In its disease progression, L. monocytogenes has to overcome

diverse suboptimal microenvironments that usually constitute the host’s defense system [43]

in order to colonize the host GI tract and cause infection. These conditions include but are not

limited to low acid in the stomach and high bile concentration in the small intestine. In an

effort to better understand the epithelial infection processes of L. monocytogenes as influenced

by the recombinant L. casei strains, in the current study, we investigated the effect of LbcInlAB

on the interaction between L. monocytogenes and Caco-2 cells in FaSSIF. Gamboa and Leong

[44] reported that SIF has osmolality that is similar to that of human cells thus making this

fluid a better medium to be used in in vitro intestinal model. The results in Fig 1 shows that

expression of InlAB and LAP by the recombinant LbcInlAB and LbcLAP exhibited an enhanced

adhesion (versus L. monocytogenes and LbcWT), invasion and translocation as opposed to

LbcWT. The increased adhesion of recombinant strains when compared to L. monocytogenes is

potentially due to high plasmid copy numbers in the recombinants. However, it was worth

noting that LbcLAP showed a better adhesion capability as opposed to LbcInlAB, which exhibited

superior invasion potentials instead. These results are in correlation with the function of the

LAP and InlAB genes in the pathogen adhesion and invasion. Guimarães et al. [45] cloned and

expressed the invasion gene InlA into Lactococcus lactis and reported that the recombinant

showed an enhanced ability to invade epithelial cells. In a different study, Koo et al. [21] cloned

and expressed the LAP into probiotic Lactobacillus paracasei and reported that the resultant

recombinant strain exhibited enhanced adhesion to the Caco-2 cells. Although these studies

reported the enhancement of probiotics through genetic engineering, the cells that they used

were maintained in media that supported the growth of the epithelial cells, which is undesir-

able in such studies. In the current study, we used the FaSSIF, which does not stimulate the

growth of epithelial cells, therefore presents a better simulation of the in vivo intestinal condi-

tions when compared to the abovementioned studies.

Researchers elsewhere have investigated the intestinal phase of L. monocytogenes infection

process in artificial gastrointestinal fluid broth systems [46–48]. These studies reported on the

behavior of L. monocytogenes when it was introduced on its own to these conditions. In the

current study, we investigated the intestinal infection phase of L. monocytogenes in FaSSIF in

the presence of L. casei strains. We looked at the ability of the L. casei strains to competitively

exclude L. monocytogenes using three different mechanisms: competitive adhesion, inhibition,

and displacement of adhesion, under simulated intestinal conditions (Fig 2). The results

revealed that during competitive adhesion and inhibition of adhesion, adhesion of L. monocy-
togenes to Caco-2 cells was reduced by the L. casei strains, with recombinant LbcInlAB and

LbcLAP exhibiting an enhanced reduction compared to LbcWT. Our results were in agreement

with previous studies that reported on the competitive exclusion of pathogens. It has been

shown that some probiotics share binding specificities with some pathogens [49,50], making it

possible for direct competition between the probiotics with specific pathogens for receptor

sites on the host cell [51]. Lee and Puong [52] reported that the inhibition of pathogens by pro-

biotics could be due to the interaction of specific adhesins and receptors present in both probi-

otic and pathogen, affording the ability to compete for attachment to the same receptors. It has

to be highlighted that although our study investigated the intestinal phase of L. monocytogenes
infection processes in presence of recombinant L. casei strain, it still does not sufficiently simu-

late the intestinal conditions, specifically with regard to the presence of other intestinal micro-

biota, which may influence the results currently reported. An efficient platform for

deciphering clearer conclusions pertaining to the actual effects of the recombinant L. casei
strain on L. monocytogenes intestinal infection phase will be through the animal studies in
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these missing inhabitants of the GIT will be present. Converse to the results for competitive

adhesion and inhibition of adhesion, all the L. casei strains failed to displace L. monocytogenes
cells that had already adhered to Caco-2 cells similar to previous reports [53,54]. This observa-

tion negates the suitability of the recombinant L. casei strains as a therapeutic intervention for

L. monocytogenes infection.

Previously, Barmpalia-Davis et al. [55] reported that artificial gastrointestinal conditions

closely simulate the dynamics of GIT. Bernbom et al. [56] reported that in order to eliminate

the influence of the indigenous microflora during pathogenesis studies and thereby simplify

results interpretation, in vitro models of the intestinal system can be used. Taking these studies

into consideration, we further examined how the presence of L. casei strains affected the differ-

ent stages in the infection cycle of L. monocytogenes under simulated intestinal conditions over

various exposure times (Fig 3). Prolonged exposure of the Caco-2 cells to L. casei strains

showed enhanced inhibition of L. monocytogenes. Koo et al. [21] also reported that prolonged

exposure of the Caco-2 cells to recombinant L. paracasei expressing LAP showed enhanced

inhibition of L. monocytogenes adhesion, invasion, and translocation. Furthermore, it was

worth noting that in all stages of infection the recombinant L. casei strains were better at inhib-

iting L. monocytogenes than LbcWT. Consequent to studying the inhibition of translocation, we

also monitored the tight junction integrity using electrical resistance (Fig 5), and DextranFITC

(Fig 6) permeability assays in the presence of L. casei strains. In agreement to the results

observed for the inhibition of adhesion, invasion, and translocation, tight junction integrity of

Caco-2 cells was better preserved in the presence of L. casei strains under simulated intestinal

conditions. L. monocytogenes translocation has been reported to potentially occur in the stom-

ach [57], the small intestine [6,58–60] and the large intestine [61] in murine models. The

enhanced protection of the tight junction by the recombinant L. casei strains in simulated

intestinal conditions will result in a reduction of L. monocytogenes translocation, therefore,

inhibiting Listeria infection. Our findings reported here are likely to be a closer reflection of

the effects of the recombinant LbcInlAB on intestinal disease progression of L. monocytogenes in
vivo. Nevertheless, this does not eliminate the need for animal studies.

In summary, the current study shows that the recombinant L. casei strain expressing InlAB

can minimize the interaction of L. monocytogenes with the Caco-2 cells under simulated intes-

tinal conditions. Additionally, it shows that different stages (adhesion, invasion, and transloca-

tion) of the L. monocytogenes infection cycle can be targeted depending on the virulence genes

cloned and expressed. Future in vivo studies are recommended to confirm the purported

effects of the L. casei strains under the actual conditions. These studies should address among

others, safety issues associated with the use of the recombinant strains and investigate the

apparent reduction of disease progression and/or disease severity in the presence of other GIT

microorganisms.
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