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Abstract

Background: Tuberculosis has become a major health problem being the second leading cause of death
worldwide. Mycobacterium tuberculosis secretes a virulence factor, protein tyrosine phosphatase B (mPTPB) in the
cytoplasm of host macrophage which suppresses its natural innate immune response and helps the pathogen
survive and proliferate in the phagosome. The present study aims at indentifying potent inhibitors of mPTPB by
using computational approaches of ligand based molecular modeling and docking studies.

Results: A 3D QSAR model was developed using a set of benzofuran salicylic acid based mPTPB inhibitors with
experimentally known IC50 values. The model was generated using the statistical method of principle component
regression analysis in combination with step wise forward variable selection algorithm. It was observed that steric
and hydrophobic descriptors positively contribute towards the inhibitory activity of the ligands. The developed
model had a robust internal as well as external predictive power as indicated by the q2 value of 0.8920 and
predicted r2 value of 0.8006 respectively. Hence, the generated model was used to screen a large set of naturally
occurring chemical compounds and predict their biological activity to identify more potent natural compounds
targeting mPTPB. The two top potential hits (with pIC50 value of 1.459 and 1.677 respectively) had a similar
interaction pattern as that of the most potent compound (pIC50 = 1.42) of the congeneric series.

Conclusion: The contour plot provided a better understanding of the relationship between structural features of
substituted benzofuran salicylic acid derivatives and their activities which would facilitate design of novel mPTPB
inhibitors. The QSAR modeling was used to obtain an equation, correlating the important steric and hydrophobic
descriptors with the pIC50 value. Thus, we report two natural compounds of inhibitory nature active against mPTPB
enzyme of Mycobacterium tuberculosis. These inhibitors have the potential to evolve as lead molecules in the
development of drugs for the treatment of tuberculosis.

Background
Tuberculosis (TB) is an infectious disease caused by Myco-
bacterium tuberculosis (Mtb). It has become a major
health problem being the second leading cause of death
worldwide, after human immunodeficiency virus (HIV).
According to the Global Tuberculosis Report, 2012 by
World Health Organization, 8.7 million new cases of TB,

13% of which were co-infected with HIV and 1.4 million
deaths from TB were estimated in 2011. TB is most preva-
lent in Asia and Africa with India and China alone
accounting for about 40% of the global cases [1].
Mtb survives as an intracellular pathogen and replicates

in the macrophages of its host organism. It disrupts the
normal biochemical pathway of the phagosomes involved
in defense against intracellular pathogens by phosphoryla-
tion or dephosphorylation of the host’s proteins. A variety
of cellular functions like proliferation, migration, apopto-
sis, immune response etc. require post translational
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modification of proteins by the process of tyrosine phos-
phorylation. In normal physiological conditions a balance
is maintained between the activity of protein tyrosine
kinases (PTKs) and protein tyrosine phosphatases (PTPs).
Impairment of this controlled regulation may lead to
anomalous tyrosine phosphorylation, which is believed to
be responsible for many human diseases like cancer, dia-
betes and auto immune disorders among others. Thus,
PTPs and PTKs are important targets for many diseases
with high therapeutic value [2-5]. Mtb secretes a virulence
factor, protein tyrosine phosphatase B (mPTPB) in the
cytoplasm of host macrophage which suppresses the
natural innate immune response of the phagosome against
the TB infection by blocking the ERK1/2 and p38
mediated IL-6 B production and preventing host cell
apoptosis by activating the Akt pathway [6,7]. This pre-
vents the phagosome from maturating into a phagolyso-
some for the destruction of invaded pathogen. To
investigate the role of PTPB in pathogenesis of Mtb, a
mutant strain of PTPB was created and the ability of the
parent and the mutant strain to survive in the host macro-
phages was compared. In this experiment, it was found
that the disruption of mPTPB gene resulted in 70-fold
reduction in the bacterial load in the spleen of guinea pigs.
Complementary strain, obtained after reintroducing the
gene into the mutant strain, regained the ability to infect
the guinea pigs at rates comparable to the parent strain
[8]. Beresford et al. also studied the growth of mycobac-
teria in resting macrophages in order to mimic the infec-
tion in a susceptible host (where IFNg activation may be
impaired). Their study showed that in the absence of inhi-
bitors of mPTPB, intracellular growth of mycobacterium
increased. However when treated with a potent inhibitor,
the intracellular mycobacterial growth decreased substan-
tially [9]. All these studies suggest that mPTPB is a poten-
tial target against which inhibitors can be designed to
develop new and effective anti-tuberculosis agents.
Today many drugs are available for clinical use to treat

TB, but the current treatment lasts for six to nine months.
During the course of treatment, the pathogen develops
resistance against these drugs which results in Multi-Drug
resistant Tuberculosis (MDR TB) and eventually lead to
untreatable extensively drug resistant Tuberculosis (XDR
TB) [10]. To overcome the problem of growing drug resis-
tance, identification of new targets which are essential for
survival and replication of the pathogen has become an
urgent need. For the purpose of finding drugs against
novel targets we require fast and reliable computational
techniques for cost-effective evaluation of large virtual
databases of chemical compounds in order to identify a
limited set of candidates which can be synthesized and
examined experimentally for their biological activity.
Quantitative structure activity relationship (QSAR) is a
powerful approach being used to establish a correlation

between the physiochemical properties of the chemical
compounds and their biological activity to obtain a reliable
statistical model. This model serves as a valuable tool for
the design of new chemical entities and to predict their
activity. The QSAR model so developed facilitates identifi-
cation of promising lead candidates, thus decreasing the
number of compounds required to be synthesized and
tested in vitro [11].
Zhou B et al., reported a benzofuran salicylic acid-

based mPTPB inhibitor (I-A09) which showed modest
potency and selectivity [6]. But the inhibitor was not
effective for therapeutic clinical use. The chemistry-
oriented approach was used to modify the core structure
of I-A09 to obtain a highly potent and selective mPTPB
inhibitor which also showed considerably good in vivo
efficacy [2]. Additional file 1 mentions benzofuran sal-
icylic acid derived compound series so developed along
with their IC50 values. We have used this compound ser-
ies containing 18 compounds for building the 3D-QSAR
model and to identify the molecular features essential for
effective interaction between the inhibitors and the active
cleft of the mPTPB enzyme. The model thus generated
using the same series of representative inhibitors was
then used to predict the activity of a large dataset of nat-
ural compounds. The compounds whose predicted biolo-
gical activity was greater than the most potent inhibitor
of the congeneric series were then analyzed using in silico
docking studies to elucidate their mode of interaction
with the mycobacterium phosphatase.

Materials and methods
Data set
A data set consisting of 18 novel inhibitors of mPTPB
derived from 6-hydroxy-benzofuran-5-carboxylic acid
scaffold was taken from a previously reported study [2].
These inhibitors were highly selective for mPTPB over
all other PTPBs which were examined. The reported
biological activity data (IC50 values in μM) for these
inhibitors was converted into logarithmic scale (pIC50)
to be used for QSAR study.

Molecular modeling study
The 2D structures were sketched using VlifeEngine of
VLife MDS and then converted to 3D form. The 3D struc-
tures so obtained were optimized to attain a stable confor-
mation with minimum energy using force field batch
minimization platform of VlifeEngine. Merck Molecular
Force Field (MMFF) and Gasteiger charges were used with
maximum number of cycles as 10000, convergence criteria
(root mean square gradient) as 0.01 and dielectric constant
(for vaccum) as 1.0. A structure common to all 18 inhibi-
tors was deduced and used as template (Figure 1a) to align
all the geometry optimized mPTPB inhibitors. Alignment
of all the inhibitors to the template molecule taking
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compound 10 (comp10) as the reference molecule is
shown in Figure 1b. The whole study was performed on
Intel® Xeon (R) CPU E31230 @ 3.20 GHz with 8.00 GB
RAM using Vlife MDS, Molecular Design Suite, version
4.3, supplied by Vlife Sciences, Pune, India [12].

Computation of values for descriptors and data selection
for training and test set
A molecular field was computed for a grid of points in
space around the aligned molecules using Merck mole-
cular force field. Descriptors representing hydrophobic,
electrostatic and steric energies between the atoms of
the aligned molecules and a methyl probe with +1
charge placed at each lattice point of the grid were com-
puted. These molecular descriptors describe how each of
the inhibitory molecules binds to the target in its active
site. For the external validation of the model, the data
set was divided into training and test set using the
approach of random selection to avoid any kind of bias.
The training set (75% of the total molecules in the data
set) with known biological activity was used to generate
the 3D QSAR model. The test set, compounds of which
were not included for building the model, was used to

challenge the generated model to assess its predictive
effectiveness.

3D QSAR model building
The model was generated using statistical method of
principle component regression analysis (PCA) in con-
junction with stepwise forward variable selection algo-
rithm. pIC50 value was used as dependent variable and
the descriptors as independent variables. Software gener-
ates a large number of molecular descriptors that can be
used for the QSAR study. Because of this huge data, the
choice of selection of appropriate descriptors having a
considerable role in governing the biological activity of
interest becomes difficult. Thus, the success of QSAR
model greatly depends on the statistical method being
employed for the model generation. PCA method is
used when the number of molecular descriptors is much
more than the number of observations in the system. It
carefully excludes the group of variables with high inter-
nal correlation. It efficiently reduces the number of
independent variables to be used in the QSAR model by
removing all possible redundancy and limiting the vari-
ables with descriptor values to a smaller set of uncorre-
lated variables [13]. Various parameters were set for the
execution of stepwise principle component regression
analysis. The cross correlation limit was set as 0.5, maxi-
mum number of variable in final equation as 2 (n/5,
where n is number of compounds in training set), term
selection criteria as r2, variance cut-off as 0 and scaling
as auto scaling.

Validation of the 3D QSAR model
To establish a QSAR model two types of validations are
required - internal and external. For internal validation
leave-one-out cross validation method was used. In this
method one observation was taken as validation data
and the rest of the observations made up the training
set. The coefficients of QSAR model were estimated
using this new training set which were then used for
predicting the activity of the test compound. The proce-
dure was repeated until all the compounds had once
served as a test compound. The predictive ability of the
model was then assessed using the cross validated r2

and q2 [13]. External validation was done by predicting
the activities of the compounds of the test set which
were not used for model generation.

Prediction of biological activity of a large data set of
natural compounds using the generated 3D QSAR model
A data set consisting of 1,69,109 natural compounds by
10 different suppliers was obtained from ZINC database
[14] in SMILES format. The pIC50 values were predicted
for these natural compounds using the generic predic-
tion platform of VlifeMDS. The prediction was done

Figure 1 (a) Structure of template used for template based
alignment of optimized molecules (b) 3D alignment of
optimized mPTPB inhibitors.
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based on the QSAR model generated using the congene-
ric series consisting of 18 mPTPB inhibitors. The most
potent compound in this series had a pIC50 value of
1.42. So the natural compounds with predicted activity
above this threshold were selected for further analysis as
they could prove to be more potent and selective novel
candidates to be used as mPTPB inhibitors.

Protein and ligand preparation for docking studies
The crystal structure of protein tyrosine phosphatase B
of Mtb origin was obtained from Protein Data Bank
[PDB ID: 1YWF] [15]. The protein structure was pre-
processed by removing water molecules and all non-
bonded heteroatoms using Accelyrs Viewerlite 5.0 [16].
This processed protein was further prepared using
Schrödinger’s protein preparation wizard [17]. Hydrogen
were added and optimized to the structure. In further
preparation steps bad contacts were removed, bond
lengths were optimized, disulfide bonds were created,
protein terminals were capped and selenomethionine
residues were converted to methionine. The missing resi-
dues were fixed manually. The natural compounds with
predictive pIC50 values above 1.42 were prepared for
docking studies to study their mode of interactions with
mPTPB. LigPrep’s ligand preparation protocol was used
to prepare these natural compounds. It generated differ-
ent tautomeric, stereochemical and ionization variants of
the small molecules along with energy minimization and
flexible filtering.
A grid was generated at the active site of the prepared

protein structure using the Glide docking module of
Schrödinger [18]. The active site of PTPs lies in the P loop
motif. CysX5Arg defines the consensus sequence of this
loop. Catalytic Arg acts as a general acid in the reaction
mechanism. Presence of histidine just before the active
site cysteine makes it a better nucleophile. Therefore, resi-
dues His 160-Arg 166 constitute the active site of mPTPB
[19]. Prepared natural compounds were subjected to dock-
ing using Glide’s extra precision docking protocol. The
two top scoring compounds were investigated to study
their molecular interactions with the protein molecule.
The hydrophobic interactions and H-bonds were calcu-
lated using the Ligplot program [20]. H-bonds were taken
into consideration when the distance between acceptor-
donor atoms was less than 3.3 Å, with maximum hydro-
gen-acceptor atom distance of 2.7Å and acceptor-H-donor
angle greater than 90°.

Results and discussion
QSAR molecular modeling
QSAR study requires ligands with experimentally mea-
sured values of the desired biological activity. The ligands
should ideally be a part of a congeneric series but should
also possess adequate chemical variability to have a diverse

range of activity. Additional file 1 shows 2D structures of
the 18 mPTPB inhibitors of the congeneric series along
with their IC50 and pIC50 values. After optimization and
template based alignment of these compounds, descriptors
representing steric, electrostatic and hydrophobic energies
at all lattice points of the grid around the molecules were
computed. Training and test sets were selected for
6-hydroxy-benzofuran-5-carboxylic acid derivatives using
random data selection method. 75 % of the total com-
pounds i.e., 13 molecules were selected for the training set
and the rest comprised the test set. The two sets are con-
sidered appropriate if they follow unicolumn statistics i.e.,
maximum of the test set is less than maximum of training
set and minimum of the test set is greater than of training
set (Table 1). In this study, these conditions were fulfilled
for an appropriate QSAR analysis [21].
This made sure that the test set is interpolative and is

derived from the min-max range of the training set. Step-
wise forward algorithm in combination with principle
component regression analysis (SW-PCA) was used to
generate the model. The model developed by SW-PCA
using random data selection method is shown in table 2.
Table 3 shows the minimum recommended values for
various statistical measures used to evaluate the model.
Data fitness plot for the generated model is shown in
Figure 2. The plot reflected its effectiveness as all the
points lied close to the regression line. Figure 3a and 3b
illustrates the radar plot of observed versus predicted bio-
logical activity values for both training and test sets of the
developed model. The model can be used for external
predictions as it has a high predictive correlation coeffi-
cient value of 0.8006.

Table 1 Unicolumn statistics for the training and the test
set.

Column Name Maximum Minimum

Training Set 1.4200 -1.3400

Test Set 0.8900 -0.7100

Table 2 Statistics of the significant model generated
using SW-PCA.

Parameters Statistical Value

Training Set Size (n) 13

Test Set Size 5

Degree of freedom 11

r2 0.9170

q2 0.8920

F test 121.5937

r2 se 0.2586

q2 se 0.2950

pred_r2 0.8006

pred_r2se 0.3354
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The predicted biological residual activity (ΔpIC50=
pIC50_experimental- pIC50_predicted) of benzofuran sal-
icylic acid-based derivatives as evaluated by QSAR models
is illustrated in Figure 4. The contour map (Figure 5a) pro-
vided further understanding of the relationship between
structural features of 6-hydroxy-benzofuran-5-carboxylic
acid derivatives and their activities which could be applied
to design newer potential inhibitors of mPTPB.

Interpretation of the built 3D QSAR model
The model had a good internal as well as external pre-
dictive power as indicated by the q2 value of 0.8920 and

predicted r2 of 0.8006 respectively. It was observed that
steric and hydrophobic descriptor at grid points, S_1214
and H_1071 play important role in imparting inhibitory
activity against mPTPB. Figure 5b illustrates the contri-
bution of these descriptors in controlling the activity of
the inhibitors. The correlation between the molecular
descriptors representing the physiochemical parameters
of the ligands and their biological activity is given by the
following equation:

pIC50 = 0.0309 S1214 + 1.8424 H1071 − 1.6442

Table 3 Statistical measures with their minimum recommended values.

Statistical measures Minimum recommended values

K number of descriptors in a model (statistically n/5 descriptors in a model)

Df degree of freedom (n-k-1) (higher is better)

q2 cross-validated r2 (>0.5)

q2se Error term for q2

pred_r2 r2 for external test set (>0.5)

pred_r2se Error term for pred_r2

Figure 2 Data fitness plot for the generated 3D QSAR model.

Figure 3 Graph of actual and predicted biological activity for (a) training (b) test set.
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The positive coefficient of S_1214 indicated that posi-
tive steric potential is preferred in that region and hence
substitution of bulky groups will result in increased
activity of the compounds.

Hydrophobic field descriptor (H_1071) also had a positive
coefficient which suggested that the presence of more
hydrophobic groups in this region would enhance the activ-
ity of the inhibitors. Presence of charged or polar groups
around that grid point is not preferred for effective inhibitor
design. The model provided a 3D fingerprint of the com-
pounds which helped in developing a relationship of physio-
chemical parameters with structure and biological activity,
making it capable of predicting activities of novel com-
pounds. Thus, the 3D QSAR model generated can be used
for fishing out novel natural compounds with inhibitory
activity against mPTPB.

Prediction of biological activity for a large dataset of
natural compounds
A special subset of ZINC database consisting of 1,69,109
small molecules of natural origin was downloaded. The
generated model had the statistical characteristics which
proved it to be quite effective for external predictions.
The generic prediction platform in 3D QSAR module of
VlifeMDS was used to predict the activity values of
these natural compounds. Table 4 lists the natural com-
pounds which had the predicted pIC50 value greater
than that of the most potent mPTPB inhibitor (comp10
with pIC50 of 1.42) of the congeneric series.

Interaction analysis of the predicted natural compounds
using in silico docking studies
The natural compounds with predicted pIC50 value
greater than 1.42 were screened against the crystal
structure of mPTPB using extra precision docking pro-
tocol of Glide. The two top scoring compounds, shown
in Figures 6a and 6b, were studied to find their mode of
interactions with the target protein. Interactions
between comp10 (pIC50 = 1.42) and mPTPB were taken
as reference (Figure 7a). Comp10 was forming 2 strong
hydrogen bonds with Arg166 and Lys164 of mPTPB. It
also showed hydrophobic interactions with various sur-
rounding residues of the phosphatase namely Phe68,

Figure 4 Predicted residual activity of the derived compounds as evaluated by the QSAR model.

Figure 5 (a) 3D-alignment of molecules with the important
steric and hydrophobic points contributing to the biological
activity of the ligands (b) Graph showing the contribution of
molecular descriptors in controlling the activity of the
inhibitors.
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Ala162, Met206 and Leu227. The residues involved in
van der waal interactions included Ser57, Glu60, Cys160
and Asp165. The first compound DELTA 2-trans Eico-
senoic Acid had an activity value of 1.459. It was found
forming hydrogen bond with residues Arg63 and
Arg210, hydrophobic interactions with Phe80, Pro81,

Met126, Phe133, Ile203, Met206, Leu227, Val231 and
Leu232 and van der waal interactions with Lys164,
Asp165 and Arg166 (Figure 7b).
The second compound S-((3S,10R,13R)-10,13-dimethyl-

17-octyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
1H-cyclopenta[a]phenanthren-3-yl) nonanethioate also
showed good binding affinity for mPTPB. It had an activity
value of 1.677. Arg63 was involved in hydrogen bond for-
mation while residues participating in hydrophobic inter-
actions were Phe80, Pro81, Leu83, Phe98, Tyr125,
Met126, Phe133, Arg136, Phe161, Met206, Val231 and
Leu227 and van der waal interactions were Ser57, Glu60,
His94, Lys164, Asp165 and Arg166 (Figure 7c). For ease in
writing, these two screened compounds have been hence-
forth referred to as ESA and DTP. It was observed that all
the three compounds had almost similar orientation or
docking conformation, with ligands docked at the same
position and interacting with the residues of P loop motif
which forms the active site of mPTPB (Figure 7d). But the
interactions of ESA (XP docking score = -7.62 kcal/mole)
and DTP (XP docking score = -7.59 kcal/mole) with the
mycobacterium phosphatase were stronger in comparison
to comp10 (XP docking score = -6.75 kcal/mole). ESA was
occupying more space in the cavity and was involved in
more hydrophobic interactions, indicating a much stron-
ger binding. DHP also showed intense binding by forma-
tion of hydrogen bond and multiple hydrophobic and van
der waal interactions with the residues of the same cavity
where comp10 fits in. Hence we can strongly suggest that
these two compounds can potentially inhibit mPTPB
enzymatic activity.

Conclusion
A 3D QSAR model was generated for a congeneric series
of 6-hydroxy-benzofuran-5-carboxylic acid derivatives
having inhibitory activity against mPTPB. The model was
generated using statistical method of principle compo-
nent regression analysis in conjunction with stepwise
variable selection method. The statistical measures r2, q2,
F-test and standard error for the training set and the
pred_r2 for the test set fulfilled the conditions for a
model to be considered robust and predictive. The devel-
oped model was used to predict the activity values for a
large set of natural compounds. The top scoring com-
pounds were analyzed to find their mode of interactions
with the mycobacterium phosphatase. We finally
reported two natural compounds ESA and DTP which
have high activity values of 1.459 and 1.677 respectively.
They had a better affinity for mPTPB in comparison to
the most potent compound of the congeneric series with
pIC50 of 1.42, as observed from the docking score and
the interaction pattern between these compounds and
the mycobacterium protein. The present study provides
substantial evidence for considering these natural

Table 4 List of natural chemical compounds with their
pIC50 value predicted on the basis of the generated 3D
QSAR model.

S.No. ZINC IDs of natural compounds pIC50 value

1. ZINC08740008 1.800

2. ZINC08765494 1.413

3. ZINC12658654 1.904

4. ZINC20610445 1.473

5. ZINC38408096 1.605

6. ZINC70664813 1.956

7. ZINC70665093 1.677

8. ZINC70673869 1.639

9. ZINC72325052 1.624

10. ZINC70665574 1.504

11. ZINC59408720 1.503

12. ZINC70698850 1.452

13. ZINC02429300 1.623

14. ZINC09130210 1.571

15. ZINC67912863 2.198

16. ZINC67912866 1.791

17. ZINC70455089 1.771

18. ZINC70454956 1.766

19. ZINC59589328 1.528

20. ZINC32787454 1.459

21. ZINC04266010 1.700

22. ZINC03845145 1.575

23. ZINC68574485 1.550

24. ZINC03978366 1.548

Figure 6 Chemical structures of (a) first natural compound,
ESA (b) second natural compound, DTP.
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compounds as prospective leads against tuberculosis hav-
ing enhanced mycobacterium phosphatase inhibitory
activity and low toxicity to human cells. Thus, 3D QSAR
is an attractive discipline which not only provides graphi-
cal results that are often less attractive for scientific com-
munity but also has the ability to forecast the activity or
potency of compounds being considered for inhibition of
target protein. As QSAR approach already plays an impor-
tant role in lead structure optimization, it is anticipated
that it will soon become essential for handling large
amount of data generated using combinatorial chemistry.

Additional material

Additional file 1: This file includes the following table. The list of
novel mPTPB inhibitors along with their IC50 and pIC50 values
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