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Background
Biomedical named entity recognition (BioNER) is an important and challenging task for 
understanding biomedical texts. It aims to recognize named entities (NEs), such as dis-
eases, gene, species, etc., in biomedical texts and plays an important role in many down-
stream natural language processing (NLP) tasks, such as drug-drug interaction task [21, 
34] and knowledge base completion [38, 47]. Compared to named entity recognition in 
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the general domain, BioNER is considered to be more difficult due to the lack of large-
scale labeled training data and domain knowledge.

In the past decades, there have been many studies on BioNER, ranging from tradi-
tional feature based methods [4, 15–18, 20, 37] to recent deep learning based neural 
methods [5, 12, 19, 23, 32, 45]. Among the neural methods, the ones leveraging powerful 
encoders (e.g., biLSTM) achieve better results comparing with feature based methods 
because such encoders are good at modeling contextual information. More recently, pre-
trained models such as ELMo [30] and BERT [6] achieved state-of-the-art performance 
on many NLP tasks in the general domain. Therefore, some studies [13, 19] applied them 
to BioNER yet found that these models cannot perform as well as in the general domain 
when there is no domain-specific information integrated. Therefore, Lee et al. [19] pro-
posed a variant of BERT, namely, BioBERT, for the biomedical domain, which is pre-
trained on large raw biomedical corpora and achieves state-of-the-art performance in 
BioNER.

In addition to the powerful encoders, syntactic information has also been playing an 
important role in many previous studies to help recognize biomedical named entities [4, 
5, 20, 23, 37]. Intuitively, biomedical text often includes formal, well-structured, and long 
sentences, where syntactic information could be helpful because it can provide useful 
cues for recognizing NEs and thus help with the text understanding of NLP systems [36]. 
For example, Fig. 1 shows the parse tree of a sentence where the disease entity “Hunting-
ton disease” forms the object; thus, the boundary of a noun phrase can be a good cue 
for NER. Moreover, comparing with other types of extra resources, e.g., knowledge base 
[1, 24, 49], which are generally not publicly available or require human annotations, the 
syntactic information is easier to obtain through off-the-shelf NLP toolkits. Therefore, 
considering that the state-of-the-art BioBERT [19] does not leverage any syntactic infor-
mation, we propose to improve BioBERT by incorporating the syntactic information of 
the input text, which is obtained from the parsing results of off-the-shelf toolkits.

To incorporate syntactic information into BioNER methods, previous studies have 
tried several ways. In the feature engineering methods, researchers use syntactic infor-
mation to generate handcrafted features to help BioNER. For example, Song et al. [37] 
used part-of-speech (POS) and noun phrase tag features in a CRF-based BioNER system. 
In recent deep learning based methods, syntactic information is firstly represented by 
vectorized embeddings and then combined with word embedding through vector con-
catenation or element-wise summation, after which the resulting vector is fed into neu-
ral models to improve bioNER. For example, Luo et al. [23] used embedding vectors to 
represent syntactic information including POS and constituent labels, and concatenated 

Fig. 1  An example sentence. An example where the object noun phrase (“Huntington disease”) is a named 
entity. The labels under the words are BIO tags
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those vectors with word embeddings. The combined embeddings were then sent into a 
biLSTM-CRF model with an attention mechanism to detect chemical NE. Dang et al. [5] 
proposed a model named D3NER, where the embeddings of various informative syntac-
tic information are used to improve the results. Overall, previous approaches to leverage 
auto-processed syntactic information were limited to directly concatenating the embed-
dings of the syntactic information instances and the input words, without weighing the 
syntactic information instances in a specific context, where noisy information may hurt 
model performance. Therefore, we need to find a better method to leverage auto-pro-
cessed syntactic information.

To weigh the syntactic information instances and leverage the important ones to 
improve BioNER methods, key-value memory networks (KVMN) [26] could be poten-
tially useful, because it is demonstrated to be useful in leveraging extra information, e.g. 
knowledge base entities, to improve question answering tasks. In KVMN, the informa-
tion is represented by key-value memory slots, where the keys are used to compute the 
weights for values by comparing these keys with the input, and the values are weighted 
summed according to the resulting weights and then used to make predictions. In addi-
tion, although the KVMN is originally proposed for question answering tasks, its vari-
ants also demonstrate impressive performance in many NLP tasks, such as Chinese 
word segmentation [40], semantic role labeling [11], and machine translation [27]. This 
motivates us to explore the possibility of using KVMN to leverage the syntactic informa-
tion to improve BioNER.

Therefore, in this paper, we propose BioKMNER (KM stands for Key-value Memory 
network), which uses KVMN to incorporate syntactic information into the backbone 
sequence labeling tagger to improve BioNER. Specifically, we firstly use off-the-shelf 
toolkits to parse biomedical text sentences and extract three types of syntactic infor-
mation: namely, POS labels, syntactic constituents, and dependency relations. Then, for 
each word in the input sentence, in the KVMN, we use the keys to represent the con-
text features associated with the word and the values to denote the corresponding syn-
tactic information instances. Therefore, context features (keys) are used to compute the 
weights by comparing them with the input word, and syntactic information instances 
(values) are weighed accordingly. Finally, the weighted summed values are concatenated 
with the output of the encoder, where the resulting vector is fed into the decoder for 
prediction. In this way, the method can incorporate the pair-wisely organized context 
features and syntactic information instances obtained from the toolkits simultaneously. 
Different from previous studies that directly use noisy syntactic information instances by 
embedding concatenation, our BioKMNER weighs them in KVMN and thus reduces the 
effect of error propagation caused by the noisy parsing results. We experiment BioKM-
NER on six English benchmark BioNER datasets covering four different entity types 
(i.e., chemical, disease, gene/protein, and species). The results demonstrate the effective-
ness of our method for BioNER, where BioKMNER outperforms the BioBERT results 
reported by Lee et al. [19] on all datasets and achieves state-of-the-art results on four of 
them.
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Results
Datasets

We evaluate our methods on six English benchmark datasets that are widely used in pre-
vious studies [10, 12, 16, 19, 48]. These datasets focus on four different biomedical entity 
types: BC2GM dataset [35] and JNLPBA dataset [14] for gene/protein NER, BC5CDR-
chemical dataset [44] for chemical NER, NCBI-disease dataset [8] for disease NER, and 
LINNAEUS dataset [9] and Species-800 dataset [29] for species NER.

BC2GM BC2GM is a dataset used for the BioCreative II gene mention tagging task.1 
It contains 20,000 sentences from abstracts of biomedical publications and is annotated 
with 24,583 mentions of the names of genes, proteins and related entities. It has become 
the major benchmark for the NER of gene/proteins entity type [10, 12, 19, 31, 43, 48].

JNLPBA JNPBA is the dataset for the Joint Workshop on NLP in Biomedicine and its 
Application Shared task.2 It was organized by the GENIA Project based on the annota-
tions of the GENIA Term corpus and consists of 2404 publication abstracts. It is widely 
used for evaluating multi-class biomedical entity taggers.

BC5CDR-chemical BC5CDR is a dataset used for the BioCreative V Chemical Disease 
Relation (CDR) Task.3 It contains 1500 titles and abstracts from PubMed,4 where chemi-
cal and disease mentions are annotated by human annotators. Following previous studies 
[23], we only use the subset with chemical entities and denote it as BC5CDR-chemical.

NCBI-disease NCBI-disease contains 793 PubMed abstracts that are annotated with 
disease mentions and their corresponding concepts. There are 6,892 disease mentions 
from 790 unique disease concepts in this dataset and 91% of the mentions are mapped 
to a single disease concept. It has been a widely used research resource for the disease 
NER.

LINNAEUS The LINNAEUS dataset was created specifically for species named entity 
recognition and consists of 100 full-text documents. In the LINNAEUS dataset, all men-
tions of species terms were manually annotated and normalized to the NCBI taxonomy 
IDs of the intended species.

Species-800 Species-800 is a novel benchmark corpus for species entities, which is 
based on manually annotated abstracts. It comprises 800 PubMed abstracts that contain 
identified organism mentions. Because the abstracts are select from journals on 8 dif-
ferent categories, the diversity of Species-800 is high and thus it is more challenging for 
NER systems.

We follow the study of Lee et al. [19] to pre-process all datasets. In details, BC2GM, 
BC5CDR-chemcial, LINNAUES, and NCBI-disease datasets are pre-processed based on 
the schema of Wang et al. [43]; JNPBA is pre-processed by CoNLL format;5 and Spe-
cies-800 is pre-processed by Pyysalo.6 The statistics of all datasets in terms of the num-
ber of tokens, sentences, and entities are reported in Table 1.

1  https​://biocr​eativ​e.bioin​forma​tics.udel.edu/tasks​/biocr​eativ​e-ii/task-1a-gene-menti​on-taggi​ng/.
2  http://www.genia​proje​ct.org/share​d-tasks​/bionl​p-jnlpb​a-share​d-task-2004.
3  https​://biocr​eativ​e.bioin​forma​tics.udel.edu/tasks​/biocr​eativ​e-v/track​-3-cdr/.
4  https​://pubme​d.ncbi.nlm.nih.gov/.
5  https​://githu​b.com/spyys​alo/stand​off2c​onll.
6  https​://githu​b.com/spyys​alo/s800.

https://biocreative.bioinformatics.udel.edu/tasks/biocreative-ii/task-1a-gene-mention-tagging/
http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/
https://pubmed.ncbi.nlm.nih.gov/
https://github.com/spyysalo/standoff2conll
https://github.com/spyysalo/s800


Page 5 of 17Tian et al. BMC Bioinformatics          (2020) 21:539 	

Implementation

In the experiments, we use off-the-shelf NLP toolkits to generate syntactic informa-
tion, following the common practice in previous studies such as Mohit and Hwa [28], 
Tkachenko and Simanovsky [42], and Luo et  al. [23]. In our study, we focus on three 
types of syntactic information: POS labels, syntactic constituents, and dependency 
relations. We use Stanford CoreNLP Toolkits (SCT)7 [25], which is a well-known NLP 
toolkit  used in many studies  [33, 39], to obtain the POS tagging, constituency, and 
dependency parsing results of a given input sentence.

For the encoder, considering that BERT [6] and its variants [2, 3, 7, 19] achieve 
state-of-the-art performance on many NLP tasks, we use the variant for the medical 
domain, i.e., BioBERT [19], in our method. Specifically, we use both the base and large 
version of BioBERT8 and follow the hyper-parameters used by Lee et  al. [19] (i.e., for 
BioBERT-Base, there are 12 self-attention heads with 768-dimensional hidden vectors; 
for BioBERT-Large, the number of heads is 24 with 1024-dimensional hidden vectors). 
All parameters in the encoder are fine-tuned in training. For the KVMN module, the 
embeddings of all keys and values are randomly initialized, with their dimension match-
ing the dimension of hidden vectors in the BioBERT encoder. Besides, we follow the set-
ting of Lee et al. [19] to run the training process, where we do not use the “alternate” 
annotations for the BC2GM dataset. Moreover, for each method, we train five models 
with different random seeds to initialize the model parameters and use the average of 
their micro F1 scores for evaluation.9 In the experiments,we train each model for 150 

Table 1  The statistics of the four benchmark datasets

“Token #”, “Sent. #” and “Entity #” represent the number of tokens, sentences, and entities

Datasets Entity type Token # Sent. # Entity #

BC2GM Gene/protein Train 355.4k 12.5k 15.1k

Dev 71.0k 2.5k 3.0k

Test 143.4k 5.0k 6.3k

JNLPBA Train 443.6k 14.6k 32.1k

Dev 117.2k 3.8k 8.5k

Test 114.7k 3.8k 6.2k

BC5CDR-chemical Chemical Train 118.1K 4.5K 5.2K

Dev 117.4K 4.5K 5.3K

Test 124.7K 4.7K 5.3K

NCBI-disease Disease Train 135.7K 5.4K 5.1K

Dev 23.9K 923 787

Test 24.4K 940 960

LINNAEUS Species Train 281.2k 11.9k 2.1k

Dev 93.8k 4.0k 711

Test 165k 7.1k 1.4k

Species-800 Train 147.2K 5.7K 2.5K

Dev 22.2K 830 384

Test 42.2K 1.6K 767

7  We use v3.9.2, downloaded from https​://stanf​ordnl​p.githu​b.io/CoreN​LP/.
8  We obtain the pre-trained models v1.1 from https​://githu​b.com/naver​/biobe​rt-pretr​ained​
9  We evaluate all models by the widely used seqeval framework at https​://githu​b.com/chakk​i-works​/seqev​al.

https://stanfordnlp.github.io/CoreNLP/
https://github.com/naver/biobert-pretrained
https://github.com/chakki-works/seqeval
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epochs for the BC2GM dataset and for 60 epochs for all other datasets.10 In each run, we 
evaluate the model on the development set after each epoch to find its best performing 
result.

Overall results

We run the baseline methods without using syntactic information and our methods with 
KVMN ( M ) to incorporate three types of syntactic information obtained from SCT 
on six aforementioned datasets, where two different encoders, i.e., BioBERT-Base and 
BioBERT-Large, are used. For reference, we also run baseline methods that use direct 
concatenation (DC) to incorporate such syntactic information, where the embeddings 
of context features and syntactic information are directly concatenated with the output 
of the BioBERT encoder. We report the experimental results (the average F1 scores of 
the five runs for each method as well as the standard deviations σ ) in Table 2. There are 
some observations.

First, comparing with the baseline methods without using any syntactic information, 
our method with KVMN can work well with both BioBERT-Base and BioBERT-Large 
encoder, where decent improvements over the baseline methods are observed among all 
datasets.

Second, compared with DC, our methods with KVMN to incorporate syntactic infor-
mation achieve better results in most cases. For example, on the Species-800 dataset, our 
method (Base + DR ( M )) obtains an average F1 score of 75.81% , while its correspond-
ing DC-based method (Base + DR (DC)) obtains a lower average F1 score of 75.12% . 

Table 2  Experimental results of models on six benchmark datasets

The experimental results are reported in terms of average F1 scores (F1) and the standard deviation σ . The methods in the 
group “Base” and “Large” refer to baselines with BioBERT-Base and BioBERT-Large encoder and our methods with KVMN 
( M ). “DC” refers to the baseline method using direct concatenation to incorporate syntactic information. “PL”, “SC”, and “DR” 
stand for POS labels, syntactic constituents, and dependency relations, respectively

Methods BC2GM JNLPBA BC5CDR-
chemical

NCBI-disease LINNAEUS Species-800

F1 σ F1 σ F1 σ F1 σ F1 σ F1 σ

Base 84.61 0.21 76.85 0.31 93.50 0.10 88.63 0.71 88.27 0.32 74.97 0.46

+ PL (DC) 84.47 0.15 77.17 0.45 93.66 0.15 89.09 0.55 88.36 0.16 75.04 0.46

+ PL ( M) 84.74 0.10 77.06 0.05 93.73 0.19 89.47 0.56 88.44 0.30 75.45 0.41

+ SC (DC) 84.45 0.19 76.80 0.45 93.68 0.13 89.18 0.26 88.23 0.33 75.37 0.51

+ SC ( M) 84.76 0.21 77.17 0.16 93.74 0.11 89.27 0.52 88.68 0.30 75.65 0.50

+ DR (DC) 84.33 0.30 77.01 0.28 93.66 0.15 89.05 0.23 88.43 0.19 75.12 0.52

+ DR ( M) 84.65 0.27 77.32 0.35 93.78 0.18 89.24 0.60 88.57 0.15 75.81 0.71

Large 84.89 0.17 77.29 0.19 93.90 0.31 88.65 0.59 88.87 0.65 74.98 0.59

+ PL (DC) 85.06 0.08 77.56 0.18 93.90 0.16 88.74 0.26 88.65 0.39 74.92 0.86

+ PL ( M) 85.07 0.12 77.50 0.19 94.05 0.23 88.86 0.29 89.01 0.31 75.34 0.95

+ SC (DC) 85.12 0.13 77.56 0.12 93.95 0.09 88.78 0.54 89.01 0.28 75.38 0.29

+ SC ( M) 85.43 0.15 77.83 0.19 93.99 0.13 88.87 0.37 88.92 0.35 75.08 0.68

+ DR (DC) 85.01 0.12 77.58 0.10 93.97 0.17 89.37 0.30 88.99 0.22 75.01 0.83

+ DR ( M) 85.17 0.10 77.73 0.11 94.05 0.10 88.81 0.51 89.04 0.27 75.17 0.91

10  All experiments are run on a single Nvidia Tesla V100 GPU with 16G RAM.
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Besides, in some cases where DC is applied, the syntactic information causes inferior 
results than baselines. For example, on the LINNAEUS dataset, the average F1 score of 
the DC-based method with the POS labels (Large + PL (DC)) is lower than the base-
line (Large) results. One possible explanation could be: there are some noisy syntactic 
results extracted by off-the-shelf toolkits, which may influence the performance of the 
model and lead to worse results compared to the baselines only using BioBERT. Under 
this condition, methods with DC fails to distinguish the salient syntactic information 
that contributes more to the bioNER task in a specific context. On the contrary, KVMN 
can weigh such syntactic information according to the importance of the context fea-
tures and thus, to some extent, avoid the errors caused by incorporating auto-processed 
syntactic information.

Third, in many cases, in methods with KVMN, the information of syntactic constitu-
ents (SC) and dependency relations (DR) offers higher improvement than POS labels 
(PL). For example, on the BC2GM dataset, our method with the BioBERT-Large encoder 
obtains the average F1 scores of 85.43% and 85.17% when it is enhanced by SC and DR, 
respectively, while its average F1 score is 85.07% when PL is incorporated. One possible 
reason to explain the phenomenon could be: (1) the syntactic constituents can provide 
a cue of phrase functions and their boundaries (e.g., an NP treelet is not only a signal 
that can suggest there might be an NE inside, but also can give information about the 
possible starting and ending positions for that potential NE.); (2) the dependency rela-
tions link words in long-distance with their dependency relationships, which could be 
especially useful for biomedical texts that generally include long sentences and entities.

Discussion
Comparison with previous studies

We compare the results of our best performing model with previous studies on all 
aforementioned datasets. The results (F1 scores) are summarized in Table 3, where our 

Table 3  Comparison with previous deep learning based methods

The result (F1 scores) of our method on each dataset comes from the best performing model. The results for the base and 
large version of BioBERT [19] are from their paper and GitHub repository

We report the results of their version 1.1, which is identical to the BioBERT version used in our experiments

Methods BC2GM JNLPBA BC5CDR-
chemical

NCBI-disease LINNAEUS Species-800

biLSTM + pre-trained embeddings 
[12]

78.57 77.25 91.05 84.64 94.13 73.11

biLSTM + attentions [23] – – 92.57 – – –

biLSTM + multi-task learning [43] 80.74 73.52 - 86.14 – –

biLSTM + pre-training [31] 81.69 75.03 – 87.34 – –

biLSTM + transfer learning [10] 78.66 – 91.64 84.72 93.54 74.98

biLSTM + model ensemble [48] 79.73 78.58 93.31 86.36 – –

SciBERT [3] – 77.28 – 88.57 – –

BERT [19] 81.79 74.94 91.16 85.63 87.60 71.63

BioBERT (Base) [19] 84.72 77.49 93.47 89.71 88.24 75.31

BioBERT (Large) [19] 85.01 – – 88.79 – –

BioBERT (Base) + DR ( M) 84.92 77.72 94.00 90.08 88.79 76.21

BioBERT (Large) + DR ( M) 85.29 77.83 94.22 89.63 89.24 76.33
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method outperforms the previous study (i.e., Lee et  al. [19]) using the base and large 
version of BioBERT on all datasets. Specifically, for the BioBERT-Base, the improve-
ment of F1 scores on BC2GM, JNLPBA, BC5CDR-chemical, NCBI-disease, LINNAEUS, 
and Species-800 are 0.20% , 0.23% , 0.53% , 0.37% , 0.55% , and 0.90% respectively; for the 
BioBERT-Large, the improvement on BC2GM and NCBI-disease are 0.28% and 0.84% , 
respectively. These results demonstrate the effectiveness of our method to leverage auto-
processed syntactic information in recognizing different types of named entities in the 
biomedical domain. In addition, our method achieves state-of-the-art performance on 
four datasets, i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800. Com-
pared with [48] and [12], we do not outperform their results on JNLPBA and LIN-
NAEUS, because the gaps between their results and our baseline method, i.e., BioBERT 
from Lee et al. [19], are big on these datasets, which could be hard to compensate for by 
using syntactic information. Except for the two datasets, our method outperforms their 
methods on all other datasets.

Effect of syntactic information ensemble

To explore the effect of using different types of syntactic information together, we con-
duct syntactic information ensemble experiments on the BC5CDR-chemical dataset. 
In the experiments, we test different combinations of different types of syntactic infor-
mation, where two ensemble strategies are used. The first sums the weighted value 
embeddings of each type of syntactic information; and the second uses concatenation. 
The results of the average F1 scores of different settings are reported in Table 4, where 
the results form the baseline methods without using any syntactic information are also 
included for reference. We have several observations from it. First, overall, compared 
with the baseline methods, our methods achieve better results with both the base and 
large versions of the BioBERT encoder. This indicates that the combination of different 
types of syntactic information can help with the performance of the baseline method for 
BioNER. Second, the concatenation strategy performs better than the summing strat-
egy in syntactic information fusion. One possible explanation could be: summing the 

Table 4  Results of the syntactic information ensemble on BC5CDR-chemical dataset

The three types of syntactic information used for the ensemble are POS labels (PL), syntactic constituents (SC), and 
dependency relations (DR). The results are reported in terms of the average F1 scores and the standard deviation ( σ ). Sum 
and concatenation are two ensemble strategies applied to our method

Ensemble strategies Syntactic info. BioBERT-Base BioBERT-Large

PL SC DR F1 σ F1 σ

Baseline × × × 93.50 0.10 93.90 0.31

Sum
√ √

× 93.66 0.17 94.20 0.15
√

×
√

93.76 0.16 94.10 0.15

×
√ √

93.81 0.15 94.12 0.14
√ √ √

93.78 0.25 94.26 0.16

Concatenation
√ √

× 93.75 0.23 94.25 0.12
√

×
√

93.80 0.26 94.22 0.16

×
√ √

93.83 0.20 94.31 0.08
√ √ √

93.88 0.26 94.36 0.25
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embeddings of different types of syntactic information may lose some information while 
concatenating them can keep all information on all types of syntactic embedding.

Effect of different toolkits

To explore the effect of using syntactic information from different NLP toolkits, in 
addition to SCT, we try another toolkit, i.e., spaCy,11 to obtain the auto-processed syn-
tactic information. In the experiments, we try two types of syntactic information, i.e., 
POS labels (PL) and dependency relations (DR), from the POS tagger and dependency 
parser of spaCy. We report the results (the average F1 scores and the standard devia-
tion σ ) of our methods with KVMN on the BC5CDR-chemical dataset in Table 5. For 
reference, the results of our method using SCT as well as the baseline results are also 
reported. From the results, we can find that, for both base and large BioBERT encoders, 
our method can leverage the syntactic information from different NLP toolkits and thus 
achieves better performance comparing with the baseline methods.

Case study

To better understand how our method improves BioNER, we conduct a case study 
where two example sentences are used. In Fig.  2a, b, we show two sentences and 
illustrate the way of syntactic constituents and dependency relations to improve 

Table 5  Results of using different NLP toolkits on the BC5CDR-chemical dataset

The experimental results [the average F1 scores and the standard deviation ( σ )] of our method with KVMN ( M ) using 
different NLP toolkits (i.e., Stanford CoreNLP Toolkits and spaCy) to obtain POS labels (PL) and dependency relations (DR). 
The results of baseline methods without using any syntactic information are also reported for reference

BioBERT-base BioBERT-large

F1 σ F1 σ

Baseline 93.50 0.10 93.90 0.31

 Stanford CoreNLP Toolkits

  PL ( M) 93.73 0.19 94.05 0.23

  DR ( M) 93.78 0.18 94.05 0.10

 spaCy

  PL ( M) 93.69 0.12 94.06 0.10

  DR ( M) 93.71 0.12 93.97 0.13

a b
Fig. 2  Case study. In the figure, a, b are two examples of syntactic information (i.e., syntactic constituents 
and dependency relations) and the context features for “SEP” and “dystrophy”, respectively. The weights for 
syntactic information learned from the memories are highlighted with the darker color referring to greater 
value

11  https​://spacy​.io/.

https://spacy.io/
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bioNER, respectively. In both cases, for a specific word, we visualize the weights 
assigned to the corresponding syntactic information instances (values) on its associ-
ated contextual features (keys), where the deeper color refers to the higher weight.

Syntactic constituents In the example sentence shown in Fig. 2a, the word we focus 
on is “SEP”. In this case, the constituent information firstly narrows the context fea-
tures of “SEP” down to the words within the noun phrase “pure spinal SEP abnor-
malities”. Then, the KVMN module assigns the highest weight to “abnormalities” and 
its carrying syntactic information of “NP” among all other syntactic instances since 
they could be strong signals for disease names. Therefore, our method could assign 
the correct NE label to “SEP”. Likewise, the situation for “pure” is on the opposite 
and thus it receives the lowest weight among other words.

Dependency relations In addition, in Fig. 2b, we visualize the weights assigned to 
dependency relations for the word “dystrophy” in another example sentence. In this 
case, dependency information successfully finds the dependents, i.e., “Myotonic”, 
“DM”, and “disorder”, of “dystrophy”, which could suggest useful cues to predict the 
NE labels. Among those dependents, KVMN distinguishes that the dependent “dis-
corder” with an “appos” dependency relation (appositional modifier) strongly sug-
gests “dystrophy” is a disease entity. Therefore, KVMN assigns the highest weight 
to the dependency relation offered by “disorder”. Similarly, another modifier (i.e., 
“Myotonic”) of “dystrophy” is also distinguished and weighed by the KVMN, and 
the second-highest weight is assigned to it accordingly. It is worth noting that the 
dependency information that contributes most to recognizing “dystrophy” as a part 
of an NE comes from a word (“disorder”) in the long-distance; dependency informa-
tion is able to capture that information and helps our method predict the NE tag for 
the word “dystrophy”.

Conclusion
In this paper, we propose a method named BioKMNER with KVMN to enhance 
BioNER with auto-processed syntactic information (i.e., POS labels, syntactic con-
stituents, and dependency relations) from off-the-shelf toolkits. In KVMN, context 
features and their corresponding syntactic information instances are mapped into 
keys and values, respectively. The values are weighed according to the comparison 
between the keys and the input words. Then the values are weighed summed and 
the resulting vector is fed back to the backbone tagging process to make predictions. 
In doing so, compared with previous studies that treat different syntactic informa-
tion equally and leverage them by embedding concatenation, our method can dis-
criminatively leverage the auto-processed syntactic information and avoid the error 
spread caused by the direct use of auto-processed syntactic results. The experimen-
tal results on six English benchmark datasets demonstrate that syntactic informa-
tion can be a good resource to improve bioNER and our method with KVMN can 
appropriately leverage such information. In addition, our method outperforms the 
strong baseline method from the previous study using BioBERT [19] on all datasets 
and achieves state-of-the-art results on BC2GM, BC5CDR-chemical, NCBI-disease, 
and Species-800 datasets.



Page 11 of 17Tian et al. BMC Bioinformatics          (2020) 21:539 	

Methods
The overall architecture of our BioKMNER is shown in Fig.  3. Following the com-
mon approaches in BioNER, we treat it as a sequence labeling task, where the input 
word sequence X = {x1, x2, . . . , xi, . . . xl} is tagged with a sequence of NE labels 
Ŷ = {ŷ1, ŷ2, . . . , ŷi, . . . ŷl} . In our method, we propose key-value memory networks 
(KVMN) [26] to incorporate syntactic information. Specifically, context features and 
their carrying syntactic information instances are mapped to keys and values in KVMN, 
where the values are weighed according to the comparison between the keys and the 
input words.

In this section, we firstly introduce the syntactic information extraction process. Then 
we elaborate the KVMN module used to incorporate the syntactic information. Finally, 
we explain how our NER method works with the KVMN module.

Syntactic information extraction

In our study, we focused on three types of syntactic information: POS labels, syntactic 
constituents, and dependency relations. To obtain such information, we first run the off-
the-shelf NLP toolkits on the input sentence X  . Then for each word xi in X  , we extract 
the context features associated with xi and their corresponding syntactic information 
instances. Figure  4 shows the three types of context features and their corresponding 
syntactic information instances12 for the sentence “Dihydropyrimidine dehydrogenase 

Fig. 3  The overall architecture of BioKMNER. The top part of the figure shows the syntactic information 
extraction process: for the input word sequence, we firstly use off-the-shelf NLP toolkits to obtain its syntactic 
information (e.g., syntax tree), then map the context features and the syntactic information into keys and 
values, and finally convert them into embeddings. The bottom part is our sequence labeling based BioNER 
tagger, which uses BioBERT [19] as the encoder and a softmax layer as the decoder. Between the encoder and 
decoder are the key-value memory networks (KVMN) which weighs syntactic information (values) according 
to the importance of the context features (keys). The output of KVMN is fed into the decoder to predict 
output labels

12  We combine the word and its syntactic information to increase the diversity of the syntactic information instance.
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deficiency is an autosomal recessive disease”.13 This figure focuses on the word “defi-
ciency” (in boldface) with its highlighted context features and their corresponding syn-
tactic information.

POS labels Given a current word xi in X  , we use a 1-word window to extract the con-
text words and their POS labels at both sides of xi . As is shown in Fig. 4a, for word “defi-
ciency”, the context features are [deficiency ,dehydrogenase ,is] and the corresponding 
syntactic instances are [deficiency_NN ,dehydrogenase_NN ,is_VBZ].

Syntactic constituents
First, we define a set of acceptable syntactic nodes (denoted by L ) which contains 10 

different constituent types14 to selected syntactic constituents from the syntax tree of 
the input X  . Then, for each word xi in X  , we start with the leaf of xi in the parse tree, 
search up to find the first acceptable syntactic node which is in L . After finding the first 
acceptable node of xi , the words under that node and their combination with the node 
type label are selected as the context features and their corresponding syntactic informa-
tion respectively. As is shown in Fig. 4b, for word “deficiency”, the first acceptable node 
is NP, and there are three words under this NP span. So the context features are [defi-
ciency, dihydropyrimidine, dehydrogenase], and the syntactic instances are [deficiency_
NP, dihydropyrimidine_NP, dehydrogenase_NP].

a

b

c
Fig. 4  Syntactic information extraction. Three types of syntactic information extracted for an example 
“Dihydropyrimidine dehydrogenase deficiency is an autosomal recessive disease” in the biomedical domain. 
The context features and their corresponding POS labels, syntactic constituents, and dependency relations 
for x5=“deficiency” are highlighted in part a, b, and c respectively

13  The POS tags and parse trees are obtained from running the online demo of Stanford CoreNLP Toolkits [25] at https​
://coren​lp.run/.
14  The 10 accepted constituent types are NP , VP , PP , ADVP , SBAR , ADJP , PRT  , INTJ , CONJP and LST  , which are selected 
from the types used in the CoNLL-2003 shared task [41].

https://corenlp.run/
https://corenlp.run/
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Dependency relations According to the dependency relations of the words in the sen-
tence, we first collect the dependents and the governor of the given word (i.e., first-order 
dependency relations). Then, we regard its dependents, its governor, and the word itself, 
as the context features and regard the combination of these words and their depend-
ency types as the syntactic instances. In Fig. 4c, for the given word “deficiency”, it has 
two dependents (i.e., “dihydropyrimidine” and “dehydrogenase”) and one governor (i.e., 
“disease”, which is the root of the sentence). According to these dependency relations, 
the context features of “deficiency” are [deficiency,  dihydropyrimidine,  dehydroge-
nase, a, metabolic] and the syntactic information instances are [deficiency_nsubj, dihydr
opyrimidine_compound, dehydrogenase_compound, disease_ROOT].

Through these processes, the context feature list K and the syntactic instance list V 
are built upon the extraction results for each type of syntactic information. For each 
word xi in the word sequence X  , in both training and predicting process, associated 
context features and syntactic information instances in K and V are activated and com-
puted. We denote the context features and the syntactic information instances for xi as 
Ki = [ki,1, . . . , ki,j , . . . ki,mi ] and Vi = [vi,1, . . . , vi,j , . . . vi,mi ] , respectively. Note that the 
context feature list K and syntactic instance list V used in our model do not necessar-
ily need to include all three types of the syntactic information discussed above. In other 
words, our model can leverage each type of syntactic information independently. In the 
following subsection, we illustrate our method to leverage the keys and values through 
KVMN.

The memory module

Previous methods to leverage syntactic information for BioNER are limited in concat-
enating the embeddings of syntactic information instances with the input word embed-
dings. This method fails to distinguish the useful syntactic instances in a specific context, 
so that noisy syntactic information may hurt model performance. Therefore, we propose 
to use KVMN to enhance the incorporation process of syntactic information. Origi-
nally, KVMN is firstly proposed to incorporate the information in a list of memory slots 
(kj , vj) (where kj and vj refer to keys and values, respectively)15 into a model for question 
answering tasks. In KVMN, it addresses the keys by assigning a probability weight to the 
value in each memory slot by comparing the question (which is denoted as x) to each 
key:

where �· are feature mapping matrices and A is a matrix. Then, KVMN reads the values 
by computing the weighted sum using the resulting probability weights:

Afterwards, o is incorporated into the question representation by an element-wise 
summation: o′ = A�X (x)+ o and the resulting o′ is used to predict the answers of 

(1)pj = softmax(A�X (x) · A�K (kj))

(2)o =
∑

j

pj · A�V (vj)

15  Here, we use the subscript j instead of i in the original paper to avoid confusion, because i is already used to refer to 
the input word xi at the position i.
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the question. Therefore, in KVMN, the keys are used to compute the weights, which is 
used to address the values with respect to the input; the values are used to incorporate 
useful information into the input presentation and thus improve model performance. 
Considering that knowledge base entries have been used as a possible type of resources 
for the memory slots to incorporate extra knowledge into the input representation by 
transforms between the keys and values [26], we can also use such transforms between 
context features and syntactic information instances to incorporate the syntactic infor-
mation into our backbone method. In doing so, not only is the syntactic information 
addressed by comparing the input with context features (which we think is more intui-
tive than comparing the input with syntactic information), but also different syntactic 
information instances are weighed according to the comparison between keys and the 
input, which allows our method to distinguish the important syntactic information 
instances and leverage them accordingly.

In our approach to bioNER, we adapt the KVMN to a sequence labeling paradigm by 
applying it to each word xi in the input. Therefore, for xi , its hidden vector hi obtained 
from an encoder serves as the counterpart of input representation A�X (x) ; its associ-
ated context features and the corresponding syntactic information instances stand for 
the keys kj and values vj , respectively. In details, the memory module takes hi for each xi , 
activates the keys to address their embeddings and computes the probability weights for 
them by

where eki,j is the embedding vector of ki.j . Afterwards, we use the resulting probabilities 
on syntactic information instances in Vi to get the weighted value embedding oi:

where evi,j is the embedding vector of the value vi,j . Once oi is obtained for each xi , we 
concatenate16 it with hi to get the o′i , which can be represented by o′i = hi ⊕ oi.

Tagging with KVMN

To facilitate the process of leveraging syntactic information through KVMN, we firstly 
use an encoder to obtain the hidden vector hi for each xi . Among different types of 
encoders, in our method, we use the prevailing BioBERT [19], which is demonstrated to 
be an effective encoders for many biomedical NLP tasks, such as relation extraction [22] 
and natural language inference [46]. Therefore, the process to obtain the hidden vectors 
for the input X  can be represented by

(3)pi,j =
exp

(
hi · e

k
i,j

)

∑mi
j=1 exp

(
hi · e

k
i,j

)

(4)oi =

mi∑

j=1

pi,je
v
i,j

(5)[h1,h2, . . . ,hi, . . . ,hl] = BioBERT (X )

16  We use concatenation instead of element-wise summation in KVMN, which does not change the nature of using 
KVMN.
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Once o′i is obtained from the KVMN module, we apply a trainable matrix W to it to align 
its dimension to the output space, which is formalized by

The resulting vector ui is a weight vector with each dimension corresponding to a type 
of BioNER labels (so its vector dimension matches the number of NE types). Finally, we 
apply a softmax function to ui to predict the output label ŷi for xi by

where T  refers to the label set and uti is the value at dimension t in the weight vector ui.
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