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Purpose: To determine the impact of image binarization and the best thresholding
method for conjunctival optical coherence tomography angiography (OCTA).

Methods: Vessel density (VD) of 14 OCTA conjunctival images (nine nasal and five
temporal conjunctivas, and eight right and six left eyes) from normal subjects was
analyzed. The binarization of gold-standard images, created by removing pixels that
do not represent vessels on ImageJ software, was assessed by three masked graders
to determine consistency of VD for images. Various thresholding methods on ImageJ,
including manual, 1-, 2- and 3-step processes, were performed on unprocessed images
for comparison. Interclass correlation coefficient (ICC) ≥0.750 were classified as good
reliability and selected for calculation of the performance of the pixel location in the
binarized images of each method.

Results: Analysis of the gold-standard threshold method achieved an ICC of 0.816 with
excellent agreement (R2 = 0.965, P < 0.001). From a total 28 different methods and
variations performed, only nine methods performed with good reliability, including
two 1-step thresholds, six 2-step thresholds, and one 3-step threshold method. Overall,
2-step thresholdmethodsweremore reliable than 3-step thresholdmethods. The 2-step
method of Bandpass filter + Phansalkar local threshold (LT) showed the best perfor-
mance with mean pixel accuracy of 86.9% ± 6.8%, area under the curve of 0.826, sensi-
tivity of 79.0%, and specificity 86.1%.

Conclusions: Bandpass filter+ Phansalkar LTwas the bestmethod for VDmeasurement
in conjunctival OCTA. Most commonly reported threshold methods showed unsatisfac-
tory agreement. There is a need in the OCTA field for a standardized method to allow
comparison between different studies.

Translational Relevance: The proposed threshold method using a widely accessible
and commonly used software provides an accurate VD measurement for future OCTA
studies.

Introduction

The eye receives a high volume of blood flow, where
many microangiopathic pathologies can manifest.
Quantifying capillaries and vessels in ocular tissue
has been an important biomarker to identify healthy
from diseased eyes.1–4 Optical coherence tomogra-
phy angiography (OCTA) has become a mainstay in

research and is growing for clinical practice and clini-
cal trials.5–9 This technology allows noninvasive flow
detection of blood vessels and is able to generate
volumetric angiograms at micrometer resolution.10,11
In recent years, OCTA has expanded to the anterior
segment and has been shown to be useful in a variety
of diseases, such as corneal neovascularization, limbal
stem cell deficiency, ocular tumors, and pterygium.12–20
The bulbar conjunctival vessels have been the focus of
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many studies for in vivo and noninvasive assessment of
vascular parameters, because of its ease of access and
capacity of reflecting ocular and systemic diseases.21–24

Despite the advances in vessel imaging technol-
ogy, there are a wide range of image thresholding
methods for vessel measurement without a consistent
and standardized method for processing OCTA images
and quantifying vessel parameters. Image threshold-
ing or binarization is the process that converts a gray
value image into pixels above a determined threshold
value in “white” (1) and below the value in “black” (0).
There are many methods in determining the thresh-
old value of the image, for example a global thresh-
old applies a single value over the entire image.25,26
Another method is using a local or adaptive threshold
that applies different values according to regional varia-
tions of the image.26,27 Also, various image processing
techniques have been used to remove background noise
and improve image contrast, whether it is smooth-
ing the image or applying different filters to remove
small particles and noise.25,28 Moreover, many authors
propose a combination of the different methods for
thresholding.25,28

The most commonly used vessel parameter in
OCTA is vessel density (VD), which quantifies
the percentage of pixels that represent blood flow
compared to the total pixels in the entire image. Consis-
tency and reproducibility of these measurements are
important for research studies. However, themethod of
thresholding has been shown to significantly alter their
measurements in retinal and choroidal OCTA.29,30
Similar to the posterior segment, the anterior segment
lacks a standardized threshold method for quantita-
tive OCTA assessment. With increasing studies using
OCTA for analysis, there is a need to better under-
stand the impact of different threshold methods on
vessel measurements and to establish a consistent and
accurate method for binarization of vessels in OCTA
images.29,30 We hypothesize that different threshold
methods will affect the VD measurements in anterior
segment OCTA. Accordingly, the aim of this study
was to assess the agreement and accuracy of differ-
ent threshold methods in quantifying VD on OCTA
images of the conjunctiva, by comparing to their
reference gold standard images.

Methods

Images from healthy volunteers were selected from
the OCT database at the Cornea Department of New
England Eye Center, Department of Ophthalmology,
Tufts Medical Center, Boston, MA. Subjects were

retrospectively reviewed, and images were de-identified
following the tenets of the Declaration of Helsinki and
the study was approved by Tufts’ Institutional Review
Board/Ethics committee (IRB no. 12530). Inclusion
criteria was subjects with conjunctival images who
performed the OCTA protocol adapted for anterior
segment in the OCT database. Exclusion criteria were
any ocular diseases, including dry eye disease, systemic
diseases (i.e., diabetes, hypertension), ocular infection,
history of recent ocular surgery, and images of poor
quality with excessive noise and low clarity that would
impede conjunctival vessel visualization. In contrast to
previous methods established on a single OCTA image
(generally the best image example), multiple images
were used for threshold comparison to better represent
the variability of gray value that occurs betweenOCTA
images.

OCTA Imaging Technique

The OCTA images were acquired by the spectral
domainOCTA system,AvantiXRAngioVue (Optovue
Inc., Freemont, CA, USA; version 2018.0.0.10). The
6 × 6 mm HD Retina scan mode was used with the
Optovue anterior segment lens (LongCorneaAdaptive
Module) and manual adjustments of Z motor, P
motor, and focus to image the conjunctival surface.
The system acquires volumetric scans of 400 × 400
A-scans at 70,000 A-scans per second, using a light
source centered on 840 nm and a bandwidth of 45 nm.
Flow is detected through motion contrast of repeated
A-scans at the same location, and motion artifact was
removed by 3D orthogonal registration andmerging of
two scans using the SSADA algorithm, thus producing
a 5 μm axial resolution volumetric angiogram with the
motion of the red blood cells within vessels.

Each image was exported in their 400 × 400
pixel format, analyzed and processed on open source
software FIJI from ImageJ (National Institutes of
Health, Bethesda, MD, USA). Because OCTA is a
novel and adapted technology from the retinal to
the anterior segment, images of the conjunctiva can
present with variable background noise as compared
to retinal images. To focus the analysis on the conjunc-
tiva, the eyelids, eyelashes and cornea were carefully
removed from all OCTA images before thresholding.

Establishing Gold Standard Images

Pixels that represented noise or imaging artifacts
and clearly not a vascular component were manually
removed in the selected images by an experienced
OCTA grader (Figs. 1A, 1B). These images were
then used as reference for subsequent thresholding
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Figure 1. (A) OCTA RAW image of the nasal conjunctiva. (B) Processed image removing background noise and pixels that do not represent
vessels. (C) Manually thresholded OCTA binary image.

processes. Next, the manual threshold was determined
by three blinded and independent graders (W.B., D.S.,
Y.S.R.) with the aim of matching their respective refer-
ence image (Fig. 1C). After binarization (threshold-
ing), the number of foreground pixels representing
blood flow divided by the total pixels were represented
as VD (% area). Each image generated from the mean
threshold value of the three graders and its VD was
considered the gold standard for the methodology
comparison.

Thresholding Methods

The following thresholding methods to acquire
binary images for vessel quantification were selected
based on previously published methods and applied to
the unprocessed RAW images. The available methods
consist of a variation of algorithms that transform a
gray-value image into a binary image through a 1-step
threshold, or a combination of image pre-processing
and filters before the threshold (2-step or 3-step thresh-
old methods). The additional steps before threshold-
ing seek to reduce background noise, to remove pixels
that do not represent vessels, or to create continuity of
neighboring vessel pixels. Each VD from the thresh-
olded images were compared to their respective gold
standard image VD.

1-Step Threshold Methods

Manual Threshold
The same three blinded graders independently set

the threshold on the RAW images according to their
interpretation of the best representation of the vessels.
Their threshold was applied to the entire (global)
image. Their averaged VD for each image was used to
compare to the gold standard.

Global Threshold
Global threshold applies a single threshold value to

all pixels (global) within the entire image into either
foreground pixels (1) or background pixels (0). The
threshold value can be achieved bymanymethods (e.g.,
mean gray value of the image orOtsu algorithm), which
compares the gray value variance of each pixel from
the average gray value to determine the optimal cutoff
value for the entire image (global) by minimizing the
intraclass intensity variance.26

Local Threshold
Local threshold applies different local thresholds

based on the neighboring gray values of each individual
pixel, accounting for focal high-variability gray value
in the image. Also known as an adaptive threshold
method. Algorithms may use the mean or median gray
values, Otsu (as previously described) or Phansalkar,
which applies different local thresholds based on a
combination of mean, standard deviation, and normal-
ization of gray value within a 15-pixel radius. The
latter is a method particularly used in low contrast
images.27

2-Step Threshold Methods

With the goal of creating threshold images that
best represent the structure of interest (vessels in
this case), many advocate a combination of filters or
processing methods to enhance the structure of inter-
est and minimize noise.25,28,31–33 Therefore a selection
of commonly used combined methods were performed
and are schematically represented in Figures 2 and 3.

Close Morphology With a One- or Two-Pixel Radius ±
Local Threshold

First, by applying a closing morphology (image
dilation followed by erosion), the algorithm “fills” the
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Figure 2. Diagram illustrating the different combined thresholdmethods. (A1–4) A closingmorphology filter of a 1-pixel radiuswas applied;
then, 4 different local threshold methods were analyzed, mean, median, Otsu and Phansalkar. (B1–4) A closing morphology filter of a two-
pixel radiuswas applied; then, four different local thresholdmethodswere analyzed,mean,median, Otsu, and Phansalkar. (C1-2) Top hat filter
followed by a mean or an Otsu local threshold was applied. (D1–3) A bandpass filter that removes pixels ≤2 pixels and >40 pixels followed
by a mean or Otsu or Phansalkar threshold was applied. (E1–3) A Frangi filter to identify vessel-like structures was applied, followed by mean
or Otsu or Phansalkar local threshold.

Figure 3. Diagram illustrating the different combined thresholdmethods. (A1-2) Gaussian smoothing filterwith a sigma radius of four pixels
was applied; then, a bandpass filter that removes pixels≤2 pixels and>40 pixels followed by amean or an Otsu local threshold was applied.
(B) The average gray value of three corneal measurements was used to threshold image; then a close morphology followed by a mean
threshold was applied. (C1-2) A top hat filter, then a bandpass filter followed an Otsu or a Phansalkar threshold was applied.

spaces between noncontiguous pixels within a one- or
two-pixel radius of the neighboring pixels (removing
“holes”). Then, four different local threshold methods
were analyzed, mean, median, Otsu and Phansalkar
(Fig. 2A1-4 and Fig. 2B1-4, respectively), based on previ-

ous descriptions.25,28,31 Close morphology is typically
used in vascular imaging to improve pixel connectivity
of vessel structures on threshold. One-pixel and two-
pixel radius algorithmwere compared to assess whether
the size of the radius improved the method.
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Top Hat Filter± Local Threshold
Top hat filter consists of performing a morpholog-

ical opening (image erosion followed by dilation) and
then subtracting from the original image. This process
removes particles that are smaller (pixels) than the
structuring element and darker (lower gray value) than
their surroundings; intended to remove the image noise,
correct nonuniform lighting, and improve background
contrast. Last, a mean and an Otsu local threshold was
applied (Fig. 2C1-2, respectively).28,32,34

Bandpass Filter± Local Threshold
A bandpass filter removes structures ≤2 pixels

and ≥50 pixels, which removes the image noise and
improved background contrast. No morphological or
top hat processing was applied. Then, a local thresh-
old method was applied, mean, Otsu, and Phansalkar
(Fig. 2D1-3, respectively), as previously described. This
combination was included to compare the effect of not
performing the commonly used top hat filter for image
analysis.23,32

Frangi Vesselness Filter ± Local Threshold
Hessian-based Frangi vesselness filter is an

algorithm that is designed to enhance visualization
of vessels on images by identifying multiscale pixels
with vessel- or tube-like characteristics and enhanc-
ing vessel contrast and suppressing background noise.
This method is commonly used in ultrasound, comput-
erized tomography, magnetic resonance, and retinal
photography vessel imaging.35,36 Last, local thresholds
was applied as previously described (Fig. 2E1-3).

3-Step Threshold Methods

Bandpass Filter± Gaussian Blur± Local Threshold
First, the image is processed through a Gaussian

blur (aka smoothing) with a sigma radius of four pixels,
which is used to reduce overall image noise.37 Then,
a Bandpass filter is applied that removes background
pixels. Last, a mean and an Otsu local threshold was
applied (Fig. 3A1-2, respectively).17,34,38

Cornea Global Filter ± Close Morphology ± Mean
Local Threshold

Based on studies that use the foveal avascular zone
to calculate the signal to noise ratio and determine
the global threshold, the cornea (avascular in healthy
subjects) was used for the global image filter.16,32,39 The
average gray value of three measures of the cornea
was used to filter pixels below that gray value. Subse-
quently, a close morphology was performed to fill
“holes”within a 2-pixel radius, as previously described.
Last, a mean local threshold was applied (Fig. 3B).32

Bandpass Filter± Top Hat Filter± local Threshold
A Bandpass filter was applied to remove small

particles and background noise, then a top hat
filter, as described previously. Last, an Ostu or
Phansalkar local threshold was performed for binariza-
tion (Fig. 3C1-2).23,32,39

Performance of the Methods

The final step of establishing the best threshold
method is to determine not only the number of
pixels thresholded as vessels in an image, i.e. vessel
density (VD), but additionally the correct location
of these pixels representing vessels, compared to the
gold standard image. Therefore pixels of vascular flow
(foreground pixels) that were present both on the image
of interest and its gold standard were calculated as
the true positives. Pixels that were included on the
image of interest, but not on its gold standard, were
calculated as false positives. Pixels that were included
on the gold standard, but not on the image of inter-
est, were calculated as false negatives. Pixels that were
counted as non-vessels (background pixels) in both the
image of interest and its gold standard were considered
true negatives. Therefore the accuracy of the correct
location of thresholded pixels were represented by
adding the true-positive and the true-negative values
(%) of each image then averaging their accuracy.

Statistical Analysis

The Statistical Package for the Social Sciences
software (ver. 17; SPSS Inc., Chicago, IL, USA)
was used to analyze the data. Shapiro-Wilk test was
performed to determine if the data was normally
distributed. For the gold standard validation, the
average between grader 2 and 3 were compared to
grader 1 and their difference used to construct Bland-
Altman plots and ICC test was performed to demon-
strate the variability of the graders’ measures. Then, a
linear regression was calculated and R2 for goodness-
of-fit determined to demonstrate the association of
the VD calculated from the new gold standard images
with the VD calculated from manually-removed pixel
images. Shapiro-Wilk normality test was performed on
the mean standardized residuals to determine bias of
the linear regression model. Bias was considered if
P < 0.05.

Similarly, for the manual thresholding on RAW
images, the average between graders 2 and 3 were
compared to grader and the average of all 3 graders
were compared to the gold standard VD. Further-
more, the VDs of each method were compared to the
gold standard through ICCs with their 95% confidence
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intervals (lower bound − upper bound) and analyzed
for absolute agreement. Only methods with good relia-
bility, established as ICC≥ 0.750,40 were considered for
the pixel-location accuracy assessment.Mean accuracy
was calculated by adding true positive and true negative
values of all images represented with their 95% confi-
dence intervals. Sensitivity was the calculated by divid-
ing true positive by the sum of true positives and false
negatives. Specificity was calculated by dividing the
true negatives by the sum of true negatives and false
positives. Area under the curve (AUC) was obtained by
the average of sensitivity and specificity values.

Results

A total of 14 images of 8 subjects were included
and carefully selected to represent the variations of
the conjunctival vessel location (i.e., nasal and tempo-
ral) and image characteristics, as shown in Table 1.
The images that were meticulously assessed to remove
the non-flow (background) pixels for the gold standard
validation underwent binarization by 3 graders, their
ICC was 0.816 [0.519–0.937] and the Bland-Altman
plot showed a good agreement with less than ±10%
variability between graders’ measurements and no
significant bias (Fig. 4A). When comparing the new
gold standard images created from the grader’s thresh-
old and the manually-removed pixel images, the VD
agreement was 96.5% (R2 = 0.965, P < 0.001) with no
significant bias (mean error <0.01 ± 0.96, P = 0.605),
as shown in Figure 4B.

The ICC values and their 95% confidence inter-
val of the methodologies are summarized in Table 2.
The repeatability of manual thresholding performed
by 3 graders showed a poor agreement between them
(ICC= 0.482 [0.032–0.798]) and amoderate agreement
compared to the gold standard (ICC = 0.525 [−0.090
to 0.839]; Table 2). Overall, the local (adaptive) thresh-
old methods showed better agreement compared to the
global threshold and the mean threshold better agree-
ment compared to Otsu threshold methods. Of inter-
est, the mean and Phansalkar local threshold methods
showed a good agreement and met the criteria for
further accuracy assessment (ICC = 0.836 and ICC
= 0.831, respectively). Conversely, the mean global
threshold showed very poor agreement (ICC = 0.245).

The two-step methods that met the criteria for
further accuracy assessment were the close morphol-
ogy with 1-pixel radius and mean local threshold (ICC
= 0.838; Fig. 2A1), 1-pixel radius and Phansalkar local
threshold (ICC = 0.822; Fig. 2A4), close morphology
with 2-pixel radius and mean local threshold (ICC =
0.841; Fig. 2B1), close morphology with 2-pixel radius
and Phansalkar local threshold (ICC = 0.763; Fig.
2B4), Bandpass filter with mean local threshold (ICC
= 0.835; Fig. 2D1), Bandpass filter with Phansalkar
threshold (ICC = 0.832; Fig. 2D3), and Bandpass
filter with Gaussian filter and Otsu local threshold
(ICC = 0.762; Fig. 3A2). Conversely, the top hat filter
with Otsu local threshold (Fig. 2C2) and the top hat
filter, bandpass filter with Otsu local threshold (Fig.
3C1) showed the worst agreement (ICC = 0.136 and
ICC = 0.142, respectively). The complete list of other

Table 1. General Overview and Pixel Specifications of the Images

Subject Eye Location
Mean Gray

Value
Gray Value

SD
Median Gray

Value
Gray Value
Skewness

Gray Value
Range

Image 1 A Right Nasal 72.9 49.9 66.0 0.6 0-255
Image 2 A Right Temporal 69.5 50.6 59.0 0.8 0-255
Image 3 B Left Nasal 53.3 49.9 43.0 0.9 0-255
Image 4 C Right Temporal 49.1 49.3 38.0 1.0 0-255
Image 5 D Right Nasal 52.1 63.8 27.0 1.3 0-255
Image 6 D Right Temporal 55.5 55.8 41.0 1.1 0-255
Image 7 D Left Nasal 53.0 64.4 27.0 1.3 0-255
Image 8 D Left Temporal 60.6 60.5 44.0 1.2 0-255
Image 9 E Right Nasal 66.9 50.5 57.0 0.8 0-255
Image 10 F Left Nasal 49.5 51.4 33.0 1.2 0-255
Image 11 G Right Nasal 42.0 45.3 28.0 1.2 0-255
Image 12 G Left Nasal 38.6 51.5 18.0 1.7 0-255
Image 13 G Left Temporal 41.3 46.8 26.0 1.0 0-255
Image 14 H Right Nasal 50.7 47.6 40.0 1.0 0-255

Standard deviation, SD.
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Figure 4. (A) Bland-Altman plots with the 95% upper and lower limits of the difference between the vessel density (VD) measurements
between the graders. (B) The goodness-of-fit correlation between the VD measures of the three graders and the pixel-removed images for
the gold-standard establishment.

methods that were tested but did not show good relia-
bility are demonstrated as Supplemental Table S1, In
general, the mean local threshold methods outper-
formed the Otsu and median local threshold methods.

The latter methods, noticeably removed excessive
amount of pixels overall.

The performance details of the high reliability
threshold methods to assess the pixel-location of the

Table 2. Reliability of the Threshold Methodologies

95% CI

Threshold Methodologies
Mean Gray
Value VD (%)

±SD Gray
Value VD (%) ICC Lower Bound Upper Bound

1-Step Threshold Methods
Manual Threshold 29.1 ±4.9 0.525 −0.090 0.839
Mean Global Threshold 40.3 ±2.7 0.245 −0.117 0.636
Otsu Global Threshold 29.7 ±4.7 0.463 −0.056 0.791
Mean Local Threshold 34.3 ±5.0 0.836 0.567 0.944
Otsu Local Threshold 28.8 ±5.2 0.516 −0.099 0.836
Phansalkar Local Threshold 34.0 ±6.1 0.831 0.547 0.943

2-Step Threshold Methods
Close Morphology (1pxl) + Mean Local Threshold 34.1 ±4.9 0.838 0.567 0.945
Close Morphology (1pxl) + Phansalkar Local Threshold 34.6 ±6.2 0.822 0.541 0.939
Close Morphology (2pxl) + Mean Local Threshold 34.2 ±4.8 0.841 0.574 0.946
Close Morphology (2pxl) + Phansalkar Local Threshold 36.3 ±6.6 0.763 0.352 0.920
Bandpass Filter + Mean Local Threshold 34.7 ±5.0 0.835 0.574 0.943
Bandpass Filter + Phansalkar Local Threshold 37.9 ±6.0 0.832 0.556 0.943
Frangi Filter + Mean Local Threshold 49.1 ±7.2 0.679 0.253 0.884

3-Step Threshold Methods
Top hat Filter + Mean Local Threshold 29.7 ±4.2 0.604 −0.086 0.882
Bandpass Filter+ Gaussian Blur+Otsu Local Threshold 36.5 ±4.9 0.762 0.213 0.927
Cornea Filter + Close Morphology + Mean Local
Threshold

24.7 ±5.3 0.316 −0.074 0.727

Gold Standard Images 33.9 ±5.7 — — —

SD, standard deviation; pxl, pixel.
Methodologies with good reliability, ICC ≥0.750 (bold), that were selected for pxl location accuracy assessment.
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Table 3. Performance of the High Reliability Threshold Methodologies

Threshold Methodologies AUC Sensitivity (%) Specificity (%) Accuracy (%)
Lower
95% CI

Upper
95% CI

1-Step Threshold Methods
Mean Local Threshold 0.799 72.6 87.2 82.4 77.9 86.7
Phansalkar Local Threshold 0.808 73.5 88.1 82.9 78.7 87.3

2-Step Threshold Methods
Close Morphology (1pxl) + Mean Local Threshold 0.804 72.8 88.0 82.7 78.4 87.0
Close Morphology (1pxl) + Phansalkar Local Threshold 0.728 57.9 87.8 73.8 68.8 78.8
Close Morphology (2pxl) + Mean Local Threshold 0.776 69.1 86.1 80.1 74.2 86.1
Close Morphology (2pxl) + Phansalkar Local Threshold 0.723 58.2 86.4 74.3 69.7 78.9
Bandpass Filter + Mean Local Threshold 0.809 74.2 87.6 83.5 79.2 87.8
Bandpass Filter + Phansalkar Local Threshold 0.826 79.0 86.1 86.9 83.0 91.0

3-Step Threshold Methods
Bandpass Filter + Gaussian Blur + Otsu Local Threshold 0.723 64.6 80.0 76.5 70.7 82.4

Detailed performance of the pixel-location assessment of each methodology with averaged values from all images (e.g.,
AUC, sensitivity, specificity, accuracy, and 95% CI).

Figure 5. Representative OCTA image showing the overlapping
pixels of the Bandpass filter + Phansalkar local threshold with the
pixels from its gold-standard image. The white pixels represent true-
positives (TP), the red false-positives (FP), the blue false-negatives
(FN), and the black true-negatives (TN).

14 sample images are shown in Table 3. The bandpass
filter with Phansalkar local threshold method showed
the highest accuracy in identifying the correct location
of pixels that represented flow in the gold standard
images (86.9% ± 6.8%, range 71.3%–94.1%), as shown
in Figure 5. Interestingly, although the combined
method using a 2-pixel radius close morphology with
mean local threshold showed a higher ICC value
for VD measurement compared to its 1-pixel radius
counterpart (ICC = 0.841 and ICC = 0.838, respec-
tively), the latter was more accurate in identifying the
correct blood flow pixels; mean accuracy of 82.9%

± 7.5%, compared to 81.2% ± 7.5% from its 2-pixel
counterpart.

Discussion

This study highlights that only select image thresh-
old methods commonly used and published in the
literature show a good agreement in measuring VD.
Moreover, the combined threshold method using a
bandpass filter with a Phansalkar local threshold
showed the highest accuracy in identifying pixels repre-
senting blood vessels. As OCTA continues to grow
in research and clinical trials, and more recently for
anterior segment, accurate and reproducible vessel
measurement quantification is of paramount impor-
tance. This study demonstrates how different image
thresholding techniques can significantly alter the
quantification of VD, which further highlights the need
for a standardization.

There is a wide range of binarizationmethods in the
literature and to date no consensus for image process-
ing and vessel quantification for both posterior and
anterior segment. The goal of this study was not to
exhaust every available method, rather, to compare
commonly reported methods and their combination
using a common, widely available, and open-source
software. As such, we undertook a stepwise approach
to compare the different image processing techniques.
Some studies utilize manual thresholding on anterior
segment OCTA images.14,41,42 We showed that the
agreement of manual thresholding was unsatisfac-
tory for VD analysis, even though this approach
was better than many automated threshold methods
(global or local). Moreover, we showed agreement
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between graders to be poor with manual thresholding,
highlighting the high variability of measures by using 3
graders. We also assessed the agreement between one-
step global and local thresholds commonly used in the
literature,6,17,23,32,43 and determined that local thresh-
old outperformed global threshold methods. Accord-
ingly, the local thresholding was used for consecu-
tive combined thresholding methods, in accordance to
previous reports.6,32 Overall, the local threshold gener-
ated a more homogenous image by accounting for the
local gray value differences in each region. The most
commonly used 1-step threshold method in the litera-
ture is Otsu (global and local).15,17,23,43 However, initial
studies have shown a poor performance overall of
this method, whereas recent approaches suggest Otsu
threshold in combination with other image filters to
improve its performance.26,44,45 We found a similar
trend in our data, where the 3-step method with Otsu
local threshold outperformed its 1-step method.

Next, commonly used combined methods were
tested and relevant adaptations were assessed. The
most common combined methods utilized in the liter-
ature are the Gaussian blur with Bandpass filter and
Otsu local threshold (Fig. 3A2)15,17,33,38 and the top hat
filter with a bandpass filter and an Otsu local threshold
(Fig. 3C1).23,43,46 We found that the top hat filter with
a bandpass filter followed by an Otsu local threshold
showed very poor agreement (ICC = 0.142). Although
Gaussian blur with Bandpass filter followed by anOtsu
local threshold met the criteria for accuracy assessment
(ICC = 0.762) it was significantly outperformed by
bandpass filter with Phansalkar local threshold (AUC
= 0.732 and AUC = 0.826, respectively).

A top hat filter has been frequently proposed as
a method to reduce noise and remove small parti-
cles in the image without distortion.32,43 Although the
combination of a top hat filter with a bandpass filter
is the most commonly performed,33,43,46,47 we further
explored the impact each filter on theVDagreement. In
this study, an isolated top hat filter followed by a local
threshold method showed worse agreement compared
to the combined top hat and bandpass filters (Table 2).
Conversely, the isolated bandpass filter followed by a
local threshold method showed better agreement than
the combined filters (top hat and bandpass), showing
that the latter excessively removed pixels representing
vessels. Of note, the combinedmethod using the cornea
gray value as a global suppression threshold, simulating
the avascular signal-to-noise calculation from the foveal
avascular zone in retina OCTA,39 showed a poor agree-
ment. It is important to highlight that although this
approach might be useful for corneal neovasculariza-
tion thresholding,16 where the cornea presents a higher
signal-to-noise ratio, we found it was not adequate
for conjunctival vessel thresholding. A hessian-based

Frangi vesselness filter is commonly used to identify
vessel-like structures on a variety of images, including
fundus photographs. However, the latter was designed
to highlight vessels in noncontrasted images.35,36 The
Frangi filter showed suboptimal reliability given the
blood flow in OCTA has already high contrast, increas-
ing the gray value cutoff of the image and thus thresh-
olding many fine capillaries as background pixel.

Image binarization is an important step when
quantifying VD in research studies and clinical trials
using OCTA. Mehta and associates30 highlighted that
different thresholding methods can significantly alter
the absolute values as well as the directionality of
trends, which could impact studies assessing quanti-
tative vessel measurements. To date, there is no estab-
lished parameter to compare and determine the quality
of the thresholding methods. An ideal thresholding
method is one that is widely available and accessible for
research that can accurately binarize all pixels repre-
senting blood flow as foreground and all pixels that
do not as background. Studies assessing the capabil-
ity and sensitivity of OCTA in detecting true blood
flow in vivo are lacking. One approach, widely accepted
in the literature, is the manual removal of pixels on
an OCTA image to produce a “gold standard” refer-
ence, then determining the parameters of a custom-
built combined thresholding process (top hat filter
with global threshold and local mean threshold)
that more accurately reproduced the vessel measure-
ments.32 Herein, although we took a similar approach
to determine the “gold standard” for comparison,
we used several images rather than a single image
and performed the binarization on an open-source
software widely used in research. Furthermore, wewere
able to determine the accuracy of each method in
binarizing pixels correctly after selecting methods that
met the criteria for good agreement. The combined
bandpass filter followed by Phansalkar local thresh-
old method showed the highest accuracy in the large
subset of images (Fig. 5). Although not every thresh-
olding method was tested in this study, it remains the
largest study comparing a wide variety of threshold-
ing methods on conjunctival OCTA images. However,
the inherit underlying limitations from the manual
adjustments to determine the gold-standard images,
which currently lack validation, should be consid-
ered. Additionally, not all the available methods were
tested. Nevertheless, this study is hopefully a step
forward toward a more accurate and accessible thresh-
olding method, highlighting the importance of estab-
lishing a standardized image binarization method to
allow comparison between future studies and clinical
trials.

Many studies within the published literature, inter-
estingly, either forgo mention or do not clearly
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report the details of the thresholding method, result-
ing in difficulty in the interpretation and repro-
duction of the results. Also, while the use of
the OCT device’s built-in software is frequently
used and advocated,12,48,49 the inherent variability
between devices that can result from distinct algorithm
processing steps of each platform cannot guaran-
tee accuracy,30 especially in anterior segment where
there are currently no specifically designed software.
Another important point to highlight is that in our
study, the cornea and eyelids were digitally removed
from all OCTA images to focus on conjunctival vessels.
This introduces determining conjunctival boundaries
identification and manual selection, which is time
consuming. Furthermore, not all individuals have
the same interpalpebral exposure for conjunctival
imaging, which may be a limitation of studies measur-
ing conjunctival vessel parameters. Future trained
algorithms designed to remove these features before
image binarization are necessary for fully automated
thresholding.

Studies have highlighted OCTA adapted for
anterior segment capable of quantifying VD of small
capillaries on the cornea and conjunctival better than
slit-lamp photography and indocyanine green angiog-
raphy.46,50 Conversely, another study demonstrated
that OCTA was less precise in detecting small capil-
laries of corneal neovascularization compared to
indocyanine green angiography.51 It is of note that
these imaging techniques are not directly compara-
ble when thresholding and quantifying vessels, given
their differences in how flow is detected, the image
contrast and resolution. Put differently, the same
thresholding method for vessel quantification used
in these images will not be optimal for all imaging
techniques (i.e., OCTA, fluorescent angiography, color
photography) and anatomical structures (i.e., macula,
optic nerve, conjunctiva, cornea), as highlighted in
our study. Accordingly, we believe that a consen-
sus in OCTA thresholding and analysis for each
anatomical structure is necessary for accurate vessel
assessment.

There were several inherit limitations to our study.
First, as previously discussed, is the lack of a gold
standard. The manually created “gold standard” refer-
ence images as a means of comparison is suboptimal
but necessarily commonly used, considering the avail-
able resources and knowledge from previous reports
in the literature.44 However, by removing pixels that
represented noise or did not resemble vessels on the
OCTA image, in some images, a large number of
pixels were excluded because of higher image noise.
This further highlights the discrepancy of threshold-
ing methods that generated low VD values (i.e., Otsu

and manual threshold) and explains the high range of
the 95% confidence intervals of ICC values; however,
it simulates a more realistic assessment of conjunctival
OCTA with variable noise. Furthermore, a relatively
small number of images was analyzed, and not all
threshold possibilities were tested in the current study.
Manually removing pixels to create reference images
is very time consuming and therefore challenging to
create a large dataset of reference images for compari-
son. Nevertheless, our study power was 100%, assum-
ing alpha of 0.05, for the gold standard validation.
Finally, VD was the only vessel parameter studied
herein. Although Reif et al.32 proposed the same
combined threshold method for VD and fractal dimen-
sion, larger studies are warranted to address the role of
thresholding for each vessel parameter.

Collectively, our results show the impact of image
thresholding on VD and further highlight the need
for a standardization in image thresholding, particu-
larly in anterior segment OCTA because it is a novel
field with distinct features that may affect binariza-
tion, such as higher signal-to-noise ratio and artifacts
compared to better established OCTA imaging for
posterior segment.

In conclusion, a combined thresholding method,
particularly the bandpass filter with a local Phansalkar
threshold, showed a good reliability and higher
accuracy for pixel location and overall performance
when compared to other combined methods or 1-step
threshold methods. Many of the published methods in
the literature did not show a satisfactory agreement and
did notmeet the criteria for accuracy assessment. Thus,
the effects of image thresholding should be consid-
ered in vessel quantification and interpretation as it can
impact future research studies and clinical trials using
OCTA.

Acknowledgments

Supported by Tufts Medical Center Institutional
Support, Boston, MA (PH), Massachusetts Lions Eye
Research Fund, Inc. (PH), and Research to Prevent
Blindness Challenge Grant to the Department of
Ophthalmology. The funding organizations had no role
in the design or conduct of this research.

Meeting Presentations: This study was presented,
in part, at the Association for Research in Vision and
Ophthalmology Conference, Honolulu, HI, May 2018.

Disclosure: W.W. Binotti, “Systems and Methods
for Determining Tissue Inflammation Levels”
U.S. Patent Application Serial No.#62/913,307 (I);



Automated Threshold Method for Conjunctival OCTA TVST | July 2022 | Vol. 11 | No. 7 | Article 15 | 11

P. Hamrah, “Systems and Methods for Determining
Tissue Inflammation Levels” U.S. Patent Application
Serial No. 62/913,307 (I); D. Saukkonen, None; Y.
Seyed-Razavi, None; A. Jamali, None

References

1. Ohtani N. Laser Doppler flowmetry of the bul-
bar conjunctiva as a monitor of the cerebral
blood flow. Nihon Kyobu Geka Gakkai Zasshi.
1996;44:1721–1728.

2. WongTY,KleinR, SharrettAR, et al. Retinal arte-
riolar narrowing and risk of coronary heart dis-
ease in men and women. The Atherosclerosis Risk
in Communities Study. JAMA. 2002;287:1153–
1159.

3. Cheung AT, Tomic MM, Chen PC, Miguelino E,
Li CS, Devaraj S. Correlation of microvascular
abnormalities and endothelial dysfunction in Type-
1 Diabetes Mellitus (T1DM): a real-time intravi-
tal microscopy study. Clin Hemorheol Microcirc.
2009;42:285–295.

4. Yarmohammadi A, Zangwill LM, Diniz-Filho A,
et al. Optical coherence tomography angiogra-
phy vessel density in healthy, glaucoma suspect,
and glaucoma eyes. Invest Ophthalmol Vis Sci.
2016;57(9):OCT451–OCT459.

5. de Carlo TE, Romano A, Waheed NK, Duker JS.
A review of optical coherence tomography angiog-
raphy (OCTA). Int J Retina Vitreous. 2015;1:5.

6. Al-Sheikh M, Phasukkijwatana N, Dolz-Marco
R, et al. Quantitative OCT angiography of
the retinal microvasculature and the choriocapil-
laris in myopic eyes. Invest Ophthalmol Vis Sci.
2017;58:2063–2069.

7. Van Melkebeke L, Barbosa-Breda J, Huygens M,
Stalmans I. Optical coherence tomography angiog-
raphy in glaucoma: a review. Ophthalmic Res.
2018;60:139–151.

8. Alagorie AR, Nittala MG, Velaga S, et al. Associ-
ation of intravitreal aflibercept with optical coher-
ence tomography angiography vessel density in
patients with proliferative diabetic retinopathy: a
secondary analysis of a randomized clinical trial.
JAMA Ophthalmol. 2020;138:851–857.

9. Cennamo G, Montorio D, D’Alessandro A,
Napolitano P, D’Andrea L, Tranfa F. Prospec-
tive study of vessel density by optical coherence
tomography angiography after intravitreal beva-
cizumab in exudative age-related macular degener-
ation. Ophthalmol Ther. 2020;9:77–85.

10. Spaide RF, Fujimoto JG, Waheed NK, Sadda
SR, Staurenghi G. Optical coherence tomography
angiography. Prog Retin Eye Res. 2018;64:1–55.

11. Izatt JA,HeeMR, Swanson EA, et al.Micrometer-
scale resolution imaging of the anterior eye in vivo
with optical coherence tomography. Arch Ophthal-
mol. 1994;112:1584–1589.

12. Ang M, Cai Y, Shahipasand S, et al. En
face optical coherence tomography angiography
for corneal neovascularisation. Br J Ophthalmol.
2016;100:616–621.

13. Ang M, Sim DA, Keane PA, et al. Optical
coherence tomography angiography for anterior
segment vasculature imaging. Ophthalmology.
2015;122:1740–1747.

14. Cai Y, Alio Del Barrio JL, Wilkins MR, Ang M.
Serial optical coherence tomography angiography
for corneal vascularization. Graefes Arch Clin Exp
Ophthalmol. 2017;255:135–139.

15. Liu YC, Devarajan K, Tan TE, Ang M, Mehta
JS. Optical coherence tomography angiography for
evaluation of reperfusion after pterygium surgery.
Am J Ophthalmol. 2019;207:151–158.

16. Nanji A, Redd T, Chamberlain W, et al. Appli-
cation of corneal optical coherence tomography
angiography for assessment of vessel depth in
corneal neovascularization. Cornea. 2020;39:598–
604.

17. Liu Z, Karp CL, Galor A, Ai Bayyat GJ, Jiang
H, Wang J. Role of optical coherence tomogra-
phy angiography in the characterization of vascu-
lar network patterns of ocular surface squamous
neoplasia. Ocul Surf. 2020;18:926–935.

18. Binotti WW, Koseoglu ND, Nose RM, Kenyon
KR, Hamrah P. Novel parameters to assess
the severity of corneal neovascularization using
anterior segment optical coherence tomography
angiography. Am J Ophthalmol. 2021;222:206–
217.

19. Binotti WW, Mills H, Nose RM, Wu HK, Duker
JS, Hamrah P. Anterior segment optical coherence
tomography angiography in the assessment of ocu-
lar surface lesions. Ocul Surf. 2021;22:86–93.

20. Binotti WW, Nose RM, Koseoglu ND, Dieck-
mann GM, Kenyon K, Hamrah P. The utility of
anterior segment optical coherence tomography
angiography for the assessment of limbal stem cell
deficiency. Ocul Surf. 2021;19:94–103.

21. CheungN,DonaghueKC, LiewG, et al. Quantita-
tive assessment of early diabetic retinopathy using
fractal analysis. Diabetes Care. 2009;32:106–110.

22. Schreiber S, Bueche CZ, Garz C, Braun H. Blood
brain barrier breakdown as the starting point of



Automated Threshold Method for Conjunctival OCTA TVST | July 2022 | Vol. 11 | No. 7 | Article 15 | 12

cerebral small vessel disease? New insights from a
rat model. Exp Transl Stroke Med. 2013;5(1):4.

23. Jiang H, Zhong J, DeBuc DC, et al. Functional
slit lamp biomicroscopy for imaging bulbar con-
junctival microvasculature in contact lens wearers.
Microvasc Res. 2014;92:62–71.

24. Chen W, Batawi HI, Alava JR, et al. Bulbar con-
junctival microvascular responses in dry eye. Ocul
Surf. 2017;15:193–201.

25. Haralick RM, Sternberg SR, Zhuang X. Image
analysis using mathematical morphology. IEEE
Trans Pattern Anal Mach Intell. 1987;9:532–550.

26. Otsu N. A threshold selection method from gray-
level histograms. IEEE Trans Sys Man Cyber.
1979;9:62–66.

27. Phansalkar N, More S., Sabale A., Joshi M. Adap-
tive local thresholding for detection of nuclei in
diversity stained cytology images. International
Conference on Communications and Signal Process-
ing. 2011:218–220.

28. Hassan G, El-Bendary N, Hassanien AE, Fahmy
A, Shoeb AM, Snasel V. Retinal blood vessel
segmentation approach based on mathematical
morphology. Procedia Comput Sci. 2015;65:612–
622.

29. Cole ED, Moult EM, Dang S, et al. The defini-
tion, rationale, and effects of thresholding in OCT
angiography. Ophthalmol Retina. 2017;1:435–447.

30. Mehta N, Liu K, Alibhai AY, et al. Impact of
binarization thresholding and brightness/contrast
adjustment methodology on optical coherence
tomography angiography image quantification.
Am J Ophthalmol. 2019;205:54–65.

31. William B, Nose RM, Dieckmann G, Seyed-
Razavi Y, Hamrah P. Comparative assessment of
semi-automated conjunctival vessel quantification
methodologies for spectral domain anterior seg-
ment optical coherence tomography angiography.
Invest Ophthalmol Vis Sci. 2018;59:1670.

32. Reif R, Qin J, An L, Zhi Z, Dziennis S, Wang
R. Quantifying optical microangiography images
obtained from a spectral domain optical coher-
ence tomography system. Int J Biomed Imaging.
2012;2012:509783.

33. Devarajan K, Di LeeW, Ong HS, et al. Vessel den-
sity and En-face segmentation of optical coherence
tomography angiography to analyse corneal vascu-
larisation in an animal model. Eye Vis. 2019;6:2.

34. Devarajan K, Sim R, Chua J, et al. Optical coher-
ence tomography angiography for the assessment
of choroidal vasculature in high myopia. Br J Oph-
thalmol. 2020;104:917–923.

35. Longo A, Morscher S, Najafababdi JM, Justel D,
Zakian C, Ntziachristos V. Assessment of hessian-

based Frangi vesselness filter in optoacoustic imag-
ing. Photoacoustics. 2020;20:100200.

36. Shah SAA, Tang TB, Faye I, Laude A. Blood ves-
sel segmentation in color fundus images based on
regional and Hessian features. Graefes Arch Clin
Exp Ophthalmol. 2017;255:1525–1533.

37. Haddad RA, Akansu A.N. A class of fast gaus-
sian binomial filters for speech and image process-
ing. IEEE Trans Acoustics Speech Signal Process-
ing. 1991;39:723–727.

38. Anijeet DR, Zheng Y, Tey A, Hodson M, Sueke
H, Kaye SB. Imaging and evaluation of corneal
vascularization using fluorescein and indocyanine
green angiography. Invest Ophthalmol Vis Sci.
2012;53:650–658.

39. Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puli-
afito CA, Kashani AH. Quantifying microvascu-
lar density andmorphology in diabetic retinopathy
using spectral-domain optical coherence tomog-
raphy angiography. Invest Ophthalmol Vis Sci.
2016;57:362–370.

40. Portney L, Watkins M. Foundations of Clinical
Research: Applications to Practice. Hoboken, NJ:
Prentice Hall; 2000:892.

41. AngM,CaiY,MacPhee B, et al. Optical coherence
tomography angiography and indocyanine green
angiography for corneal vascularisation. Br J Oph-
thalmol. 2016;100:1557–1563.

42. Patel CN,AntonyAK,KommulaH, Shah S, Singh
V, Basu S. Optical coherence tomography angiog-
raphy of perilimbal vasculature: validation of a
standardised imaging algorithm. Br J Ophthalmol.
2020;104:404–409.

43. Akagi T, Uji A, Huang AS, et al. Conjunctival and
intrascleral vasculatures assessed using anterior
segment optical coherence tomography angiogra-
phy in normal eyes. Am J Ophthalmol. 2018;196:1–
9.

44. BahadarKhan K, Khaliq AA, Shahid M. A
morphological hessian based approach for reti-
nal blood vessels segmentation and denoising
using region based Otsu thresholding. PLoS One.
2016;11(7):e0158996.

45. Kloppel S, Abdulkadir A, Hadjidemetriou S, et al.
A comparison of different automated methods for
the detection of white matter lesions in MRI data.
Neuroimage. 2011;57:416–422.

46. Stanzel TP, Devarajan K, Lwin NC, et al. Com-
parison of optical coherence tomography angiog-
raphy to indocyanine green angiography and slit
lampphotography for corneal vascularization in an
animal model. Sci Rep. 2018;8(1):11493.

47. Binotti WW, Koseoglu ND, Nose RM, Kenyon
KR, Hamrah P. Novel parameters to assess



Automated Threshold Method for Conjunctival OCTA TVST | July 2022 | Vol. 11 | No. 7 | Article 15 | 13

the severity of corneal neovascularization using
anterior segment optical coherence tomography
angiography.Am JOphthalmol. 2021;222:206–217.

48. Cai S, Zhao F, Du C. Repeatability of ocular
surface vessel density measurements with optical
coherence tomography angiography. BMC Oph-
thalmol. 2019;19:248.

49. Zhao F, Cai S, Huang Z, Ding P, Du C. Optical
coherence tomography angiography in pinguecula
and pterygium. Cornea. 2020;39:99–103.

50. Aicher NT, Nagahori K, Inoue M, Itoh Y,
Hirakata A. Vascular density of anterior segment
of eye determined by optical coherence tomogra-
phy angiography and slit-lamp photography. Oph-
thalmic Res. 2020;63:572–579.

51. Brunner M, Romano V, Steger B, et al. Imaging
of corneal neovascularization: optical coherence
tomography angiography and fluorescence angiog-
raphy. Invest Ophthalmol Vis Sci. 2018;59:1263–
1269.


