
royalsocietypublishing.org/journal/rspb
Research
Cite this article: Pandharikar G, Gatti J-L,
Simon J-C, Frendo P, Poirié M. 2020 Aphid

infestation differently affects the defences of

nitrate-fed and nitrogen-fixing Medicago

truncatula and alters symbiotic nitrogen

fixation. Proc. R. Soc. B 287: 20201493.
http://dx.doi.org/10.1098/rspb.2020.1493
Received: 23 June 2020

Accepted: 7 August 2020
Subject Category:
Ecology

Subject Areas:
microbiology, plant science, ecology

Keywords:
pea aphid (Acyrthosiphon pisum),

Medicago truncatula, symbiosis, rhizobium,

nitrogen fixation, plant defence
Author for correspondence:
Marylène Poirié

e-mail: marylene.poirie@univ-cotedazur.fr
†These authors are co-last author.
© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Aphid infestation differently affects the
defences of nitrate-fed and nitrogen-
fixing Medicago truncatula and alters
symbiotic nitrogen fixation

Gaurav Pandharikar1, Jean-Luc Gatti1, Jean-Christophe Simon2,
Pierre Frendo1,† and Marylène Poirié1,†

1Université Côte d’Azur, INRAE, CNRS, ISA, France
2INRAE, UMR IGEPP, Domaine de la Motte, Le Rheu, France

GP, 0000-0002-4318-5549; J-LG, 0000-0001-7683-718X; J-CS, 0000-0003-0620-5835;
PF, 0000-0002-4578-3366; MP, 0000-0002-3349-6925

Legumes can meet their nitrogen requirements through root nodule symbio-
sis, which could also trigger plant systemic resistance against pests. The pea
aphid Acyrthosiphon pisum, a legume pest, can harbour different facultative
symbionts (FS) influencing various traits of their hosts. It is therefore
worth determining if and how the symbionts of the plant and the aphid
modulate their interaction. We used different pea aphid lines without
FS or with a single one (Hamiltonella defensa, Regiella insecticola, Serratia
symbiotica) to infest Medicago truncatula plants inoculated with Sinorhizobium
meliloti (symbiotic nitrogen fixation, SNF) or supplemented with nitrate
(non-inoculated, NI). The growth of SNF and NI plants was reduced by
aphid infestation, while aphid weight (but not survival) was lowered on
SNF compared to NI plants. Aphids strongly affected the plant nitrogen
fixation depending on their symbiotic status, suggesting indirect relation-
ships between aphid- and plant-associated microbes. Finally, all aphid
lines triggered expression of Pathogenesis-Related Protein 1 (PR1) and
Proteinase Inhibitor (PI), respective markers for salicylic and jasmonic pathways,
in SNFplants, compared to onlyPR1 inNIplants.Wedemonstrate that theplant
symbiotic status influences plant–aphid interactions while that of the aphid can
modulate the amplitude of the plant’s defence response.
1. Introduction
Symbiosis, the intimate relationship between two ormore living organisms, is an
evolutionary force shaping life on our planet. Well-known examples are the
extended phenotypes that bacterial symbionts confer to plants or animals.
Legumes (Fabaceae) are unique by the symbiosis they can establish with nitro-
gen-fixing soil bacteria, Rhizobia [1,2], which can reduce atmospheric nitrogen
(N2) to ammonia usable by plants. This biological symbiotic nitrogen fixation
(SNF) occurs in root nodules, specialized plant organs induced by the bacterium
[3]. SNF improves the productivity of leguminous crops by increasing soil ferti-
lity, therefore benefiting associated crops in intercropping [4]. The presence of
rhizobacteria also improves the plant response to pathogens and herbivores
thanks to several mechanisms such as nutrient competition and the triggering
of induced systemic resistance (ISR) [5,6]. ISR resembles pathogen-induced
systemic acquired resistance (SAR), both of them increasing the resistance of
uninfected plant parts to a wide range of pathogens through plant hormones
induction, salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), the major
plant defence signalling pathways against pathogens and insects [7]. By produ-
cing SA on the root surface, several rhizobacteria trigger the SA-dependent

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2020.1493&domain=pdf&date_stamp=2020-09-02
mailto:marylene.poirie@univ-cotedazur.fr
http://orcid.org/
http://orcid.org/0000-0002-4318-5549
http://orcid.org/0000-0001-7683-718X
http://orcid.org/0000-0003-0620-5835
http://orcid.org/0000-0002-4578-3366
http://orcid.org/0000-0002-3349-6925
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20201493

2
pathway while others activate an SA-independent pathway
[7]. However, the effectiveness of ISR-triggered plant defence
depends on genetic and environmental factors. Overall,
microbe–plant–insect interaction, called ‘three-way inter-
action’, is an expanding research area [8]. Aphids are a
serious pest of many crops, ornamental plants, or forest
trees. Of the 4000 known aphid species, 450 thrive on crops
and about 200 cause serious damage by sucking the phloem
sap up, reducing plant growth and, most importantly, trans-
mitting plant viruses [9,10]. Most aphids live in obligate
symbiosis—over 150Myr old—with the gamma-proteobacter-
ium Buchnera aphidicola, which provides essential amino acids
absent from the phloem sap [11,12]. Buchnera bacteria are
housed in specialized cells, the bacteriocytes and they are
transmitted vertically [13]. In addition, aphids can host one
or a few heritable facultative symbionts (FS), nine of which
can be found in pea aphid populations [14,15]. These bacteria
are not essential for aphid survival and reproduction, and can
even be costly [16,17], but they provide the host with extended
phenotypes including resistance to parasitoid wasps and
pathogenic fungi, and heat stress tolerance [18]. The pea
aphid (Acyrthosiphon pisum) feeds on legumes and forms a
complex of at least 15 plant-adapted biotypes, each of them
specialized on different legume hosts [19,20]. Interestingly,
some biotypes are specifically associated with a facultative
symbiont [21,22], suggesting that symbionts can increase the
host performance on specific plants [15,18,23].

Since the economic impact of aphids is linked to successful
colonization and establishment on host plants, understanding
how the associated FS influence them is essential for the
management of these pests. Surprisingly, only a few studies
on aphid–plant–microbe interactions specified the symbiotic
state of the legumes used, usually fava beans, the universal
plant host for all pea aphid biotypes. However, the nitrogen-
fixing symbiosis of the plant could in turn affect the aphid
phenotypes. Indeed, the plant-associated symbionts can
affect the performance of some insects in terms of feeding
efficiency, metabolism and ability to manipulate the physi-
ology of the plant [5]. Besides, insect endosymbionts can
directly affect the performance of their host by decreasing its
reproduction and immunity depending on the nutritional
status of the plant [24]. They can also indirectly interfere
with plant signal transduction pathways by repressing or
neutralizing defence-related responses or altering plant
metabolism [25]. Although solid fundamental knowledge is
available on plant–microbe and insect–microbe interactions,
the indirect relationships between the four protagonists still
need to be deepened. Therefore, since specific aphid lines
can be produced by elimination/injection of FS, we studied
the FS potential influence on legume–aphid interactions, con-
sidering the plant in symbiosis (SNF) or supplemented with
nitrate (non-inoculated, NI). We used Medicago truncatula, a
legume–rhizobia symbiotic model, and A. pisum (pea aphid)
lines of identical genetic background (YR2 clone) deprived
of FS or hosting one of themost common FS in the field (Hamil-
tonella defensa, Regiella insecticola, Serratia symbiotica) [18,26].
Our objective was to test for the influence of the plant SNF
on the development and growth of aphids depending on the
facultative hosted symbiont, and of each facultative symbiont
on the SNF and NI plants. We showed that biological nitrogen
fixation reduces the aphid fitness regardless of aphid lines
compared to nitrate feeding (NI) conditions. Infection with
most aphid lines significantly reduced the efficiency of
nitrogen fixation in plants by affecting the function of root
nodules estimated by chemical assay and expression
of specific root nodules genes (leghemoglobin and cysteine
protease 6). Finally, all aphid lines triggered the expression in
plant shoots of Pathogenesis-Related Protein 1 (PR1), a well-
defined gene marker for salicylic defence pathway [27], and
Proteinase Inhibitor (PI), a marker for jasmonate defence path-
way [28], in SNF plants, while only PR1 expression was
triggered in NI plants. Overall, we demonstrate that the out-
come of plant–aphid interactions is influenced by the plant
symbiotic status andmodulated by the aphid-hosted symbiont.
2. Material and methods
(a) Plant material and growth conditions
Medicago truncatula Jemalong A17 is susceptible to different lines
of the pea aphid [29]. The seeds were prepared as previously
described [30,31] (see electronic supplementary material, figure
S1 for details). After germination, six pots, each containing six
plants, were inoculated with Sinorhizobium meliloti 2011 strain
(SNF plants) and six pots, each containing six plants, were sup-
plemented with 5 mM KNO3 solution (NI plants) (details can
be found in electronic supplementary material, figure S1) [32,33].

(b) Aphids rearing and infestation
Five A. pisum lines of YR2 genetic background were used [26]. The
YR2 clonewas collected on red clover (Trifolium pratense) and natu-
rally hosts anR. insecticola strain (RiYR2), therefore being called here
YR2-Ri(n). All YR2 lines differ only in their facultative symbiont(s):
YR2-Amp, devoid of facultative symbiont, derives from YR2-Ri(n)
by ampicillin treatment [26,34]. YR2-Ampwas used to produce the
lines YR2-Ri(a) ((a) for artificial), YR2-Hd and YR2-Ss by injection
of, respectively, R. insecticola from the T3-8V1 clone (RiT3-8V1

strain), H. defensa from the L1-22 clone and S. symbiotica from the
P136 clone [26]. The YR2-Ss line is co-infected with Rickettsiella vir-
idis due to its presence in the P136 donor clone. All these lines were
stable and reared in aerated cages on four-week-old Vicia faba
plants at 20°C with a 16/8 h light/dark photoperiod. The symbio-
type was controlled by PCR at different times as previously
described [35].

(c) Experimental design and analysis of the biological
material

Plants were infested by aphids one-week post-inoculation with
S. meliloti or nitrate supplementation, a time at which the dry
weight of the two plant types was almost identical (electronic
supplementary material, figure S2). Each of the five out of six
groups of plants was infested with one of the YR2 aphid lines
(YR2-Amp, -Ri(n), -Ri(a), -Hd and -Ss), and the sixth, left unin-
fested, served as a control. Ten synchronized L1 nymphs per
pot were used for infestation [36] (see electronic supplementary
material, figure S1).

(d) Analyses of aphid fitness and aphid effect on plants
Aphid survival was assessed daily and the average weight of sur-
viving aphids estimated on day 12, just before adult aphids started
to reproduce, enough time to establish the plant’s nitrogen-fixing
symbiosis and its defence response to aphids. The effect of the
five aphid lines on SNF and NI plants was estimated by weighing
the plant shoots after removal of the aphids. For dry weight, the
shoots were placed in a drying oven at 80°C for 3 days and
weighed on a precision balance (PA214; OHAUS Corp, accuracy
±0.1 mg). The six individual plants from pots for each plant



Amp

****

****
***

**** ****

Ri(n) Ri(a)

aphid lines

ap
hi

d 
w

ei
gh

t (
m

g)

Hd Ss

2.0

1.5

1.0

0.5

0
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condition were weighted individually; means were calculated
from three separated experiments.

(e) Nitrogen fixation assay
The nitrogen fixation assay was done on the roots of SNF plants
immediately after collection. Nitrogen-fixing ability of the nodules
was estimated indirectly by the reduction of acetylene to ethylene
by the nitrogenase (acetylene reduction assay: ARA). The nodu-
lated roots were incubated at 28°C for 1 h in rubber-capped glass
bottles containing acetylene. Gas conversion was measured by
gas chromatography (6890 N GC network system, Agilent). After
ARA measurement, the nodules were separated from the roots,
counted and weighed. The ARA values were expressed in nmol
of ethylene × h−1 ×mg of nodule−1 [ARA/(h ×mg nod)] and in
nmol of ethylene × h−1 × plant−1 [ARA/plant]. The six individual
plants per pot were divided into two technical repeats for the
three separate biological experiments.

( f ) Gene expression analysis by quantitative RT-PCR
The six SNF and NI plant shoots and the SNF plant nodules were
collected immediately after the aphid removal, pooled and frozen
in liquid nitrogen. The plant material was then powdered in liquid
nitrogen and total RNAs were isolated using RNAzol (Sigma),
spectrometrically quantified (NanoDrop; Thermo Scientific), and
their purity assessed on Bioanalyser chips (Agilent) and on 1.5%
agarose gel. DNAdigestion (RQ1 RNAse-free DNAse) and reverse
transcription (GoScript Reverse Transcription) were performed as
described by the manufacturer (Promega). The quantitative PCR
was performed using the qPCR Master Mix plus CXR (qPCR kit;
Promega), with 0.125 µl of cDNA template and each set of specific
primers (more details in electronic supplementary material, table
S1). Defence-related genes used were PR1 (pathogenesis-related
1; Medtr2g435490) (NCBI; XP_013463163.1) and Medtr4g032865,
coding for proteinase inhibitor PSI-1.2, a potato type II proteinase
inhibitor family protein, thereafter named proteinase inhibitor
PI (NCBI; KEH29269.1). For the root/nodule function, we
used the leghemoglobin-1 gene MtLb1 (Medtr5g066070) (NCBI;
XP_003615280.1) since it participates in the protection of the nitro-
genase from oxygen denaturation and provides oxygen for
bacterial respiration [37] and Medtr4g079800 encoding the senes-
cence-specific cysteine protease SAG39 also named Cp6 (NCBI;
XP_003607574.1) [38]. Real-time RT-qPCR was performed and
analysed as indicated in electronic supplementary material,
table S1. Cycle threshold values (Ct) were normalized using two
housekeeping genes MtC27 and a38. Calculations were done
with the RqPCRBase package [39] using RStudio v. 1.1.453
(https://www.rstudio.com). Results were from four independent
biological repeats with three technical repetitions per experiment.

(g) Statistical analysis
All experimental data were expressed as mean ± s.e. To test for an
effect of the plant treatment (SNF and NI) on the survival and
weight of aphid lines, data were analysed using a two-way
ANOVA. This allowed testing the effect of two independent
variables (plant condition (SNF or NI); different aphid lines
(Amp, -Ri(n), -Ri(a), -Hd and -Ss)) on the weight and survival
of aphids at 12 dpi. Differences between the aphid lines were
tested using the Sidak’s multiple comparison test. Data gener-
ated on the plant dry weight, the nitrogen fixation assay per
plant or per mg of nodule, the number of root nodules per
plant and the weight of the nodules per plant were analysed
using a one-way ANOVA. Results from these experiments on
SNF and/or NI plants were compared independently based on
the treatment (one-way ANOVA). Then, Tukey multiple com-
parison tests were performed in independent treatments to
identify possible statistical differences between the aphid lines.
All experimental data, except expression analysis results, were
analysed using Prism v. 7 (GraphPad software, USA). Data are
available in electronic supplementary material, tables S2–S10.
3. Results
(a) Effect of symbiotic nitrogen fixation and non-

inoculated plants on the survival and weight of pea
aphid lines

To ascertain that A. pisum YR2 lines could develop onM. trun-
catula SNF and NI plants, the number and weight of surviving
adult aphids, two fitness proxies [40], were estimated 12 days
post-infestation (dpi). About 90% of aphids reached adulthood
on both types of plants, with a significant difference between
the lines [26,34] but not between the two plant conditions for
each line (electronic supplementary material, figure S2 and
table S2). By contrast, the average weight of surviving aphids
was significantly higher (at least 40%) on NI plants than on
SNF, regardless of the line (figure 1).

(b) Effects of aphid infestation on the biomass of M.
truncatula plant shoots

At the beginning of the experiment, the shoots of SNF and NI
control plants had a similar dry weight (electronic supplemen-
tary material, figure S3) while 12 days later, it was about twice
as high for NI control plants than for SNF (figure 2, control)
[33]. Infestation of SNF plants with YR2-Amp, -Ri(a) and -Ss
lines significantly reduced their dryweight compared to the con-
trol (about 25%) (figure 2a), unlike that with YR2-Ri(n) and -Hd
(10%)whichwasnot significant. ThedryweightofNIplantswas
considerably reduced after infestation with YR2-Amp, -Ri(n),
-Ri(a) and -Hd (also around 25%), but not with YR2-Ss (15%
reduction, non-significant) (figure 2b). The reduction in growth
of aphid-infested plants therefore occurs regardless of the nitro-
gen nutritionmode but its amplitude depends on the FS hosted.

(c) Effect of aphid lines on the nitrogen fixation of
symbiotic nitrogen fixation plants

The effect of pea aphid lines on the biological nitrogen fixation
was first evaluated by counting and weighing the nodules
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(figure 3) as they are macroscopic markers for the establish-
ment of SNF in plants [41]. The number of root nodules per
plant was significantly lower in aphid-infested plants than in
non-infested control plants, except for YR2-Hd (figure 3a).
The highest effect was for YR2-Ss and YR2-Amp with a 50%
reduction in the number of nodules. The total weight of
nodules per plant was also reduced in infested plants, but
significantly only for the YR2-Ss and -Amp lines (figure 3b).

We then measured the nitrogen-fixing activity of the root
nodules using the acetylene reduction assay (ARA). The
plants infested with YR2-Amp, -Hd and -Ss showed a signifi-
cant reduction in the ARA expressed per mg of nodule
compared to the control while this reduction was not signifi-
cant with YR2-Ri(n) and YR2-Ri(a) (figure 3c). The ARA
per plant gave a similar result, except for the reduction
with YR2-Ri(a) which was significant here (figure 3d ).
Nodules nitrogen fixation efficiency was therefore affected
by aphid infestation. To further investigate this effect on the
biological function of nodules, we estimated the expression
rate of two specific genes by qRT-PCR: (i) the leghemoglobin
gene Mtlb1, whose expression correlates with optimal nitro-
gen fixation [42], and (ii) the MtCP6 cysteine protease (Cp6),
a gene expressed during both developmental and stress-
induced nodule senescence [38]. Only the infestation with
YR2-Ri(a) and YR2-Hd reduced significantly the expression
of Mtlb1 in SNF plants (figure 4e; electronic supplementary
material, table S10). By contrast, the expression of MtCp6
was increased 5–23-fold in infested SNF plants, except with
YR2-Ri(n) for which there was no significant change in
expression (figure 4f; electronic supplementary material,
table S10). Overall, data suggest an early induction of
nodule senescence in infested SNF plants and therefore a
decrease in metabolic efficiency.

(d) Expression of jasmonic acid and salicylic acid plant
defence pathways

Aphid feeding is known to induce expression of gene mar-
kers of the SA pathway, such as the PR1 gene [43–45]. It
has also been speculated that activation of the SA-signalling
pathways counteracts the activation of defence responses
related to JA. Here, we have also analysed the expression of
PI, a marker of the JA pathway [28]. The expression of PR1
and PI was similar in the shoots of non-infested SNF and
NI control plants (electronic supplementary material, figure
S4), suggesting that the plant nutrition mode does not
affect the basal defences of the plants. In infested plants,
PR1 expression was significantly increased (from 9-fold in
SNF plants with YR2-Amp to 50-fold in NI plants with
YR2-Ri(a)), regardless of the nutrition mode, except for
YR2-Hd on NI plants (figure 4a), suggesting an activation
of the SA pathway. The most striking result, however, was
the contrasting level of expression of PI upon aphid infesta-
tion: SNF plants showed a significant five- to eight-fold
induction in shoots (figure 4b). By contrast, a lower increase
in PI expression was observed in roots of infested SNF
plants, only significant for YR2-Hd (electronic supplementary
material, figure S5), and none in roots of NI plants. This pro-
vides evidence for a differential regulation of plant defence
mechanisms by aphids according to the presence of
rhizobium and to a lesser extent of the aphid FS.
4. Discussion
(a) Aphid weight is mainly affected by the mode of

nitrogen nutrition of the plant
Facultative aphid symbionts (FS) can shape the phenotype of
their hosts, including their interactions with host plant [46].
For instance, their presence can alter the systemic release of
volatiles by plants after aphid attack [47], increasing their fit-
ness. Moreover, A. pisum biotypes adapted to a given legume
are strongly associated with a particular FS [18,23] whose
removal can affect their fitness on this plant [23]. Likewise,
we believe that the presence of some FS may modulate the
plant–aphid interaction. The pea aphid clone used here,
YR2, belongs to the clover biotype [26] and naturally hosts
R. insecticola (RiYR2 strain). This clone is undoubtedly not
the best adapted to Medicago, but we showed here that all
the lines were able to feed and develop on M. truncatula
plants as indicated by the low aphid mortality and as pre-
viously reported [48]. Adult females of all lines were also
able to reproduce during at least two weeks on SNF or NI
plants and preliminary data suggest a higher offspring
number on NI plants than on SNF, except for YR2-Ri(a),
and therefore a positive correlation between weight and
fecundity (G.P. 2019, personal observation). In the field, pea
aphids infected with Hd or Ri are commonly found on Med-
icago plants, unlike those infected with Ss [49]. However,
despite variation in symbiotic status, the different YR2 lines



control Amp

no
. n

od
ul

es
 p

er
 p

la
nt

A
R

A
 p

er
 m

g 
of

 n
od

ul
e

no
du

le
 w

ei
gh

t i
n 

m
g 

pe
r 

pl
an

t
A

R
A

 p
er

 p
la

nt
re

la
tiv

e 
ge

ne
 e

xp
re

ss
io

n

re
la

tiv
e 

ge
ne

 e
xp

re
ss

io
n

Ri(n) Ri(a) Hd Ss control Amp Ri(n) Ri(a) Hd Ss

control Amp Ri(n) Ri(a) Hd Ss control Amp Ri(n) Ri(a) Hd Ss

control Amp Ri(n) Ri(a) Hd Ss
aphid lines

control Amp Ri(n) Ri(a) Hd Ss
aphid lines

MtLb1 MtCp6

a

cd

bc bcd
ab

d

a

c

ab abc ab

bc

a
b ab ab b

b

a

c

ab
bc b

c

n.s.

n.s. * * n.s.

**

n.s.

**

*

***

18

15

12

9

6

3

0

20

15

10

5

0

1.5

5

4

3

2

1

0

60

50

40

30

20

10

0

50

40

30

20

10

0

1.2

0.9

0.6

0.3

0

(a) (b)

(c) (d)

(e) ( f )

Figure 3. Effects of pea aphid lines infestation on biological nitrogen fixation. (a,b) Number (a) and weight (b) of root nodules from SNF plants infested or not
(control) with the different YR2 pea aphid lines for 12 days. (c,d ) Mean acetylene reduction activity expressed per milligram of nodule (nmol ethylene × h−1 × mg
nodule−1) (c) and per plant (nmol ethylene × h−1 × plant−1) (d ) after infestation with pea aphids compared to non-infested plants (control). (e,f ) Relative
expression (qPCR) of (e) Mtlb1 and ( f ) MtCp6 in the nodules of plants infested by pea aphid lines compared to those of non-infested plants. In (a–d ): mean ± s.e.,
n = 3; statistical differences among means are indicated by different letters ( p ≤ 0.05). In (e,f ): mean ± s.e., n = 4. Statistical differences: n.s., not significant
( p ≥ 0.05); *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001 (see also electronic supplementary material, table S11).

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20201493

5

had a fairly similar individual weight, the main effect being
due to the nutritional state of the plant with a lower weight
on SNF plants, which were also less developed at the end
of the experiments (see below). This suggests either a lower
nutritional quality of their sap for aphids or lower acceptance
of SNF plants by aphids (lower feeding uptake).
(b) Aphid infestation affects plants according to their
nitrogen nutrition mode and the facultative
symbiont hosted

The plant dry weight increased twice as fast for NI than SNF
plants during the experiment. This growth retardation of SNF
plants certainly results from the higher energy cost of estab-
lishing a symbiotic fixation of nitrogen compared to nitrate
supply, possibly combined with a limited effectiveness of
the symbiotic association between M. truncatula A17 and
Sm2011 [33,50]. This association with the Sm2011 strain
could therefore accentuate the response of the nodulated
plants to the infestation of aphids. However, whatever the
nitrogen source of the plant, aphid infestation reduced the
dry weight of the shoots, with an amplitude dependent on
the FS hosted. Hd and Ri still have pathogenic traits, unlike
Ss, and RiYR2 (in YR2-Ri(n)) and RiT3-8V1 (in YR2-Ri(a)) are
different bacterial strains [14]. FS species/strains were there-
fore expected to affect their aphid host and the host plant
differentially. Aphids inject saliva that contains proteins
and metabolites which are thought to facilitate feeding and
modulate plant physiology [45] including defence mechan-
isms [51]. Aphid saliva may also contain proteins derived
from symbionts, such as the chaperone GroEL, which has
been showed to elicit plant defence [52]. As aphids feed on
the plant, the presence of FS can also influence competition
for metabolites. Little is known about the effect of FS on
the metabolic needs of aphids and their salivary components



(a)

(b)

control Amp Ri(n)
aphid lines

Ri(a) Hd Ss

control Amp

re
la

tiv
e 

ge
ne

 e
xp

re
ss

io
n

re
la

tiv
e 

ge
ne

 e
xp

re
ss

io
n

PI

PR1

Ri(n) Ri(a) Hd Ss

***

*** ***

***

***
SNF
NI

***

**

*

*
*

*
**

**
**

**

60

50

40

30

20

10

0

10

8

6

4

2

0

Figure 4. Expression level of defence-related genes. (a,b) Expression of PR1
(a) and PI (b) estimated by qPCR in shoots of SNF and NI plants 12 days after
infestation by the different YR2 aphid lines. Non-infested plants serve as the
basal level for comparison (control). Mean ± s.e., n = 4. Statistical differences
(t-test): *p ≤ 0.05; **p ≤ 0.01; ***p≤ 0.001.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20201493

6

[53] or the role of the compounds they inject, but the
observed differences here deserve further attention.

(c) Aphid infestation affects the biological nitrogen
fixation of the plant

In addition to reducing the growth of SNF plants, aphid
infestation resulted in three major congruent effects related
to nitrogen fixation but depending on the aphid line: the
reduction in the number of root nodules, the decrease in
efficiencyof nitrogen fixation per nodule (ARA) and the repres-
sion of the leghemoglobin gene (Mtlb1), an indicator of optimal
nitrogen fixation. Taken together, these effects result in reduced
efficiency of nitrogen fixation in plants, which may partly
explain the lower growth of infested SNF plants. The reduced
number of nodules suggests a blockage of nodulation due to
aphid infestation either during the process of rhizobium infec-
tion and/or of the formation of nodules. This fits with the
increased expression of Cp6 which suggests an earlier induc-
tion of nodule senescence in infested plants [54,55], possibly
explaining part of the reduction in nitrogen-fixing activity.
The presence of certain FS restricts the aphid ability to feed
on SNF plants, therefore lowering the induced reduction of
nitrogen fixation. Ri and Hd, notably, might somehow offset
the effect of aphid infestation.

Studies considering plant–pathogen interactions as a factor
limiting the establishment of a nitrogen-fixing symbiosis
are still scarce [56]. Co-inoculation of Rhizoctonia solani or
Sclerotinia sclerotiorum with rhizobia reduces the number of
nodules—also observed in the infection of M. truncatula with
the leaf pathogen Pseudomonas syringae—and dry matter of
the roots [57,58]. By contrast, infestation of Alnus viridus with
the specific aphid Prociphilus tessallatus, which failed to estab-
lish feeding colonies, increased nitrogen-fixing activity and
plant growth [59]. The question of how aphids impact root
nodules and how FS influence this effect remains to be eluci-
dated. One hypothesis would be the occurrence of a trade-off
in the plant, the aphid infestation leading to the inhibition of
the costly formation of nodules to compensate for the uptake
of metabolites from the plant sap. This would in turn decrease
the availability of nitrogen-containing metabolites, such as
amino acids, for aphids, which can decrease their appetence
for the plant or their fitness. Indeed, it has been shown that
the Buchnera density was positively correlated with the
aphid dietary nitrogen levels [60]. Conversely, S. symbiotica
number increased in aphids reared on a low nitrogen diet,
demonstrating possibly distinct regulatory mechanism or
nutritional needs between symbionts in the same insect host.
Moreover, the composition of the phloem sap may differ
between nitrate-fed and nitrogen-fixing plants which could
modulate the result of the association by reducing aphid
growth on SNF plants. Analysing the sap composition of
SNF and NI plants with or without aphids will be crucial to
test this hypothesis. Another way, but not exclusive, by
which aphid infestation may affect the function of nodules is
through the activation of plant defence pathways (see below).
(d) Aphid infestation affects the defences of symbiotic
nitrogen fixation and non-inoculated plants
differentially

Aphids may induce three main plant defence signalling net-
works: SA, JA and ET [61,62]. They elicit them through cell
damage, the production of reactive oxygen species during
penetration of the stylet and the recognition of their salivary
components by the plant [59]. Crosstalk between the SA and
JA pathways plays a crucial role in triggering defences
against agressors [63]. JA production is generally linked to
the defences against necrotrophic microbes and chewing her-
bivores and that of SA to those against biotrophic pathogens
[64,65]. It has been shown that aphid feeding could increase
the transcription of several PR genes and others associated
with the (SA)-dependent response, resulting in an increase
in enzymatic activities such as those of peroxidases and chit-
inases [45]. For example, feeding of the green peach aphid
Myzus persicae on Arabidopsis thaliana and Solanum tuberosum
L. respectively induced a 10-fold increase in the transcription of
PR1 and a production of PR1 transcripts gradually increasing
over the feeding time of aphids [43,66]. The feeding of pea
aphids on M. truncatula resulted in a two to threefold increase
in PR5 expression in the first 3 days after infestation [29]. Here,
PR1 expression was strongly upregulated in infested plants
under almost all our conditions, confirming the activation of
SA-dependent defences, regardless of the nitrogen nutrition
of the plants. Activation of the SA pathway may also be a
general mechanism of antibiosis or aphid repulsion [64,65],
but its level being similar in SNF and NI plants, it cannot
explain their differential effect on the aphid weight.

The JA pathway was differentially activated between
infested SNF and NI plants, the expression of the (PI) marker
gene being significantly upregulated in SNF plants only. This
is in agreement with the results of Gao et al. [29], who observed
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no increase in PI expression in non-inoculated M. truncatula
infested with the pea aphid. Several thousands of genes are
up- or downregulated in root tissues when establishing the
Sinorhizobium symbiosis, including genes from the JA pathway
[67]. Moreover, certain strains of S. meliloti, including Sm2011,
induce M. truncatula defence responses similar to the patho-
genic P. syringae strain DC3000, although this may be
transient [58]. The JA pathway could thus be sensitized by
the presence of S. meliloti, aphid feeding then being sufficient
to trigger it at a significant level. JA has many roles in plants
apart from immune defence such as promoting growth and
development, including the formation of leaves and roots,
and controlling reproduction and senescence [68]. JA, alone
or by its ratio to ethylene, has also been linked to blockage of
nodulation [69], suggesting that it could mediate this aphid-
induced effect. Yet, in our experience, the PI expression in the
roots of infected SNF plants was not significantly increased,
suggesting no large change in JA level in roots (electronic sup-
plementarymaterial, figure S5). Therefore, the role of JA on the
observed effect on nodules has to be clarified. An interesting
point is that the JA and SA-signalling pathways are known to
interact antagonistically in dicotyledonous plants but that
both of them seemed to be activated in SNF plants. Although
activation may have occurred at different time points during
the 12 days of infestation, the JA and SA effectswere still visible
at the end of the infestation period. More work is required to
test if and how the presence of S. meliloti modifies the JA/SA
interplay in case of stress.
5. Conclusion
Sowing and inoculating plant seeds with rhizobia is a method
to improve the growth of plants by helping them to adapt to
poor nitrogen conditions, to improve soil fertility and limit
the use of chemical fertilizers and thus the greenhouse effect.
Beneficial soil microbes can also improve the plant defences
against pathogens and insect herbivores through the ISR.
Our data reveal an interplay between rhizobia and aphid infes-
tation through the modulation of plant growth, nitrogen
fixation symbiosis and defence responses. Rhizobium symbiosis
did not protect Medicago from aphid infestation, but signifi-
cantly reduced aphid fitness compared to NI plants. In
return, aphid infestation decreased the number of root nodules
and nitrogen fixation in growing SNF plants, thereby reducing
the benefit of symbiosis, and therefore the interest of legumes
for nitrogen enrichment of the soil. In a context of a more
widespread use of legumes, this study shows that plants in
symbiosis and without symbiosis may interact with pests in a
very different way. The generality of our results yet remains
to be tested by considering the genetic diversity of the different
partners. Indeed, both plant and aphid genotypes may influ-
ence the outcome of the interaction [70]. This is also true for
the rhizobia for which other strains should be used under the
same conditions to compare the effect of aphids according to
the efficiency of the symbiotic interaction.
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