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Abstract: Fine particulate matter(PM2.5) pollution will affect people’s well-being and cause economic
losses. It is of great value to study the impact of PM2.5 on the real estate market. While previous
studies have examined the effects of PM2.5 pollution on urban housing prices, there has been little
in-depth research on these effects, which are spatially heterogeneous at different conditional quantiles.
To address this issue, this study employs quantile regression (QR) and geographically weighted
quantile regression (GWQR) models to obtain a full account of asymmetric and spatial non-stationary
effects of PM2.5 pollution on urban housing prices through 286 Chinese prefecture-level cities for
2005–2013. Considerable differences in the data distributions and spatial characteristics of PM2.5
pollution and urban housing prices are found, indicating the presence of asymmetric and spatial
non-stationary effects. The quantile regression results show that the negative influences of PM2.5
pollution on urban housing prices are stronger at higher quantiles and become more pronounced
with time. Furthermore, the spatial relationship between PM2.5 pollution and urban housing prices
is spatial non-stationary at most quantiles for the study period. A negative correlation gradually
dominates in most of the study areas. At higher quantiles, PM2.5 pollution is always negatively
correlated with urban housing prices in eastern coastal areas and is stable over time. Based on these
findings, we call for more targeted approaches to regional real estate development and environmental
protection policies.

Keywords: urban housing prices; particulate matter air pollution; quantile regression; geographically
weighted quantile regression; prefecture-level cities; China

1. Introduction

Through China’s rapid urbanization over the past 40 years, more than 600 million people have
migrated from rural areas to cities, creating considerable demand for urban housing, thus promoting
urban economic and real estate market development [1]. However, population agglomeration and
rapid social and economic development have also led to increased demand for resources and energy [2].
To ensure the normal operation and rapid development of cities, large-scale industrial production,
fossil fuel resource consumption, and energy extraction are required. Chemical plant production
and the burning of fossil fuels create serious air pollution problems such as those related to PM2.5
pollution [3,4]. PM2.5 pollution compromises not only productivity but also residents’ welfare [3].
In China, few cities meet standards of air quality guideline established by the World Health Organization
(WHO). Even the cleanest city of Sanya reports double the levels set by the WHO with annual average
PM2.5 concentrations of 21 µg/m3 in 2013 [3].
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A highly polluted environment is generally considered to be harmful to human health [5–9].
In particular, fine particulate matter, which is known as PM2.5 widely, is a pollutant that is very
harmful with extensive influences [10–12]. Long-term exposure to high concentrations of PM2.5
environment may cause serious health impacts such as cardiovascular and respiratory disease,
lung cancer, and cerebrovascular disease [7,13,14]. The possibility and risk of cancer is increased
by the influence of polycyclic aromatic hydrocarbons and other substances in the particles [15,16].
An estimated 4.5 billion people exhibited health risks due to the exposure to PM2.5 concentrations
in 2016, increasing the mortality and economic costs [17]. A study of 338 Chinese prefecture-level
cities showed that mortality attributable to PM2.5 reached the million level [18]. Moreover, the
economic loss caused by PM2.5 exposure was 101.39 billion dollars, accounting for 0.91% of the GDP
in 2016 [18]. On the basis of these facts, it can be inferred that there would be certain effects of PM2.5
pollution on urban housing prices. With improvements in living standards, people are paying more
attention to living quality when considering where to settle. Residents’ willingness to invest in highly
polluted areas is affected, naturally depressing the housing prices. Several studies have confirmed
that housing prices are influenced by air pollution negatively [3,19–21]. According to the research
used the instrumental variable regression method on the panel data of Chinese cities from 2004 to
2013, it was accurately estimated that every increase of 1 µg/m3 in PM2.5 concentration will lead to a
decrease of 46 RMB/m2 in housing prices [21]. When the robustness test was carried out in the form of
logarithm of variables, every 1% increase in PM2.5 concentration is associated with 0.43% decrease of
housing values [21]. Zheng, Cao, Kahn, and Sun (2014) found that a 10 % increase in imported neighbor
pollution is associated with a 0.76 % decrease in housing prices on basis of a sample of 85 Chinese cities
and detected that cross-boundary flows drives this capitalization growth [22]. In addition, Hao and
Zheng’s (2017) analysis showed that housing prices are negatively influenced by pollution sources
such as sulfur dioxide emissions, industrial soot emissions, and so forth [23]. The magnitude of this
influence depends on levels of economic development, while housing values in cities with high per
capita GDP are less influenced by environmental pollution [23].

The impacts of PM2.5 pollution on cities with different housing prices should be various.
For instance, as metropolises provide numerous employment opportunities [24], they attract individuals
who do not consider air pollution levels into their decisions on where to settle, resulting in an
overestimation of negative influences of air pollution on housing values. Chen and Chen (2017)
revealed that negative influences of PM2.5 pollution vary considerably across cities with magnitudes
declining sharply from high- to low-ranking cities [21]. Specifically, housing values of first- and
second-tier cities decrease over four times more than those of third-tier cities. While the impacts of
different housing prices were successfully measured, the study classified cities and directly applied
ordinary least squares (OLS) regression, in turn truncating the dependent variable and creating
estimation errors. Therefore, for measuring impacts of PM2.5 pollution on housing prices in cities of
different levels, a more accurate estimation model is needed. Quantile regression model can effectively
cope with this problem [25,26], and can reveal the asymmetric effects of PM2.5 pollution on urban
housing prices at different quantiles.

In addition, there are spatial differences in the impacts of air pollution on regions [27]. Scholars have
proved the existence of spatial heterogeneity in related research [28–30]. Spatial heterogeneity and
less pronounced negative influences of air pollution on housing values in the southeastern area of the
study region were found through a case study of Salt Lake County, Utah [31]. China is a vast country
with pronounced regional differences, and spatial inequalities in housing markets have been shaped in
different cities due to uneven distributions of large and small cities [24]. Hence, spatial heterogeneity
ought to be considered when studying the influences of PM2.5 pollution on urban housing values.
Moving window regression (MWR) and geographically weighted regression (GWR) approaches
have been developed and conformed to be more accurate than OLS regression [32–35]. Moreover,
with respect to prediction accuracy and explanatory power, GWR is superior to MWR [35].
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The GWR model is an inherent mean regression model and is not robust to outliers on
account of using the least squares criterion [36], therefore some scholars have considered the use
of spatial quantile methods to address this problem [36–38]. Hanllin’s local linear spatial quantile
regression approach provided much richer information [37]. On the basis of the least absolute
deviation, Zhang and Mei (2011) proposed a geographically weighted median regression method [36].
Chen, Deng, Yang, and Matthews (2012) considered a more generalized GWQR model and introduced
a solution for analyzing spatial non-stationarity in the specified quantile estimation coefficient [38].
Wang, Xu, and Yan (2018) integrated lasso regression into GWQR to alleviate collinearity complications
following the framework of Chen et al. (2012) [39]. Using traditional QR and GWQR methods to model
incident rates of children’s lead poisoning, Zhen, Cao, Shao, and Zhang (2018) identified ‘high risk’
locations and neighborhoods of inner city Syracuse and found that the GWQR model can provide
more comprehensive information for policymakers [40].

Scholars have examined asymmetry and spatial non-stationarity in housing values by using QR
and GWR analysis frameworks, respectively. To our knowledge, no research has considered both
asymmetric and spatial non-stationary effects of PM2.5 pollution on housing prices in Chinese cities.
To bridge these gaps, this study provides empirical evidence of a relationship between PM2.5 pollution
and housing prices. The following research problems will be explored in our work: (1) Do PM2.5
concentrations reduce housing prices? (2) Are the influences of PM2.5 pollution on housing prices
asymmetric at different quantiles? (3) Are these influences spatial non-stationary? First, we use a
traditional quantile regression model to measure how differences between prefecture-level cities at
different housing price quantiles are affected by PM2.5 concentrations over three cross-section time
periods of 2005, 2009, and 2013. Second, we use the GWQR model to further refine our study and
to assess how spatial heterogeneity in PM2.5 pollution impacts housing prices at different quantiles.
Unlike past works, this study comprehensively considers the impact of PM2.5 pollution on urban
housing prices at different quantiles. To our knowledge, GWQR is applied to measure the spatial
non-stationary influences of PM2.5 pollution on urban housing prices for the first time. Based on
accurate assessment of these influences, we provide some policy implications about the real estate
development and regional environmental protection from the perspectives of housing values and
location differences.

2. Materials and Methods

2.1. Theoretical Basis of Housing Prices Researches

Research on housing prices has been carried out at multiple scales. At the local scale, housing prices
refer to the prices of individual houses, and scholars regard houses as composite commodities [41,42],
with housing prices defined as the sum of consumers’ utilities [43]. Based on the hedonic price model
developed by Rosen [44], houses’ inherent, neighborhood, and location attributes are capitalized into
housing prices [45–48]. Unlike local-scale research, macro-scale studies offer overall reflections of
regional real estate markets and can provide a basis for differentiated formulations of housing prices
control and real estate market development policies.

At the city scale, housing prices are calculated as the average household sales price for a city [49–52].
In early research, based on the theory of market supply and demand equilibrium, scholars usually
analyzed the influencing factors of housing price changes through simultaneous equations model [53].
Some scholars regard housing as a durable good, and there are obvious time lag effects between supply
and demand. Simple supply and demand models are not enough to explain the formation mechanism
of housing prices, and the modified dynamic stock-flow model is proposed to reflect the changes of
housing market [54]. More follow-up studies found that influencing factors of housing prices are very
complex due to the dual attributes of consumer goods and investment goods. Especially when it comes
to China’s housing prices, which have been continuously pushed up by capital in pursuit of profit in
recent years, and seem to have deviated from the rational framework of the consumer goods market,
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the traditional market supply and demand theory of housing prices has become increasingly difficult
to work with. According to the existing literature, the influencing factors of urban housing prices
include at least the macro-level economic situation and policies [55,56], the city’s economic level [57],
the income level of residents [58], the population size and agglomeration capacity [59], the quality of
public services [60,61], the air environmental health, and so forth [3,21]. These factors also show spatial
heterogeneity. Although there is no unified theory that can solve the influencing factors of housing
prices, we can find that housing prices are closely related to the abundance of resources such as urban
economy, population, public services and environmental livability. Therefore, we believe that housing
prices can also be capitalized as an expression of these resource capacity differences at the macro level.

2.2. Study Area

We use the prefecture as our research unit. Prefectures in China are second-level administrative
divisions ranked between provinces and counties. In studying prefectures, we obtain a larger sample
than we would have at the provincial scale and more detailed statistical data than we would have
at the county scale. Thus, the sizes of prefectures render them an appropriate unit of analysis [62].
We select 286 prefecture-level cities and above with relatively complete information for the study
period. Figure 1 maps the locations of the sample cities and boundary of the provincial administrative
region. These samples have complete information on administrative jurisdiction and detailed statistical
data [63], and they are distributed across most of China, which are thus nationally representative [21].
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2.3. Data and Variables

For the purpose of investigating the influences of PM2.5 pollution on urban housing prices,
PM2.5 pollution is used as our core independent variable and urban pollution level is measured by
PM2.5 concentrations. According to the existing literature [3,21], we also employ other forms of air
pollution, demographic and socioeconomic conditions, and urban public facilities as control variables.
Variable definitions and descriptive statistics are reported in Table 1. To eliminate heteroscedasticity in
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the data and ensure stability in the regression, all variables are logarithmic. Therefore, the estimates of
variables can be explained as elasticities [64].

Table 1. Variable descriptions and descriptive statistics for 2013.

Variable Type Variables
(Abbreviation) Variable Definition Mean Std.

Deviation Min. Max. n

Dependent
variable Housing prices (HP) Average sale price of

newly-built homes (RMB/m2) 4977.537 2688.35 2435.897 24,401.97 286

Core
independent

variable

Particulate matter
2.5 pollution

(PM2.5)

Fine particulate matter 2.5
concentrations (µg/m3) 38.3048 17.7262 2.8446 86.4799 286

Other air
pollution
variables

SO2 pollution (SO2) SO2 emissions (10 thousand
tons) 5.3650 5.7516 0.0003 49.4415 286

Soot pollution
(Soot)

Soot emissions (10 thousand
tons) 4.3443 18.9197 0.0221 315.3822 286

Demographic and
socioeconomic

variables

Population density
(PDen)

Population density
(persons/km2) 433.1137 338.1286 5.71 2616.23 286

GDP per capita
(PGDP) GDP per capita (RMB) 51,597.98 48,319.52 8407 467749 286

Wage (Wage) Annual wage per worker
(RMB) 44,869.77 9648.529 24,786.31 93,996.77 286

Industry Structure
(Ind_Str)

Ratio of tertiary industry to
secondary industry 0.7817 0.4069 0.2072 3.4431 286

Urban public
facilities
variables

Buses_Per (PBu) Number of buses (units/10
thousand persons) 8.2688 7.3635 0.59 98.53 286

Books_Per (PBo) Number of books
(volumes/100 persons) 58.7365 86.5789 1.74 920.77 286

Doctor_Per (PDoc)
Number of Doctors

(persons/10 thousand
persons)

21.3844 10.3089 2.1728 81.6763 286

Road_Per (PRoad) The areas of road
(km2/person) 13.9865 26.9049 1.04 442.95 286

Internet(Int)
Number of households
connecting Internet (10

thousand)
73.0315 91.6900 5 766 286

Teacher_Per (PTea)
Number of university
teachers (persons/10

thousand people)
10.0134 13.7198 0.0082 81.6855 286

Notes: The descriptive statistics of all variables are based on 286 sample cities in 2013.

2.3.1. Urban Housing Prices

We take urban housing prices as our dependent variable, and extract data from the China Statistical
Yearbook for Regional Economies. We calculate average housing prices based on total housing sales and
the total housing sales area of each prefecture-level city. The average prices of newly built commercial
housing can approximately represent housing prices in a city because of their major market share
(over 70%) of housing transactions in China [22]. Since the China Statistical Yearbook for Regional
Economies was only updated to 2013, we collected the data on Chinese prefecture-level housing prices
from 2005 to 2013.

2.3.2. PM2.5 Pollution

China did not release PM2.5 data from monitoring stations until 2012 [65]; thus, research on
PM2.5 concentrations has been limited to some extent [21]. However, the Socioeconomic Data and
Applications Centre (SEDAC) has published global PM2.5 grid datasets (0.01 degrees) for 1998 to
2017 that are accurate and reflect changes in particulate air pollution in China as shown by relevant
studies [66,67]. For the purposes of our analysis, the raster data are transformed into the annual average
PM2.5 concentrations for prefecture-level cities through ArcGIS software (ESRI, Redlands, CA, USA).
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2.3.3. Other Variables

We also control other factors potentially related to urban housing prices in Table 1 [21], which helps
us minimize estimation errors and endogeneity problems caused by missing variables. These data are
taken from the China City Statistical Yearbook.

2.4. Methodology

In our study, the asymmetric effects of PM2.5 pollution on urban housing prices are explored by
quantile regression. Then, geographically weighted quantile regression, a newly developed method,
is used to measure spatial non-stationary effects of the response variable in geographic regions at
different quantiles.

2.4.1. Quantile Regression

In the traditional quantile regression model, a conditional quantile of dependent variable is
specified as a linear function of explanatory variables, which is given by [68]:

Yi = Xt
iβ
τ + εi (1)

qτ(Xi) = Xt
iβ
τ (2)

where Yi is the dependent variable, Xi refers to the matrix of explanatory variables, εi is the error term
whose conditional quantile distribution equals zero, and unknown sets. qτ(Xi) is the τth quantile of Yi
conditional on Xi. QR coefficient βτ is estimated by minimizing the following loss function [68]:

min
n∑

i=1

ρτ
(
Yi −Xt

iβ
τ
)

(3)

where ρτ(z) = z(τ − I[z < 0]) is a V-shaped piecewise linear loss function and I(·) is the indicator
function [68].

The following equation is the quantile regression model used to obtain the comprehensive results
in this study:

ln(HP) = βτ0 + βτ1 ln(PM2.5) + βτ2 ln(SO2) + βτ3 ln(Soot) + βτ4 ln(PDen) + βτ5 ln(PGDP)
+βτ6 ln (Wage) + βτ7 ln(Ind_Str) + βτ8 ln(PBu) + βτ9 ln(PBo) + βτ10 ln(PDoc)
+βτ11 ln(PRoad) + βτ12 ln (Int) + βτ13 ln(PTea) + ε

(4)

The detailed information of all variables is shown in Table 1.

2.4.2. Geographically Weighted Quantile Regression

We extend GWR model to a quantile regression setting [38], and the following equations are
estimated to study spatial heterogeneity in the regression relationship [38,39]:

Yi = Xt
iβ
τ(ui, vi) + ετi = βτ0(ui, vi) +

p∑
k=1

Xikβ
τ
k(ui, vi) + ετi (5)

qτ(Xi, ui, vi) = Xt
iβ
τ(ui, vi) = βτ0(ui, vi) +

p∑
k=1

Xikβ
τ
k(ui, vi) (6)

where ετi is the random error with the conditional τth quantile being equal to zero, and qτ(Xi, ui, vi) is
the τth conditional quantile function of Yi given observation vector Xi for location i with coordinates
(ui, vi). We assume that coefficient vector βτ(u, v) has second continuous partial derivatives in regard
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to u and v. βτk(u, v) can be approximated by the linear function for (u, v) in a neighborhood of (u0, v0)

in Equation (6) [38,39].

βτk(u, v) ≈ βτk(u0, v0) + β
τ(u)
k (u0, v0)(u− u0) + β

τ(v)
k (u0, v0)(v− v0) (7)

For a focal location (ut, vt), let dit = ‖(ui, vi) − (ut, vt)‖, where ‖·‖ is the usual Euclidean norm. Via
minimizing the geographically weighted loss function, GWQR coefficients for the τth quantile can be
obtained in Equation (7) [38,39]:

min
n∑

i=1

ρτ
{
Yi −Xt

i

[
βτ(ut, vt) + βτ(u)(ut, vt)(ut − ui) + βτ(v)(ut, vt)(vt − vi)

]}
Kh(dit) (8)

where ρτ(z) is the V-shaped piecewise linear loss function, and Kh(·) is the Gaussian kernel function
with bandwidth h, which represents the geographical weight assigned locally to observation (Xi, Yi)

and depends upon the distanced dit between the given location (u0, v0) and the τth designed location
(ui, vi) [38]. We use a cross validation (CV) method to determine the optimal bandwidth. To examine
spatial non-stationary effects of PM2.5 pollution on urban housing prices, we employ the approach
adopted in Chen et al. (2012) [38]. We compare the interquartile range (IQR) of local coefficient
estimates computed by GWQR to the standard error of global estimates derived with a traditional QR
at a specified quantile. When IQR is twice as large as the standard error, this indicates that spatial
non-stationary effects exist in the relationship between urban housing prices and PM2.5 pollution.

The GWQR model for location i at the τth quantile in this study is set as follows:

ln (HPi) = βτ0(ui, vi) + βτ1(ui, vi) ln(PM2.5) + βτ2(ui, vi) ln(SO2) + βτ3(ui, vi) ln(Soot)
+βτ4(ui, vi) ln(PDen) + βτ5(ui, vi) ln(PGDP) + βτ6(ui, vi) ln(Wage)
+βτ7(ui, vi) ln(Ind_Str) + βτ8(ui, vi) ln(PBu) + βτ9(ui, vi) ln(PBo)
+βτ10(ui, vi) ln(PDoc) + βτ11(ui, vi) ln(PRoad) + βτ12(ui, vi) ln(Int)
+βτ13(ui, vi) ln(PTea) + εi

(9)

The detailed information of all variables is shown in Table 1.

3. Results and Discussion

3.1. Distribution and Spatial Characteristics

From the kernel density estimate (KDE) curves (Figure 2), the distributions of urban housing
prices and PM2.5 concentrations are significantly different. The distributions of housing prices are
clearly asymmetric across the three time sections, and they all show a positively skewed distribution.
In the time series, mode values are decreasing, showing that the distribution of the low housing price
interval has become more uniform, and a shift to the right of the average value median values indicates
a continuous rise in urban housing prices. The KDE curves of PM2.5 concentrations show similarities
across the three time sections, which are close to forming a normal distribution. It can be concluded
that the response law between them is complex and asymmetric through comparing the KDE curves.
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Figure 3 shows the spatial differentiation of housing prices and PM2.5 concentrations. We use
the natural breaks method to divide them into 5 levels. Urban housing prices in the eastern region
are higher than those in central and western regions. High-value regions are mainly concentrated in
the urban agglomerations of Beijing, Shanghai, Guangzhou, and Shenzhen, and the housing prices
spatial distribution remains stable in time series. However, the urban PM2.5 concentrations spatial
distribution is considerably different from that of housing prices. It is clear that levels in central eastern
China are significantly higher than those in peripheral areas, and the Beijing-Tianjin-Hebei urban
agglomeration is a high-concentration cluster area over the three time periods. Both of them show
upward trends over the time series.

Moran scatter plot is applied to illustrate the spatial non-stationary characteristics, and the Moran’s
I value is represented by the slope of the fitted line of the scatter plot (Figure 4). Moran’s I values
of housing prices fluctuated around roughly 0.4 over the three time sections, indicating that urban
housing prices are spatially dependent. Moran’s I values of PM2.5 concentrations are approximately
valued at 0.8 and are thus twice those of housing prices. It is apparent that levels of spatial dependence
are much higher than housing prices. From comparisons of spatial distribution characteristics of PM2.5
concentrations and housing prices, we can infer that spatial non-stationary effects exist between them.
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3.2. Quantile Regression Results

The OLS and quantile regression results for 2013 are presented in Table 2. OLS results are shown
in column 1 for comparative purposes. R2 is 0.7899, which indicates the good explanatory power of
OLS regression model. Most of the variables are significant at the 10% level. The OLS results show
that PM2.5 pollution levels are significant at the 1% level, which indicates that it can reduce housing
prices. Specifically, the coefficient for PM2.5 pollution is −0.1986, indicating that every 1% increase in
PM2.5 concentrations will lead to a 0.1986% decrease in housing prices.

Table 2. Ordinary least squares (OLS) and quantile regression results for 2013.

Variables OLS (1) 5th (2) 25th (3) 50th (4) 75th (5) 95th (6)

PM2.5 −0.1986 ***
(0.0418)

−0.0359
(0.1007)

−0.1682 ***
(0.0505)

−0.1983 ***
(0.0353)

−0.2697 ***
(0.0665)

−0.2480 **
(0.0997)

SO2
−0.0279 **
(0.0112)

−0.0258
(0.0178)

−0.0180
(0.0145)

−0.0231
(0.0140)

−0.0245
(0.0194)

−0.0207
(0.0265)

Soot −0.0245 **
(0.0120)

−0.0007
(0.0153)

−0.0245
(0.0169)

−0.0271 **
(0.0138)

−0.0304 *
(0.0174)

−0.0341
(0.0293)

PDen 0.1585 ***
(0.0244)

0.0908
(0.0616)

0.1666 ***
(0.0261)

0.1756 ***
(0.0239)

0.1594 ***
(0.0363)

0.1094 *
(0.0557)

PGDP 0.0892 ***
(0.0331)

0.0795
(0.0727)

0.0755
(0.0474)

0.0693
(0.0523)

0.1308**
(0.0526)

0.1362 *
(0.0695)

Wage 0.6306 ***
(0.0851)

0.5162 ***
(0.1074)

0.6107 ***
(0.1030)

0.7236 ***
(0.1149)

0.7137 ***
(0.1321)

0.8288 ***
(0.0957)

Ind_Str 0.1398 ***
(0.0345)

0.1268 **
(0.0518)

0.1496 ***
(0.0461)

0.0822 *
(0.0468)

0.1185 **
(0.0482)

0.1866 ***
(0.0567)

PBu 0.0094
(0.0231)

−0.0099
(0.0380)

−0.0180
(0.0165)

0.0234
(0.0263)

0.0158
(0.0336)

−0.0102
(0.0396)

PBo 0.0588 ***
(0.0204)

0.0558
(0.0557)

0.0766 ***
(0.0286)

0.0863 ***
(0.0253)

0.0372
(0.0235)

0.0568 ***
(0.0214)

PDoc −0.0159
(0.0344)

−0.0367
(0.0532)

−0.0282
(0.0433)

0.0028
(0.0409)

−0.0405
(0.0575)

−0.0397
(0.0673)

PRoad −0.0291
(0.0327)

−0.0051
(0.0424)

−0.0298
(0.0336)

−0.0349
(0.0389)

−0.0196
(0.0439)

−0.0383
(0.0382)

Int 0.1349 ***
(0.0230)

0.1031 **
(0.0427)

0.1255 ***
(0.0241)

0.1141 ***
(0.0223)

0.1295 **
(0.0281)

0.1487 ***
(0.0459)

PTea −0.0002
(0.0137)

0.0350
(0.0364)

0.0040
(0.0263)

−0.0218
(0.0135)

−0.0051
(0.0198)

0.0245
(0.0206)

Intercept −0.0094
(0.8411)

0.9769
(1.1835)

0.1231
(1.0084)

−0.9638
(0.9627)

−0.8432
(1.1278)

−1.8423
(1.1440)

R2 0.7899 0.3749 0.4459 0.5084 0.6016 0.7211

Notes: *** p < 0.01, ** p < 0.05, and * p < 0.1. Standard errors are reported in parentheses. The R2 for the quantile
regression is the pseudo R2. OLS (1) reports the OLS regression results, and (2)–(6) report quantile regression results
for the 5th, 25th, 50th, 75th, and 95th quantiles respectively.

Table 2 reports quantile regression results for the 5th, 25th, 50th, 75th, and 95th quantiles, and
the pseudo R2 of selected quantiles ranges from 0.3749 to 0.7211. Moreover, R2 increases from the
lower quantiles to the upper quantiles, meaning that fitting effects at the upper quantiles are better.
The coefficients of PM2.5 pollution for all 5 quantile estimates are negative, and the absolute values of
the upper quantiles’ regression coefficients are significantly greater than those of the lower quantile.
This is the case because real estate markets with high housing prices are more speculative, leaving
them more easily affected by external factors such as PM2.5 pollution. High-income individuals with
investment intentions may prefer to pay for clean air. Specifically, the coefficients for the 75th and
95th quantiles are 0.2697 and 0.2480, respectively, which are more than 6 times that of the 5th quantile
and 1.5 times that of the 25th quantile, echoing the results of Chen’s research on first-, second-, third-,
and fourth-tier cities [21]. The 50th quantile coefficient is similar to the OLS regression coefficient,
indicating that the average impact of PM2.5 pollution on housing prices approximates the median for
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2013. Regarding our other air pollution variables, the coefficients of SO2 and soot in most quantiles
are not significant, and their effects on housing prices are relatively stable in different quantiles,
fluctuating around the OLS regression coefficient. PM2.5 pollution is also identified as the main form
of air pollution affecting housing prices.

In addition, the OLS estimates of other variables are all significantly negative, indicating the
negative impact of air pollution on housing prices (Table 2). Specifically, for every 1% increase of
SO2 and Soot pollution, the housing prices are associated with the decrease of 0.0279% and 0.0245%,
respectively. Compared with PM2.5 pollution, there is a certain gap in their impact on housing prices,
which also reflects the seriousness of PM2.5 pollution. In the five selected quantiles, they are negatively
correlated with housing prices (Although most of them are not significant). The coefficients of SO2

remained relatively stable at different quantiles, while Soot showed an upward trend. The higher
housing price of a city, the greater the negative effect of Soot pollution. Similar to PM2.5 pollution,
its effects on housing price are asymmetric.

Demographic and socioeconomic variables are positively correlated with housing prices (Table 2),
and OLS and QR estimates of them are mostly significantly positive. The higher population density
provides more housing supply, which promotes housing prices. In addition, the value-added effect of
population density is also increasing in the cities with high housing prices, indicating that the land
is scarcer. Similarly, higher per capita GDP and higher wage play important roles on the growth of
housing prices, and Wage variable is more significant in promoting the housing prices. It is obvious that
higher wage is usually the reason for attracting the flow of people, which leads to higher housing prices.
The coefficients of them are bigger at higher quintiles, which is corresponding with the fact that there
are the high housing price to income ratios in superstar cities [69]. The industrial structure is also one
of the important factors affecting the housing prices. The cities with high-end industries have stronger
innovation ability and talent attraction, which naturally leads to higher housing prices.

From the results in Table 2, only the PBo and Int variables are significantly correlated with housing
prices among the variables of urban public facilities, and both of them are positive. Different from
the results using panel data regression [21], the coefficients of other variables are mostly small and
insignificant in the cross-section regression for 2013. It could be inferred that the value of urban public
facilities would be highlighted in the long-term sequence, which also reflects that the steady increase
in urban housing prices is also inseparable from the upgrade of urban public facilities.

To observe effects of PM2.5 pollution on housing prices in time series, we calculate the datasets
for 2005 and 2009 to draw comparisons. The results are shown in Table 3. OLS estimates are reported
in the first column. The R2 values exceed 0.75, indicating that they both have good explanatory power.
The coefficients of PM2.5 pollution for 2005, 2009, and 2013 are negative, this coefficient is not significant
for 2005 and it is significant at the 5% level in 2009. Relative to the absolute values of the coefficients
across the three time sections, the effects of PM2.5 pollution on housing prices continuously increase.
The coefficient in 2013 is nearly three times the value in 2005 (−0.0661), potentially reflecting increasing
concern for the impacts of air pollution on life quality.

Columns 2–6 of Table 3 report quantile estimation results of the same quantiles examined in
Table 2. Table 3 shows that PM2.5 pollution is negatively correlated with housing prices at most
quantiles but only significant at the 75th quantile in 2005. The value of the coefficient is −0.1447,
which is higher than that at the lower quantile, and the OLS coefficient (−0.0661) is closer to the 25th
quantile (−0.0834). PM2.5 pollution has negative effects on housing prices at all quantiles in 2009 with
a significance level of 1% at the 75th and 95th quantiles, and coefficient values increase from the lower
to upper quantiles. The value quantile reaches −0.2571 at the 95th, which is almost 5 times that of the
5th quantile. The OLS regression coefficient value (−0.1249) falls between the 50th (−0.0751) and 75th
(−0.1642) quantiles.

In summary, the impacts of PM2.5 pollution on housing prices increases in our time series, echoing
Chen and Chen’s (2017) results [21]. In addition, the range of PM2.5 pollution effects is expanding,
at first only affecting high quantile housing price cities and then gradually affecting cities at various



Int. J. Environ. Res. Public Health 2020, 17, 7443 12 of 23

quantiles, and impacts at upper quantiles are significantly greater than those that low quantiles.
Improvements in living standards have increased demand for better living conditions, and more
attention is thus being paid to environmental hygiene and well-being. As real estate development
is no longer pursued at the expense of environment health, the real estate market is exhibiting more
sensitivity to air pollution.

Table 3. OLS and quantile regression results for 2005 and 2009.

Variables OLS (1) 5th (2) 25th (3) 50th (4) 75th (5) 95th (6)

2005

PM2.5 −0.0661
(0.0454)

0.0226
(0.1082)

−0.0834
(0.0820)

−0.0270
(0.0636)

−0.1447 ***
(0.0558)

−0.1705
(0.1358)

R2 0.7571 0.3938 0.4325 0.5136 0.5777 0.6078

2009

PM2.5 −0.1249 **
(0.0520)

−0.0534
(0.0670)

−0.0925
(0.0802)

−0.0751
(0.0721)

−0.1642 ***
(0.0623)

−0.2571 ***
(0.0915)

R2 0.7538 0.4183 0.4323 0.5019 0.5665 0.6578

Notes: *** p < 0.01, and ** p < 0.05. Standard errors are reported in parentheses. The R2 for the quantile regression is
the pseudo R2. Due to space limitations, we only list the coefficients for PM2.5 and R2. The full regression results
are available upon request.

3.3. Geographically Weighted Quantile Regression Results

For the purpose of revealing non-stationary effects of PM2.5 pollution on urban housing prices at
different quantiles, we use the GWQR model to estimate the coefficients. Table 4 lists the descriptive
statistics of GWQR coefficient estimates of PM2.5 pollution variable for the five selected quantiles.
All R2 are within a reasonable range, and the standardized residuals (most the absolute value of them
are less than 2.5) in Figure 5 also prove that the GWQR models are appropriate.

Table 4. Summary statistics of geographically weighted quantile regression (GWQR) estimate
coefficients of PM2.5 for 2005–2013.

Quantiles Mean Median Min. Max. Negative (%) IQR Ste. Status Residuals R2

2013

5th −0.2625 −0.2833 −1.0190 1.1865 247/286 0.3093 0.1007 Non-stationary 30.7664 0.2691
25th −0.1610 −0.1962 −1.0635 1.7825 243/286 0.2699 0.0505 Non-stationary 24.8881 0.4088
50th −0.2375 −0.2619 −0.7544 1.3632 268/286 0.1537 0.0353 Non-stationary 14.8876 0.6463
75th −0.2465 −0.2662 −0.6402 1.4088 265/286 0.1679 0.0665 Non-stationary 17.0657 0.5946
95th −0.2932 −0.3534 −0.7210 0.6526 246/286 0.2167 0.0997 Non-stationary 28.4360 0.3245

2009

5th −0.2272 −0.2211 −0.8249 1.7598 274/286 0.1076 0.0670 Stationary 34.9078 0.3429
25th −0.2303 −0.2789 −0.5886 2.1146 263/286 0.1376 0.0802 Stationary 21.1357 0.6021
50th −0.1780 −0.1988 −1.6137 3.6359 256/286 0.2314 0.0721 Non-stationary 19.6357 0.6304
75th −0.0844 −0.0928 −0.5858 0.4919 224/286 0.1351 0.0623 Non-stationary 22.3391 0.5795
95th −0.1338 −0.1046 −1.7495 0.8277 220/286 0.2200 0.0915 Non-stationary 28.3279 0.4668

2005

5th −0.0313 −0.0179 −0.9725 0.5687 150/286 0.2276 0.1082 Non-stationary 39.3096 0.2048
25th −0.0716 −0.0841 −0.6469 0.3168 200/286 0.1894 0.0820 Non-stationary 18.1943 0.6320
50th −0.0241 −0.0309 −1.5339 0.8694 182/286 0.0982 0.0636 Stationary 16.9186 0.6578
75th −0.1088 −0.1260 −1.8769 1.0960 247/286 0.1354 0.0558 Non-stationary 15.2975 0.6906
95th −0.1820 −0.1651 −1.4802 0.7696 186/286 0.3599 0.1358 Non-stationary 40.8241 0.1742

Notes: IQR values are computed by the estimates of the 75th of the GWQR model minus the estimates of the 25th.
Ste.—the standard error of global estimates derived with a traditional QR.
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Figure 5. Spatial visualization of standardized residuals of GWQR for 2013. (a–e) represent the spatial
distribution of standardized residuals for the 5th, 25th, 50th, 75th, and 95th quantiles respectively.

According to means and medians of GWQR coefficients in Table 4, the trends of PM2.5 coefficients
are similar to QR estimates for 2013. The coefficients are dominated by a negative correlation for PM2.5
pollution, and these negative relationships become stronger at most quantiles and especially at the
5th and 95th quantiles. GWQR model coefficients are spatially varying throughout the study area.
Following Chen’s method [38], spatial non-stationary effects of the response variable and accompanying
predictor variable are assessed by judging whether the interquartile ranges (IQRs) of the localized
coefficients are more than twice the standard errors of the global estimates. Table 4 indicates that IQRs
of the local estimates of PM2.5 pollution were at least twice the standard error of global estimates
in 2013. Our results suggest that spatial relationships between housing prices and PM2.5 pollution
indeed vary across the studied prefecture-level cities.

Table 4 reports the GWQR estimates of PM2.5 pollution for 2005 and 2009 to draw comparisons.
The relationship between PM2.5 pollution and housing prices was dominated by negative correlations
from 2005 to 2013. According to the recorded means and medians, the absolute values of the regression
coefficients mostly increase overtime, which is consistent with QR estimates. Moreover, GWQR
estimates of most quantiles for 2005 are similar to QR estimates. GWQR estimates are smaller than QR
estimates at the high quantile, and GWQR estimates are greater than QR estimates at the low quantile
in 2009.

The impacts of PM2.5 pollution on urban housing prices are spatially varying in most quantiles
except at the 50th quantile in 2005, and the impact of PM2.5 pollution on urban housing prices shows
spatial stability at 5th and 25th quantiles in 2009. This indicates that there are no significant spatial
differences in their regression coefficients at the two quantiles.

Furthermore, model coefficients of each location were calculated by the GWQR method in
the study area at specific quantiles. We visualized PM2.5 pollution coefficients using the ArcGIS
platform (ESRI, Redlands, CA, USA), which generated spatially varying trends of urban housing prices
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in response to PM2.5 pollution. Following Chen’s approach [38], we employ model coefficients to
construct geographic maps for which local t-test statistically significant (t values exceed +/− 1.96) at
the five quantiles (t = 0.05, 0.25, 0.50, 0.75, and 0.95) for PM2.5 pollution across the three time series
(Figures 6, A1 and A2).
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Figure 6 shows estimates and significant areas for PM2.5 pollution for 2013. At most quantiles,
a negative correlation is obviously found between PM2.5 pollution and urban housing prices in
Eastern China (including Jiangsu, Zhejiang, Shanghai, Anhui, and Fujian), and positive correlations
are mainly found in Northeastern China and Yunnan province. Moreover, positive correlations are
stronger at higher quantiles. At all quantiles, stronger negative correlations are mainly distributed
across the eastern and southern coastal areas, indicating that real estate markets in these areas are very
sensitive to PM2.5 pollution. Northwestern and Southwestern China show the opposite relationship
between urban housing prices and PM2.5 pollution at the 5th quantile. Specifically, PM2.5 pollution
negatively affects urban housing prices in Southwestern China, while estimates of PM2.5 pollution in
Northwestern China show a positive correlation but a negative correlation at high quantiles. In addition,
areas showing significantly positive and negative correlations expand at the 95th quantile.

This spatial differentiation of influences of PM2.5 pollution on housing prices in northern
and southern China is attributable to the combined effects of natural environmental conditions,
human activities, and economic development. For example, while coal-fired heating is used in the
northern region, it is largely not adopted in southern China, and factors such as terrain and weather
patterns create differences in PM2.5 pollution. Meanwhile, China’s economic development pattern
mainly presents the characteristics of fast in the south and slow in the north. More developed regions
are less likely to adopt unsustainable development modes that pollute the environment and have
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greater demands for environmental quality in southern China. Therefore, PM2.5 pollution is always
negatively correlated with urban housing prices in China’s eastern coastal cities at higher quantiles.

Compared with the southern China, industrial pollution is more serious in northern region.
The heavy chemical industry is highly concentrated in Beijing-Tianjin-Hebei urban agglomeration and
Northeast China. The coal-based energy utilization mode and the highway transportation mode lead
to the high emission of air pollutants in the region. In these areas, the rapid development of urban
economy is at the expense of environmental health. It brought economic development and a real estate
boom, but it is unsustainable

The pollution level in southwest China is relatively low. Along with China’s rapid urbanization, the
inland provinces represented by Yunnan and Guizhou are gradually industrializing through industrial
relocation and investment in massive railways and public infrastructure. Therefore, PM2.5 pollution
and housing prices in these areas also show positive correlations. Maintaining the balance between
economic growth and environmental health is an important issue for policymakers to consider.

Figures A1 and A2 show the GWQR estimates of PM2.5 pollution for 2005 and 2009, respectively.
In 2005, impacts of PM2.5 pollution on urban housing prices show regional differentiation between
Northern and Southern China at all quantiles in the study area, where most PM2.5 pollution estimates
for the northern region are positively correlated with urban housing prices while relationships are
mostly negative in the southern region. Spatial distributions changed considerably in 2009 and the
area of northern China with a positive correlation greatly decreased. In the study area, a broader range
of positive coefficients is found in 2005 than in 2009 and 2013. In the time series, negative correlations
gradually dominate. Thus, impacts of PM2.5 pollution on urban housing prices continuously intensified
nationwide. Consistency between the three time sections is also observed. At the high quantile,
PM2.5 pollution is negatively correlated with housing prices all the time in eastern coastal region.

In summary, we find obvious signs of spatial differentiation in influences of PM2.5 pollution on
urban housing prices, and most quantiles show spatial non-stationary characteristics in the three time
series. Initially, negative and positive effects are found in northern and southern China, respectively.
Then, the area of northern China showing positive effects also steadily decreases. By 2013, only the
northeastern region shows positive effects, and negative effects dominate most of the study area.

According to the Environmental Kuznets Curve (EKC) theory, an inverted “U”-shaped curve
characterizes the relationship between environmental pollution and economic development [70]. In the
initial stage of economic development, the increase in per capita income will lead to the increase of
environmental pollution. When the economy develops to a higher level, the environmental pollution
problem is alleviated. Early economic growth is usually an extensive growth at the expense of
environmental health. With the increase of technological level and environmental awareness, people
pay more attention to the coordinated development of the economy and the environment. In China,
there are related studies that prove this point [71,72]. It is foreseeable that developed regions will reach
the inflection point of the inverted “U”-shaped curve early. Meanwhile, developed areas will have
stricter air quality requirements. As a result, air pollution will cause greater losses to housing prices
and the economy. They are also willing to pay more marginal prices for clean air.

For the industrial cities that pursue economic development, their production process will produce
a lot of pollution. They have achieved rapid economic development at this cost, including housing
prices. Therefore, the positive correlation between housing prices and PM2.5 pollution will be formed
in the early stage of development. This is particularly evident in the northeast region, which is based on
heavy industry. With the transformation of industries, their development will be towards low pollution
and low energy consumption. In recent years, some areas will also turn to negative correlations.
Therefore, we believe that the spatial non-stationary effects of PM2.5 pollution on housing prices is of
great significance for guiding regional development.
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3.4. Robustness Checks

The common kernel function types of the GWR model include Gaussian kernel function,
exponential kernel function, and bi-square kernel function. The bandwidth selection methods include
the CV method and Akaike Information Criterion (AIC) method [73,74]. In Zhen’s research, the AIC
method is used as the bandwidth selection method of GWQR model [40]. Therefore, exponential
kernel function and the AIC method are used to test the robustness of the empirical findings of the
GWQR model.

Tables A1 and A2 in Appendix A report the regression parameters using exponential kernel
function and AIC methods, respectively. Our results are well grounded. The five selected quantiles
of the GWQR coefficient are mostly non-stationary in the three time sections (Column 9 in Tables A1
and A2), which is consistent with the results in Table 4. Based on the ‘negative proportion’ column
of Tables A1 and A2, we find that the number of negative correlation increases with the time series,
which also confirms that the influences of PM2.5 pollution on housing prices are gradually dominated
by negative correlations.

Figures A3 and A4 show the spatial visualization of significant PM2.5 coefficients of GWQR using
exponential kernel function and AIC method for 2013, respectively. In terms of spatial distribution of
PM2.5 coefficients, the negative correlations are concentrated in the eastern and southern coastal areas,
while the positive correlations are mainly distributed in the Northeast China, which is consistent with
the results in Figure 6. Although the significant areas are slightly different, the main findings are not
evident affected. In summary, using the alternative kernel function and bandwidth selection method
of the GWQR model supports the empirical findings, and the main results of this study are robust.

4. Conclusions

PM2.5 concentrations started to become a concern for Chinese citizens in 2013, and air pollution
has aroused wide concern in the public. Despite growing concern over the effects of PM2.5 pollution
on urban housing prices, studies have rarely considered asymmetric and spatial non-stationary
effects at different housing price levels. To address this gap, this study employs quantile regression
and geographically weighted quantile regression models to measure the asymmetric and spatial
non-stationary effects of PM2.5 pollution on urban housing prices at different quantiles. Considerable
variations are found across different quantiles and spaces, indicating that quantile and geographically
weighted quantile regressions can provide highly comprehensive descriptions. This paper offers three
main empirical conclusions:

(1) The data distribution patterns of PM2.5 pollution and urban housing prices are similar across the
three time series. However, the relationship between urban housing prices and PM2.5 pollution is
asymmetric according to our data distribution, and a spatial non-stationary relationship between
them may be found by visualizing their spatial characteristics.

(2) Our results of OLS and QR regression models confirm the negative effects of PM2.5 pollution on
urban housing prices. Moreover, these negative effects are stronger at higher quantiles, reflecting
asymmetric effects between them. Further, the influences of PM2.5 pollution on housing prices
increase in our time series. Meanwhile, the range of PM2.5 pollution impacts are expanding.

(3) GWQR models can produce novel and original findings with more data on spatial variations
in influences of PM2.5 pollution on urban housing prices. We find spatial relationships to be
non-stationary at most quantiles in our three time series, revealing spatial heterogeneous effects
of PM2.5 pollution on urban housing prices. In our time series, negative influences of PM2.5
pollution on urban housing prices expand nationwide overtime. Higher priced cities of eastern
costal China are always negatively affected by PM2.5 pollution and remain stable in our time series.
It should be noted that positive and negative correlations found between PM2.5 pollution and
urban housing prices are stronger at higher quantiles.
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5. Policy Implications and Future Perspectives

Real estate constitutes an important asset for Chinese families and the real estate market is also
very speculative. Investment in the housing market is often the consequence of a comprehensive
balance of multiple factors (e.g., higher incomes, personal development, and desires for a better living
environment). PM2.5 pollution is bound to affect people’s well-being and enthusiasm for investment
in real estate. Specifically, enthusiasm for investment in small and medium-sized cities with clean
living environments has increased alongside a reduced willingness to live in large cities with seriously
negative impacts on health. Local governments must guide housing consumption demand in an
orderly and reasonable manner, limit the formation of real estate bubbles in medium- and small-sized
cities due to speculation, and actively manage large cities with severe air pollution to enhance their
overall appeal.

As air pollution and economic development are different between northern and southern
China, environmental regulations must be regionally differentiated. PM2.5 pollution in developed
southeast coastal areas causes more loss of housing prices at the higher quantiles. Therefore, a more
stringent environmental regulation policy could be formulated in order to control air pollution in
these areas. However, it should be noted that the impact of air pollution on adjacent areas shows
clustering characteristics. When formulating environmental regulations and policies in a certain
area, it is necessary to consider the intensity of environmental regulations in surrounding cities,
to avoid the relocation of heavily polluting industries and the formation of ‘polluted paradise’ [75].
Therefore, the urban agglomerations need to promote regional atmospheric linkage management,
and advocate the allocation of ecological compensation responsibility of more developed cities [76].
For northern cities, whose economic growth are driven by heavy industry, excessive environmental
supervision may hinder green technology innovation, and thus may increase the level of PM2.5
pollution. In view of this, the local government should strengthen the environmental supervision
to an appropriate level, gradually eliminate the heavy pollution industries that originally supported
economic growth, and further promote the reasonable industrial structure. It is imperative to accelerate
the transformation and upgrading of old industrial bases, remediate or sanction plants generating
high levels of pollution, and optimize the spatial layout of polluting industries. For all regions, it is
very important to improve residents’ awareness of environmental protection [77]. The government
needs to advocate the concept of green development and the residents should consciously practice
the green lifestyle. Meanwhile, it is necessary to encourage social management of PM2.5 pollution,
beautify urban spaces, and enhance efforts to support new energy automobile industries and other
emerging sustainable industries for promoting the sustainable economy growth.

Three avenues for further research can be identified. First, the GWQR method can help researchers
explore local relationships across conditional distributions of a response variable and thus provide
more insight into the real estate market and into environmental regulation. While the present work is
based on optimal bandwidth levels as determined by the CV and AIC methods, other methods such as
the Bayesian Information Criterion are worth applying to find optimal bandwidths. Second, due to data
limitations, this study uses section data for 2005–2013. However, the Chinese government has begun
to take into consideration the impacts of PM2.5 pollution on people’s lives and has launched a series of
prevention and control measures since 2013. Therefore, the relationship between the real estate market
and PM2.5 pollution must be continually monitored. Third, in this work, we analyze asymmetric
and spatial non-stationary effects of PM2.5 pollution on urban housing prices at different quantiles.
However, trade-off mechanisms of PM2.5 pollution and other favorable factors are complex for different
quantiles and regions. Future studies need to pay particular attention to the trade-off mechanism
between air pollution and other social and economic factors, and then provide more targeted references
for formulating regional real estate development and environmental protection policies.
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Table A1. Summary statistics of GWQR (exponential kernel function) estimate coefficients of PM2.5
for 2005–2013.

Quantiles Mean Median Min. Max. Negative (%) IQR Ste. Status Residuals R2

2013

5th −0.2703 −0.2706 −0.6526 0.2190 263/286 0.2587 0.1007 Non-stationary 19.1201 0.5458
25th −0.2061 −0.2303 −0.4822 0.3743 257/286 0.2282 0.0505 Non-stationary 12.5511 0.7018
50th −0.2507 −0.2359 −0.4851 0.1890 279/286 0.1647 0.0353 Non-stationary 8.8104 0.7907
75th −0.2806 −0.2912 −0.5291 −0.1041 286/286 0.1123 0.0665 Stationary 11.7863 0.7200
95th −0.3412 −0.3807 −0.5471 0.1001 278/286 0.1258 0.0997 Stationary 18.9354 0.5502

2009

5th −0.2205 −0.2487 −0.5534 0.8631 266/286 0.1310 0.0670 Stationary 34.5803 0.3491
25th −0.2303 −0.2789 −0.5886 2.1146 263/286 0.1376 0.0802 Stationary 23.9320 0.5495
50th −0.1780 −0.1988 −1.6137 3.6359 256/286 0.2314 0.0721 Non-stationary 23.0096 0.5669
75th −0.0844 −0.0928 −0.5858 0.4919 224/286 0.1351 0.0623 Non-stationary 19.3198 0.6363
95th −0.1338 −0.1046 −1.7495 0.8277 220/286 0.2200 0.0915 Non-stationary 26.7136 0.4972

2005

5th −0.0037 −0.0276 −0.6137 0.5110 156/286 0.2594 0.1082 Non-stationary 33.0169 0.3321
25th −0.0684 −0.0755 −0.3471 0.2132 212/286 0.1544 0.0820 Stationary 16.6069 0.6641
50th −0.0264 −0.0291 −0.2241 0.5743 195/286 0.1057 0.0636 Stationary 13.8040 0.7208
75th −0.0903 −0.1142 −0.4126 0.7253 234/286 0.1341 0.0558 Non-stationary 17.3223 0.6496
95th −0.1820 −0.1651 −1.4802 0.7696 213/286 0.3599 0.1358 Non-stationary 36.8610 0.2544

Notes: IQR values are computed by the estimates of the 75th of the GWQR model minus the estimates of the 25th.
Ste.—the standard error of global estimates derived with a traditional QR.

Table A2. Summary statistics of GWQR (AIC method) estimate coefficients of PM2.5 for 2005–2013.

Quantiles Mean Median Min. Max. Negative (%) IQR Ste. Status Residuals R2

2013

5th −0.2842 −0.2776 −0.7071 1.3603 273/286 0.2849 0.1007 Non-stationary 20.3452 0.5167
25th −0.2014 −0.2118 −0.7562 1.4173 264/286 0.2367 0.0505 Non-stationary 20.7411 0.5073
50th −0.2376 −0.2571 −0.8474 1.6399 272/286 0.1572 0.0353 Non-stationary 15.0992 0.6413
75th −0.2462 −0.2612 −0.6709 1.4310 265/286 0.1504 0.0665 Non-stationary 20.5737 0.5113
95th −0.2953 −0.3516 −0.9676 0.6413 250/286 0.2111 0.0997 Non-stationary 34.4835 0.1808

2009

5th −0.2159 −0.2437 −0.6651 2.2310 267/286 0.1225 0.0670 Stationary 32.8354 0.3819
25th −0.2268 −0.2778 −0.5621 2.3344 262/286 0.1406 0.0802 Stationary 26.1222 0.5083
50th −0.1714 −0.1869 −1.1915 3.6993 260/286 0.2083 0.0721 Non-stationary 31.2354 0.4120
75th −0.0853 −0.0991 −0.6407 1.4393 224/286 0.1410 0.0623 Non-stationary 33.3338 0.3725
95th −0.1338 −0.1046 −1.7495 0.8277 220/286 0.2200 0.0915 Non-stationary 32.5460 0.3874

2005

5th −0.0395 −0.0376 −0.9698 0.5338 161/286 0.2396 0.1082 Non-stationary 39.3096 0.2048
25th −0.0879 −0.0807 −0.8639 0.7156 208/286 0.1998 0.0820 Non-stationary 26.6307 0.4613
50th −0.0557 −0.0421 −0.6537 1.3645 184/286 0.2326 0.0636 Non-stationary 13.4764 0.7274
75th −0.0878 −0.1031 −0.7358 1.2812 221/286 0.1950 0.0558 Non-stationary 15.2975 0.6906
95th −0.1842 −0.1641 −1.4403 0.7081 215/286 0.3815 0.1358 Non-stationary 44.1466 0.1070

Notes: IQR values are computed by the estimates of the 75th of the GWQR model minus the estimates of the 25th.
Ste.—the standard error of global estimates derived with a traditional QR.
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