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Abstract

Chronic subdural hematoma (CSDH) is characterized by an “old” encapsulated collection of

blood and blood breakdown products between the brain and its outermost covering (the

dura). Recognized risk factors for development of CSDH are head injury, old age and using

anticoagulation medication, but its underlying pathophysiological processes are still unclear.

It is assumed that a complex local process of interrelated mechanisms including inflamma-

tion, neomembrane formation, angiogenesis and fibrinolysis could be related to its develop-

ment and propagation. However, the association between the biomarkers of inflammation

and angiogenesis, and the clinical and radiological characteristics of CSDH patients, need

further investigation. The high number of biomarkers compared to the number of observa-

tions, the correlation between biomarkers, missing data and skewed distributions may limit

the usefulness of classical statistical methods. We therefore explored lasso regression to

assess the association between 30 biomarkers of inflammation and angiogenesis at the site

of lesions, and selected clinical and radiological characteristics in a cohort of 93 patients.

Lasso regression performs both variable selection and regularization to improve the predic-

tive accuracy and interpretability of the statistical model. The results from the lasso regres-

sion showed analysis exhibited lack of robust statistical association between the biomarkers

in hematoma fluid with age, gender, brain infarct, neurological deficiencies and volume of

hematoma. However, there were associations between several of the biomarkers with post-

operative recurrence requiring reoperation. The statistical analysis with lasso regression

supported previous findings that the immunological characteristics of CSDH are local. The

relationship between biomarkers, the radiological appearance of lesions and recurrence

requiring reoperation have been inclusive using classical statistical methods on these data,

but lasso regression revealed an association with inflammatory and angiogenic biomarkers

in hematoma fluid. We thus suggest that lasso regression should be a recommended statis-

tical method in research on biological processes in CSDH patients.
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Introduction

Chronic subdural hematoma (CSDH) is characterized by an “old” collection of blood and

blood breakdown products between the brain and its outermost covering (the dura) [1, 2]. It is

commonly treated by surgery, which usually results in a rapid improvement of neurological

symptoms and good postoperative prognosis [2]. However, more sophisticated surgical strate-

gies have not significantly improved outcomes over the past few decades, and there are still

unacceptable rates of postoperative mortality and morbidity, most notably due to postopera-

tive recurrence requiring reoperation (RrR). The RrR of CSDH is a major adverse postsurgical

clinical outcome, which may result in repeated surgical treatments, as well as risk of further

complications and mortality [3, 4].

The underlying pathophysiological process of CSDH development and progression are

attributed by some studies to local immunological responses and disturbance of the coagulo-

fibrinolytic system. As a result, local inflammation and angiogenesis at the site of lesions, with

its corresponding pro- and anti-inflammatory cytokines,has been assessed [5–8]. Nonetheless,

the association between inflammatory and angiogenic biomarkers at the site of lesions and

clinical characteristics, in addition to volume of lesions, computed tomography (CT) densities

and postoperative recurrence, remain unclear [9, 10]. This has limited the development of

non-surgical therapeutic alternatives for CSDH patients.

We have previously used descriptive statistics and classical tests of hypotheses, and carried

out work with regression analysis using a stepwise selection of predictor variables on bio-

marker data from CSDH [5, 6]. It is our experience that biomarker concentration data might

have skewed statistical distributions, have multicollinearity issues in regression analysis due to

high correlations, be associated with similar biological processes and affected by missing data.

Statistical experts have reviewed the analysis of immunological data, and recommended the

use of more advanced and novel statistical methods [11]. Hence, we have previously assessed

the correlation between pro- and anti-inflammatory cytokines in CSDH patients using factor

analysis and structural equation modeling. That study showed a strong correlation between

pro- and anti-inflammatory activity in hematoma fluid samples, and a possible association

with RrR [12].

Lasso regression is a statistical method that performs both variable selection and regulariza-

tion. This implies mathematical procedures that tune and select the preferred level of model

complexity to enhance the prediction accuracy, interpretability and generalization of the statis-

tical model [13]. It is also used to make prediction models in a dataset with many and often

inter-correlated independent variables in biological and medical research [14]. Thus, lasso

regression has important statistical features to help assess the association between many bio-

markers and clinical characteristics. It has been successfully applied in research on, e.g., HIV

[15], neonatal sepsis [16] and bipolar disorder [17]. From a statistical point of view, it could be

a very promising method to assess the association between biomarkers of inflammation in

hematoma with clinical characteristics of CSDH patients in a more predictive manner, com-

pared to previous work using factor analysis and structural equation modeling [12]. We have

also applied lasso regression to develop a prognostic grading system for the prediction of

CSDH RrR after initial burr-hole surgery based on demographic, radiological and surgical

characteristics [18].

Biomarkers of immunological responses in hematoma fluid from a Norwegian cohort of

CSDH patients were reassessed with lasso regression to explore their associations with relevant

clinical characteristics and properties of the hematoma. This approach may provide additional

insight into the underlying biological process of CSDH.
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Materials and methods

Ethics statement and written informed consent

The study of human subjects was approved by the Regional Ethical Committee of the Health

Region of Southeast Norway (S-06281a), while the establishment of a research bio-bank was

approved by the Norwegian Directorate of Health. Written informed consent was obtained

from the patients or their significant others before study inclusion. Moreover, the institutional

review board approved this consent procedure.

Patient population and management

We measured 30 selected biomarkers in hematoma fluid samples obtained during surgery of

93 adult patients with CSDH in the Department of Neurosurgery, Oslo University Hospital

between January and December 2008. These patients were part of a larger cohort of 107

patients, but a biomarker analysis in the hematoma fluid was only conducted on 93 patients.

Patient population, management, surgical procedure, hematoma evacuation and follow-up

care are previously described [5, 6, 10].

All hematomas were classified into imaging appearance type based on density changes on

CT scans, i.e., homogenous, laminar, separated, trabecular and gradation types [19]. The

CSDH diagnosis by high-resolution CT scan of this cohort is thoroughly described by Stanisic

and Pripp (18). Consequently, only a brief summary of this description is given as follows: The

homogenous type of CSDH has homogenous density, and is categorized further into hypo,

iso- or hyperdense subtypes. The laminar type has a laminar structure running along the inner

membrane. The separated type has two components of different densities with a lower density

component located above a higher density component, with a clear boundary lying between

them. The trabecular type has inhomogeneous contents running between the inner and outer

membrane on a low- to isodense background. If the boundary was indistinct, with the low and

high density being mingled at the border, the CSDH was defined as the gradation type. In the

gradation type, a mild head movement causes homogenization of the hematoma.

Sample collection and measurement of biomarkers

Sample collection and the measurement of biomarkers have been previously described [5, 6],

and a brief summary is given as follows: Samples from the hematoma were collected without

contamination at the time of surgery. After the external membrane had been opened, a silastic

catheter was inserted into the cavity of the hematoma, and approximately 10 ml of fluid was

collected and aspirated into vacuum tubes that contained protamine sulfate and ethylenedia-

mine tetraacetic acid (EDTA). All samples were immediately centrifuged at 3,000 rpm for 10

min to remove cells and debris, and the supernatants were stored in sealed polypropylene

tubes at −70˚C for later analysis. The concentration of 30 selected human cytokines in the sam-

ples was simultaneously determined by a multiplex antibody bead kit (Human Cytokine

30-Plex Panel for the LuminexTM platform; Biosource, Camarillo, CA, USA), according to the

manufacturer’s instructions. Acquired fluorescence data were analyzed by the Star Station soft-

ware version 2.0 (Applied Cytometry Systems, Sheffield, UK). Furthermore, biomarker data

above or below calibrated standards were discarded before further data analysis.

Statistical analysis

The concentrations of the 30 biomarkers (after common logarithmic transformation) were

described using mean and standard deviation (SD), and assessed with boxplots and histograms

to examine statistical distribution. The clinical characteristics of the CSDH patients and their
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hematoma based on CT scan imaging were described with mean, SD and range (expressed as

minimum–maximum), or the number of patients and percentage, as appropriate.

In some of the patients, there was missing data for a number of biomarkers. The lasso

regression method requires complete data for all included cases. Therefore, 15 multiple impu-

tations were iteratively conducted by chained equations using linear regression for biomarkers

as implemented in the mi impute chained (regress) procedure in Stata 13.0 (StataCorp LP, Col-

lege Station, TX, USA). The mean of these 15 multiple imputations was used as a single impu-

tation for missing biomarker data. Using this approach, a complete dataset with 93 cases and

30 variables was obtained. The impact of this imputation procedure on the dataset was assessed

by estimating the Cohen’s d effect size for each biomarker using the following formula:

Cohen
0

s d ¼
�x1 � �x2

s
ð1Þ

with the pooled SD estimated as:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þs2

1
þ ðn2 � 1Þs2

2

n1 þ n2 � 2

s

ð2Þ

where n1 and n2 are the number of observations before and after imputation (the number of

observations after imputation was 93 for all biomarkers), �x1 and �x2 are the estimated mean

before and after imputation and s1 and s2 are the estimated SD before and after imputation,

respectively.

Lasso regression modeling was performed with a 10-fold cross-validation, as implemented

in the R package glmnet using a binomial or Gaussian response type for binary or continuous

dependent variables, respectively [20]. It was done separately using the dataset with imputed

values (i.e. 93 cases and 30 biomarkers) or a sub-dataset with only biomarkers with complete

observed data (i.e. 93 cases and 16 biomarkers). Lasso is a penalized method for restricting the

residual sum of squares (deviance) and constraining the sum of the absolute values of the

regression coefficients: For a binomial or continuous dependent variable, the outcome Y is

either the original dependent variable Y (cf. linear regression) or Y = log [p/(1-p)], with p as

the probability of the binary event (cf. logistic regression), respectively. A full regression model

for k independent variables with coefficients β is:

Y ¼ b0þb1X1 þ b2X2 þ b3X3 þ � � � þ bkXk ð3Þ

The sum of absolute values of the coefficients is then estimated with the following restric-

tion:

jb0j þ jb1j þ jb2j þ � � � þ jbkj ¼
Xk

i¼1

jbij � l ð4Þ

where λ is the “tuning” parameter. As λ approaches indefinite, it has no effect and the solutions

are estimates for the full and unrestricted model. For smaller λ values, solutions are shrunken

versions of the estimates, with many coefficients decreased to the null value. The selected value

of λ was defined using cross-validation. The k independent variables are prior to fitting the

model standardized to a mean of 0 and a standard deviation of 1. The solution of this fitted

regression model is then presented with coefficients returned to the original scale, but typically

with many coefficients decreased to the null value.

To investigate a robust statistical association by lasso regression, at least 50 repeated 10-fold

cross-validations were performed for each model. If we found instances of cross-validation
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estimations with no value of λ minimizing cross-validation error, and thereby all coefficients

decreased to the null value, and/or the cross-validated models had problems and warnings

about convergence issues, we assumed no robust statistical association and the results from

these regression analyses were not presented. However, for models that did not have such

issues in repeated cross-validations, a robust statistical association was assumed. For these

models, 100 repeated 10-fold cross-validations were conducted. The optimal λ (i.e. the value of

λ minimizing cross-validation error) and corresponding coefficient estimates of the biomark-

ers from each round of cross-validations were recorded. We reported the mean, SD and range

(expressed as minimum–maximum) of the coefficients, and of the optimal λ-values from these

100 rounds of cross-validation estimations. Median values were also estimated, but were simi-

lar to the mean values. Therefore, the mean was reported. The models had both predictive abil-

ity and a limited number of selected coefficients. Because the biomarkers were selected into

the regression model based on minimizing cross-validation error, p-values for each of the

selected biomarkers are not relevant and hence not estimated. We assessed the predictive per-

formance of the selected models by estimating the area under the receiver operation curve

(AUC) for binary responses using the R package pROC [21], and reported the mean, SD and

range of the estimated AUC values from the 100 rounds of cross-validation estimations. For a

more comprehensive and technical discussion of lasso regression methodology, see, e.g., [22].

We performed multiple imputations of missing data with Stata 13.0 (StataCorp LP, College

Station, TX), and descriptive statistics and lasso regression with R version 3.2.0 (R Foundation

for Statistical Computing, Vienna, Austria).

Results

Table 1 shows the clinical characteristics of the 93 CSDH patients, with classification based on

CT scan imaging appearance and pre- and postoperative volume of hematomas. This cohort of

93 CSDH patients had a mean age 72.2 (SD 12.3) within the range from a minimum of 34 to a

maximum of 90 years, with a dominant proportion of males (64.5%) and a high prevalence of

neurological symptoms and signs as expressed by motor- and speech deficiency, dementia,

preoperative Glasgow Coma Scale (GCS) and prevalence of brain infarct. The homogenous

type of CSDH was most frequent (55.9%), followed by trabecular (19.4%), separated (8%), gra-

dation (8%) and laminar (7%). The volume was reduced by approximately 50 mL as a result of

surgical treatment.

Table 2 shows the concentrations of the 30 biomarkers in log pg/mL in hematoma fluid

samples, both before and after the imputation of missing data. Sixteen of the 30 selected bio-

markers (53.3%) had complete observed data for all of the included 93 patients. TNF-α had the

most missing data, with missing values for 28 patients (30.1%). Nineteen patients (20.4%) had

complete observed data for all 30 biomarkers, 61 patients (65.6%) had missing values for one

to three biomarkers and two patients (2.1%) had missing data for seven biomarkers, which

was the highest number of missing data among the included patients. Overall, the mean con-

centrations were somewhat lower in the dataset after imputation, except for IL-6, TNF-α and

CXCL10, with a higher mean concentration after imputation. Based on the estimated Cohen’s

d, IL-6, EGF, IL-1β and IL5 were mostly affected by imputation. The SD was affected to a small

degree by the imputation of missing data. IL-6, CXCL8, CCL2 and HGF had mean concentra-

tions above 3.0 log pg/mL, while on the other hand IL-2, IL-4, TNF-α and EGF had mean con-

centrations below 1.0 log pg/mL.

Table 3 presents coefficients from lasso regression modeling on the relationship between

biomarkers and characteristics of the study population described in Table 1. Based on our cri-

teria for a robust model using multiple cross-validations, no robust statistical association was
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found with the concentration of biomarkers and age, gender, preoperative GCS score, brain

infarct, motor- or speech deficiency, dementia, pre- or postoperative volume of hematoma,

and most types of CSDH based on CT scan imaging. Thus, all coefficients were set to zero in

some instances of the lasso regression model after cross-validation and/or there were problems

with convergence of the statistical models. Models with these statistical issues are therefore not

Table 1. Study population characteristics of CSDH patients (n = 93).

Clinical characteristics

Mean age (SD) [range] Years 72.2 (12.3) [34–90]

Gender Males 60 (64.5%)

Females 33 (35.5%)

Preoperative GCS score 3–14 58 (62.4%)

15 35 (37.6%)

RrR Yes 16 (17.2%)

No 77 (82.8%)

Brain infarct Yes 18 (19.4%)

No 75 (80.6%)

Motor deficiency Yes 58 (62.4%)

No 35 (37.6%)

Speech deficiency Yes 31 (33.3%)

No 62 (66.7%)

Dementia Yes 7 (7.5%)

No 86 (92.5%)

CSDH based on CT scan imaging

Homogenous type Yes 52 (55.9%)

No 41 (44.1%)

Hypodense homogenous subtype Yes 27 (29.0%)

No 66 (71.0%)

Isodense homogenous subtype Yes 13 (14.0%)

No 80 (86.0%)

Hyperdense homogenous subtype Yes 12 (12.9%)

No 81 (87.1%)

Laminar type Yes 7 (7.5%)

No 86 (92.5%)

Separated type Yes 8 (8.6%)

No 85 (91.4%)

Trabecular type Yes 18 (19.4%)

No 75 (80.6%)

Gradation type Yes 8 (8.6%)

No 85 (91.4%)

CSDH densities with high risk for RrR Yes a 40 (43.0%)

No b 53 (57.0%)

Mean preoperative volume (SD)[range] mL 154.3 (73.0)[24.3–380.1]

Mean postoperative volume (SD)[range] mL 104.6 (57.3)[18.7–306.6]

CSDH, chronic subdural hematoma; SD, standard deviation; GCS, Glascow Coma Scale; RrR, recurrence

requiring reoperation; CT, computed tomography.
a Isodense- or hyperdense homogenous subtypes and laminar- or separated types.
b Hypodense homogenous subtypes and trabecular or gradation type.

https://doi.org/10.1371/journal.pone.0186838.t001
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reported in Table 3, and were deemed to express a lack of statistical association between the

concentration of biomarkers and clinical or CT scan imaging characteristics. However, lasso

regression models exhibited a robust statistical association between the biomarkers and RrR,

as well as the combination of CSDH densities previously defined as high risk for RrR [10]. A

robust statistical association was also found for hypodense homogenous subtype (only com-

plete data subsample), hyperdense homogeneous subtype (only dataset with all 30 biomarkers)

and the trabecular type (only complete data subsample). The lasso regression models had a

reasonable model fit with the most AUC above 0.80.

None of the presented lasso regression models included CCL3, CXCL9 and Eotaxin, and

the mean coefficient from rounds of cross-validations were close to zero for IL-1β, IL-2, IL-6,

IL-15, IL-17, IFN-α and GM-CSF. This may indicate that these biomarkers had a low statistical

association with RrR and CSDH densities with a high risk of RrR. The fitted regression model

Table 2. Concentration of biomarkers (log pg/mL) in CSDH fluid samples before and after the imputation of missing data.

Biomarkers a Before imputation After imputation Effect size imputation

N Mean (SD) Mean (SD) Cohen’s d

IL-1β 70 1.24 (0.74) 1.09 (0.76) 0.20

IL-1RA 93 2.64 (0.44) 2.64 (0.44)

IL-2 76 0.66 (0.66) 0.57 (0.65) 0.14

IL-2R 93 2.76 (0.35) 2.76 (0.35)

IL-4 93 0.98 (0.41) 0.98 (0.41)

IL-5 80 1.37 (0.53) 1.27 (0.57) 0.18

IL-6 69 3.72 (0.83) 3.92 (0.85) -0.24

IL-7 93 1.72 (0.17) 1.72 (0.17)

CXCL8 (IL-8) 93 3.43 (0.81) 3.43 (0.81)

IL-10 93 1.33 (0.37) 1.33 (0.37)

IL-12 93 1.94 (0.32) 1.94 (0.32)

IL-13 83 1.33 (0.48) 1.27 (0.50) 0.12

IL-15 93 1.86 (0.37) 1.86 (0.37)

IL-17 72 1.34 (0.58) 1.34 (0.54) 0

TNF-α 65 0.48 (0.44) 0.51 (0.43) -0.07

IFN-α 91 1.59 (0.31) 1.58 (0.31) 0.03

IFN-γ 93 1.25 (0.39) 1.25 (0.39)

GM-CSF 84 1.38 (0.40) 1.35 (0.40) 0.07

CCL3 (MIP-1α) 93 1.63 (0.25) 1.63 (0.25)

CCL4 (MIP-1β) 93 1.56 (0.44) 1.56 (0.44)

CXCL10 (IP-10) 86 2.50 (0.51) 2.51 (0.50) -0.02

CXCL9 (MIG) 89 1.85 (0.56) 1.84 (0.55) 0.02

Eotaxin 86 1.28 (0.47) 1.26 (0.49) 0.04

CCL5 (RANTES) 93 2.08 (0.55) 2.08 (0.55)

CCL2 (MCP-1) 90 3.55 (0.54) 3.55 (0.53)

VEGF 93 2.37 (0.49) 2.37 (0.49)

EGF 77 0.59 (0.62) 0.45 (0.66) 0.22

G-CSF 93 2.11 (0.55) 2.11 (0.55)

FGF-basic 93 1.37 (0.36) 1.37 (0.36)

HGF 93 3.59 (0.31) 3.59 (0.31)

CSDH, chronic subdural hematoma; N, number of patients with observed concentration of the biomarker; SD, standard deviation.
a The 16 biomarkers in bold letters had complete observed data for all included 93 patients (i.e., complete data subsample).

https://doi.org/10.1371/journal.pone.0186838.t002
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Table 3. Mean, (SD) and range expressed as [minimum–maximum] of lasso coefficients of biomarkers on characteristics of CSDH patients

described in Table 1 from 100 rounds of cross-validation estimations.

Characteristic RrR CSDH densities with high risk

for RrR

Hypodense

homogenous

subtype

Hyperdense

homogenous

subtype

Trabecular type

Biomarkersa All Complete data

subsample

All Complete data

subsample

Complete data

subsample

All Complete data

subsample

IL-1β -0.05 (0.24) [-1.47–0]

IL-1RA 0 (0.01)

[-0.12–0]

0.31 (0.09) [0–0.56] -0.04 (0.19) [-1.33–0]

IL-2 -0.04 (0.13)

[-0.79–0]

0 (0.03) [0–0.19]

IL-2R -0.41 (0.07)

[-0.47–0]

-0.84 (0.16)

[-1.01–0]

0.24 (0.05) [0–0.33]

IL-4 -0.03 (0.06) [-0.33–0] 0.59 (0.19) [0–

0.85]

IL-5 -0.34 (0.07)

[-0.72 –-0.26]

-0.29 (0.05)

[-0.36–0]

IL-6 0 (0.01) [0–

0.03]

0 (0.01) [0–0.08]

IL-7 0.85 (0.14)

[0–1.00]

1.19 (0.23) [0–

1.45]

-3.32 (0.88) [-5.28–0] 0.07 (0.37) [0–2.46] 0.26 (0.28) [0–

1.64]

CXCL8 (IL-8) -0.58 (0.13)

[-1.25 –-0.46]

-0.62 (0.05)

[-0.62 –-0.36]

-0.70 (0.13)

[-0.87–0]

-0.59 (0.12)

[-0.77–0]

0.02 (0.03) [0–0.12] -0.67 (0.19) [-1.46

–-0.44]

0.62 (0.15) [0–

0.85]

IL-10 -0.50 (0.05)

[-0.62 –-0.36]

0.23 (0.14) [0–

0.68]

IL-12 0.97 (0.27) [0–1.51] 0 (0.03) [0–0.29] -0.02 (0.07)

[-0.59–0]

IL-13 -0.09 (0.06)

[-0.24–0]

IL-15 -0.01 (0.02)

[-0.07–0]

IL-17 -0 (0.01) [-0.06–0]

TNF-α 0.07 (0.34) [0–2.24]

IFN-α 0 (0.03)

[-0.23–0]

IFN-γ -0.86 (0.11)

[-0.93 –-0.27]

-1.01 (0.04)

[-1.06 –-0.83]

-0.04 (0.03)

[-0.15–0]

GM-CSF -0.03 (0.09)

[-0.61–0]

CCL3 (MIP-1α)

CCL4 (MIP-1β) 0.42 (0.16) [0–0.83] -0.65 (0.35)

[-1.30–0]

CXCL10 (IP-10) -0.17 (0.05)

[-0.35 –-0.11]

CXCL9 (MIG)

Eotaxin

CCL5

(RANTES)

0.53 (0.04)

[0.43–0.57]

0.55 (0.02)

[0.45–0.56]

0.01 (0.01)

[0–0.04]

0.24 (0.04) [0–

0.27]

-0.93 (0.21) [-1.28–0] 0.47 (0.03) [0.36–

0.52]

0.33 (0.18) [0–

0.74]

CCL2 (MCP-1) 0.54 (0.09)

[0–0.65]

0.14 (0.14) [0–0.51]

VEGF 0.07 (0.18)

[0–0.76]

0.07 (0.07) [0–

0.25]

0.00 (0.01) [0–0.07] 0.01 (0.03) [0–0.17]

EGF 0.02 (0.06)

[0–0.43]

0.19 (0.03)

[0–0.23]

0.05 (0.10) [0–0.59]

(Continued )
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using data from all 30 biomarkers on RrR had negative mean coefficients (i.e. a lower probabil-

ity of RrR with increased concentrations) for IL-5, CXCL8, IL-13, IFN-γ and CXCL10, and

positive mean coefficients (i.e. a higher probability of RrR with increased concentrations) for

CCL5 and VEGF. Statistical analysis using the complete data subsample of 16 biomarkers

showed a similar trend, but IL-10 was then included with a negative coefficient. For CSDH

densities with high risk for RrR, a somewhat similar pattern was observed, but in addition

there was a negative coefficient for IL-2R, a positive coefficient for IL-7, CCL5, CCL2, EGF,

G-CSF and HGF and no statistical association with IL-13 and a very low association for IFN-γ.

Multiple cross-validation of the lasso regression model for trabecular type showed that only

the complete data subsample of 16 biomarkers yielded robust statistical models. The regression

model for trabecular type (complete data subsample) revealed positive associations for IL-4,

IL-7, CXCL-8, IL-10 and CCL5 and negative associations for CCL4, and to a certain degree for

IL-12. Coefficients from the models for hypodense (complete data subsample) and hyperdense

homogenous subtype are also shown, as these did not have problems during multiple cross-

validations. Still, regarding the lack of a robust statistical association for most of the CSDH

based on CT scan imaging (Table 1), these results should be interpreted with caution.

We conducted multiple rounds of cross-validation, and recorded the optimal λ-value and

corresponding coefficient estimates, to help assess the robustness of the selected biomarkers.

IL-5, CXCL-8, IL-10 (only complete data subset), IFN- γ, CXCL-10 and CCL5 were selected in

all rounds of cross-validation for fitting a regression model on RrR. Their SDs from these

rounds of cross-validation were low compared to their mean values. This indicates a robust-

ness of these selected biomarkers. The robustness in selecting biomarkers seems not be as

strong as for the other reported regression models. However, both CXCL8 and CCL5 were

selected in all rounds of cross-validation for fitting a model on the hyperdense homogenous

subtype. IL-2R, IL-5, IL-7, CXCL8, CCL5 (only for complete data subset), CCL2, EGF and

G-CSF seemed reasonably robust for the regression models on CSDH densities with a high

risk of RrR.

Comparing models based on all 30 biomarkers, or on the complete data subsample of 16

biomarkers, CXCL8, INF-γ and CCL5 were consistently selected in models on RrR. A similar

Table 3. (Continued)

Characteristic RrR CSDH densities with high risk

for RrR

Hypodense

homogenous

subtype

Hyperdense

homogenous

subtype

Trabecular type

Biomarkersa All Complete data

subsample

All Complete data

subsample

Complete data

subsample

All Complete data

subsample

G-CSF 0.01 (0.06)

[0–0.50]

0.23 (0.07)

[0–0.34]

0.30 (0.09) [0–

0.51]

0 (0.02) [-0.15–0]

FGF-basic 0.16 (0.35) [0–1.86]

HGF 0.10 (0.07)

[0–0.23]

0.21 (0.08) -0.53 (0.13) [-0.81–0] 0.46 (0.29) [0–1.34]

Model fit

Optimal λ after

CV

0.045 (0.008)

[0.016–0.060]

0.04 (0.004)

[0.031–0.054]

0.047 (0.014)

[0.034–0.137]

0.045 (0.017) [0.

028–0.137]

0.038 (0.016) [0.020–

0.120]

0.044 (0.011) [0.011–

0.065]

0.032 (0.014)

[0.015–0.098]

AUC (95% CI) 0.87 (0.01)

[0.85–0.91]

0.85 (0.002)

[0.85–0.85]

0.80 (0.04)

[0.5–0.81]

0.77 (0.05) [0.5–

0.78]

0.82 (0.06) [0.5–0.84] 0.83 (0.04) [0.78–

0.96]

0.75 (0.03) [0.5–

0.79]

SD, standard deviation; CSDH, chronic subdural hematoma; RrR, Recurrence requiring reoperation; CV, Cross-validation; AUC, Area under the receiver

operation curve.
a The 16 biomarkers in bold letters had complete observed data for all included 93 subjects (i.e. complete data subsample).

https://doi.org/10.1371/journal.pone.0186838.t003
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degree of consistency between all, and the complete data subsample of 16 biomarkers, was

found for IL-2R, IL-7, CXCL8 and G-CSF in lasso regression models on CSDH densities with

a high risk of RrR. By contrast, IL-10 was robustly selected in the model on RrR using the com-

plete data subsample, but not using all biomarkers.

Discussion

We have previously found that the correlation of inflammatory processes between blood and

hematoma fluid samples were low, and that the immunological responses occur both locally at

the site of CSDH and systemically in patients with CSDH [5, 12]. However, our previous statis-

tical studies on the association between the concentration of specific biomarkers and patient

clinical characteristics, and types of CSDH based on CT scan imaging, have been inconclusive.

Many variables compared to the number of observations, missing data, collinearity (i.e. a high

correlation between biomarkers) and skewed distributions have been statistical obstacles,

using classical linear or logistic regression analysis to assess these associations. On the other

hand, we have shown an association between clinical data on hematoma volume, hematoma

characteristics based on CT scan imaging appearance and RrR [18]. Compared to previous

work with factor analysis and structural equation modeling [12], statistical analysis with lasso

regression is targeted more on prediction. It also has the ability to exclude biomarkers from

the statistical model with a low association with assessed outcome. That feature was very useful

when we analyzed all 30 biomarkers in this study.

Lasso regression on clinical presentation of CSDH patients

Lasso regression showed a lack of association between these 30 biomarkers in hematoma fluid,

with many relevant clinical characteristics of CSDH patients such as age, gender, neurological

deficiencies and hematoma volume. For this reason, immunological responses expressed by the

30 biomarkers seemed to not be associated with clinical characteristics of the CSDH patients and

the volume of hematoma. Moreover, it corresponds with previous studies on this cohort that also

demonstrated a low correlation of the immunological response between blood and the hematoma

fluid, and that the immunological response occurred locally in the hematoma [5, 6, 12].

Relationship with postoperative RrR

RrR remains a crucial problem associated with current surgical treatment, and occurs in 2.5%

to 33% of cases [4, 23–25]. We found a robust statistical association with RrR using lasso

regression. These findings indicate that even if the 30 biomarkers were not deemed to be statis-

tically associated with neurological deficiencies or volume of hematoma, they could be associ-

ated with RrR. In a recent study with this patient cohort, we have shown that CSDH densities

and pre- and postoperative cavity volume are strong predictors of RrR [18]. Factor analysis

and structural equation modeling have revealed an association between inflammatory and

angiogenic activities in hematoma fluid and RrR [12].

The pro-inflammatory cytokine CXCL8 in Table 3 had a large coefficient and thus, statisti-

cally speaking, a likely association with RrR. Yet, it had a negative coefficient, thereby indicat-

ing that an increased CXCL8 reduced the risk of RrR. This somewhat contradicts findings by

other studies on CSDH and RrR. Increased IL-6 and CXCL8 concentrations in CSDH fluid

have been attributed to CSDH pathogenesis and inflammatory reaction of the dural border

layer cells [26], and a correlation between inflammatory activity and CSDH recurrence has

been identified [27]. Another study has found that patients with high concentrations of anti-

inflammatory cytokine IL-10 also had high values for IL-6 and CXCL8, in addition to a ten-

dency to be associated with a separated or layer type of hematoma [28]. It has been proposed
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that CXCL8 inducing a neutrophil respiratory burst is the crucial impact when subdural effu-

sion develops into CSDH, and that an increased concentration of CXCL8 may increase the

risk of RrR [29]. We found though that the concentration of CXCL8 was high compared to the

other assessed biomarkers (Table 2). It could be that CXCL8 has an important role in the

development of CSDH, but its relation to RrR needs further investigation. The incidence

of RrR was 42.8%, 25%, 19.2% and 5.5% for laminar, separated, homogenous and trabecular

type, respectively. Consequently, the inverse relationship between CXCL8 and RrR could

be due to its association with types of hematoma densities with a lower risk of RrR in this

cohort. A larger and new dataset is needed to validate these findings, and to provide a better

understanding.

Our results indicated that IL-5, IL-13, IFN-γ and CXCL10 were negatively associated with

RrR (Table 3). Both IL-5 and IL-13 have assumed to be related to pathological responses [30],

and have been linked to the development of lung diseases [31]. However, as for CXCL8, they

have a somewhat unexpected negative association with the development of RrR, while the

association with IL-13 was also weak in the statistical model. These results should therefore be

interpreted with some caution, and validations with new and larger datasets are warranted.

Even so, it may reflect that the immunological responses in hematoma might follow a different

pattern compared to typical systemic diseases. We have not identified studies on the specific

role of IFN-γ in CSDH. However, in early human fracture hematoma, this pro-inflammatory

cytokine together with CXCL8 had elevated concentrations [32]. As discussed above for

CXCL8, it could therefore be assumed that INF-γ as a pro-inflammatory biomarker would be

positively correlated with RrR. The lasso regression model somewhat contradicts this with neg-

ative coefficients for both biomarkers. Again, a new and larger dataset is needed to validate

these results and to give a better understand of its role in CSDH. Yet, the statistical analysis

in this cohort indicates that INF-γ may have a role in pathogenesis. CCL5, also known as

RANTES, was positively associated with RrR. In a study on traumatic brain injury patients, a

significant correlation of admission CCL5 levels in plasma and early mortality was found [33].

An elevation in human fracture hematomas and the surrounding bone marrow obtained from

immunological restricted patients was also found compared to controls [34]. Thus, it may be

speculated that elevated levels of CCL5 are associated with CSDH patients with immunological

impairment, which makes them suffer a delayed and insufficient healing, and thus a higher

risk of RrR.

Biomarkers and hematoma densities

Multiple rounds with cross-validation showed a lack of robust statistical association for several

of the main types based on CT imaging. A robust statistical relationship for the hypodense

homogenous subtype and the trabecular type was only found using the complete data subsam-

ple of 16 biomarkers. A correlation of the beta-trace protein and inflammatory cytokines IL-6

and CXCL8 with magnetic resonance imaging in CSDH has been reported [35]. However,

another study found that the levels of IL-6, TNF- α, and IL-10 were extremely high, but had no

significant differences in relation to the CT features [7]. Our results on the association between

types based on CT imaging and biomarkers should be interpreted with caution. Samples may

also have been drawn from different locations of the more heterogeneous subdural fluid collec-

tions, which may have differences in inflammatory markers.

Lasso regression as statistical method in research on CSDH

Except for our recent study on prognostic factor using this patient cohort [18], lasso regression

has not to the best of our knowledge been applied in studies on CSDH. Still, as previously
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described, an increasing application in the assessment of biomarkers for other medical condi-

tions has also been discovered. We found lasso regression to be promising compared to more

classical approaches, such as, e.g., stepwise regression, which in an initial analysis did not

robustly estimate a logistic regression model for RrR using all 30 biomarkers (results not

shown). It has been argued in statistical literature that even if stepwise variable selection is a

very popular technique used for many years, had this procedure just been proposed as a statis-

tical method, it would have most likely been rejected because it violates principles of statistical

estimation and hypothesis testing [36]. For instance, the drawbacks of stepwise regression are

shown to include parameter estimations with standard errors of regression estimates that are

biased low and confidence intervals for effects and predicted values that are falsely narrow, in

addition to inconsistencies among model selection algorithms and problems of multiple

hypothesis testing [37].

For example, missing data can be a problem in the assessment of biomarkers due to techni-

cal limitations or problems during laboratory analysis. The lasso regression model requires

complete data to include a case. Thus, a patient with missing data for one or more biomarkers

will be excluded. In our dataset, there were only 19 patients with complete data for all 30 bio-

markers, which only represented a very small subset of the cohort. A subsample of 19 patients

with complete data was deemed too small, and with too few subjects having specific events,

such as, e.g., RrR. We therefore used a subsample of 16 biomarkers with complete observed

data for all 93 patients. The results from lasso regression with only these 16 biomarkers were

comparable to an analysis based on imputed data, so the results from this subsample of bio-

markers would not be affected by missing data. We hence have the most statistical confidence

in biomarkers that were selected in the models using all 30 biomarkers and the complete data

subsample of 16 biomarkers. There has been some development in methodology for missing

data and lasso regression. A Method using a stochastic EM algorithm for generalized linear

models with penalized maximum likelihood parameter estimation in the presence of missing

data has been proposed [38]. There is a quite amount of work in a general resampling ap-

proach for variable selection in the presence of missing data [39], as well as high-dimensional

variable selection in regression and classification with missing data [40]. However, these meth-

ods seem somewhat limited in their implementation, and are not yet integrated into the

glmnet R package. Instead, we chose a somewhat pragmatic approach, and used a single impu-

tation strategy based on data from multiple imputations. A single imputation approach made

it possible to use all methods integrated into the R package glmnet for lasso regression. Even

so, the influence of missing data and the use of imputation techniques in lasso regression need

further investigation and validation.

We found that conducting multiple rounds of cross-validation, selecting the optimal λ-

value and recording the corresponding lasso coefficients was a useful approach to help assess

the robustness of the models. Based on estimated coefficients and predictive ability, the lasso

regression model on RrR, with both using all 30 biomarkers or the complete data subset of 16

biomarkers, seemed most robust and consistent among the investigated regression analysis.

The variation in selected optimal λ-values and corresponding lasso coefficient estimates from

each round of cross-validation might reflect the relatively low sample size compared to num-

ber of variables in the models. Using a leave-one-out cross-validation approach instead of the

default 10-fold cross-validation would give identical λ-values and corresponding lasso coeffi-

cients in each round. However, 10-fold cross-validation is the default method in the R package

glmnet [20]. Again, a new and larger sample with biomarkers from CSDH patients is needed

to further assess robustness and consistency. Even so, comparing results from multiple rounds

of cross-validation provides an indication of robustness and consistency.
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Proposed mechanism of the immunological processes and clinical

characteristics of CSDH

We propose that immunological processes, as expressed by the investigated biomarkers,

are associated with RrR. The internal relationship between CXCL8, IFN-γ and CCL5 in partic-

ular may express an immunological impairment for CSDH patients. This immunological

impairment could result in a delayed and insufficient healing, and put them at higher risk

of RrR. Furthermore, we propose that other clinical characteristics of CSDH, such as pre-

operative GCS score and neurological deficiencies, are not directly related to the specific

immunological process at the site of hematoma. Volume, the localization of lesions and other

comorbidities could be of more importance for these clinical characteristics. We suggest that

lasso regression might be a recommended statistical method in ongoing research on biological

processes in CSDH patients. Nevertheless, our statistical modeling needs further validation

and preferably on a new dataset with CSDH patients. At present, we do not have access to any

new data on biomarkers in CSDH patients, but we are planning to pursue further research in

this field.
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