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Abstract

The functions of several SOS regulated genes in Escherichia coli are still unknown, including dinQ. In this work we
characterize dinQ and two small RNAs, agrA and agrB, with antisense complementarity to dinQ. Northern analysis revealed
five dinQ transcripts, but only one transcript (+44) is actively translated. The +44 dinQ transcript translates into a toxic single
transmembrane peptide localized in the inner membrane. AgrB regulates dinQ RNA by RNA interference to counteract DinQ
toxicity. Thus the dinQ-agr locus shows the classical features of a type I TA system and has many similarities to the tisB-istR
locus. DinQ overexpression depolarizes the cell membrane and decreases the intracellular ATP concentration,
demonstrating that DinQ can modulate membrane-dependent processes. Augmented DinQ strongly inhibits marker
transfer by Hfr conjugation, indicating a role in recombination. Furthermore, DinQ affects transformation of nucleoid
morphology in response to UV damage. We hypothesize that DinQ is a transmembrane peptide that modulates membrane-
dependent activities such as nucleoid compaction and recombination.
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Introduction

Exposure of E. coli to DNA damaging agents induces the SOS

response, which is under control of the RecA and LexA regulatory

proteins. The SOS response upregulates gene functions involved

in numerous cellular processes such as nucleotide excision repair

(NER), UV induced mutagenesis, recombination, inhibition of cell

division and replication. The LexA repressor downregulates more

than 50 SOS genes by binding to the operator sequence in their

promoter regions [1,2]. SOS inducers (e.g. UV) cause replication

blocks and generate RecA/ssDNA nucleoprotein filaments that

mediate auto-proteolysis of the LexA repressor.

Both NER and recombination are required to maintain DNA

integrity. NER repairs numerous lesions introducing helical

distortions, in which UvrA, UvrB and UvrC work in sequential

steps to recognize and remove the lesion. The RecBCD complex is

the major component for initiation of recombinational repair (RR)

of DNA double strand breaks (DSBs) by processing a blunt dsDNA

end into a dsDNA molecule possessing a 39-terminated ssDNA

tail. As part of this process RecBCD mediates RecA filamentation

required for presynaptic processing of dsDNA ends.

Most of the characterized LexA regulated genes play important

roles in the physiology of E. coli, but there are still several genes of

unknown function. One of these uncharacterized genes is dinQ,

which is located in the 823 bp region between arsR and gor,

78.58 min on the E. coli chromosome. DinQ is predicted to encode

an open reading frame (ORF) of 49 aa 139 nt downstream from a

LexA operator sequence [1]. Small proteins of less than 50 amino

acids are important in cellular processes such as regulation,

signalling and antibacterial action [3–5]. More than 50 chromo-

somally encoded small proteins with a validated expression of less

than 50 aa have been identified so far in E. coli [6–10]. Several of

the newly discovered peptides are hydrophobic single transmem-

brane helices belonging to toxin-antitoxin systems.

In this work we characterize the arsR-gor intergenic region in

which an endonucleolytic product of dinQ is translated into a small

hydrophobic peptide of 27 aa. DinQ is under LexA control and

antisense regulation by a novel small RNA, agrB. DinQ is localized

in the inner membrane as a single transmembrane peptide that

modulates nucleoid compaction and conjugal recombination.

Results

The arsR-gor intergenic region encodes two small RNAs,
agrA and agrB, which are transcribed in the opposite
direction to dinQ

The SOS inducible dinQ gene in E. coli was identified in a search

for new LexA regulated genes [1]. The dinQ gene was found in the

823 bp arsR-gor intergenic region (Figure 1A), encoding a ,330 nt

transcript with a putative LexA operator sequence (heterology

index (HI) = 4.83) in the promoter region and two putative ORFs

of 18 and 49 amino acids. No biological function, phenotype or

significant homologies to proteins with known function were

associated with DinQ [1]. Except for the dinQ gene, no other genes
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have been reported in the arsR-gor intergenic region. We

performed a search for promoter and transcriptional terminator

sequences in the arsR-gor intergenic region. As expected this search

identified the dinQ LexA operator sequence identified earlier in a

screen for LexA regulated genes in E. coli [1]. However, a second

operator sequence for LexA (HI = 13.82) in close proximity to the

first was identified (Figure 1A and 1B). Further, we identified

putative 210 and 235 sequences corresponding to the dinQ

promoter which overlaps both operator sequences, and a putative

dinQ terminator sequence a few nucleotides downstream of the

translational stop codon of the gor gene (Figure 1B). Finally, the

sequence search identified two new small noncoding RNAs,

termed agrA and agrB (arsR-gor region gene A and B, respectively),

containing consensus like 210 and 235 sequences and rho

independent terminator sequences (Figure 1A and 1B). AgrA and

agrB are transcribed in the opposite direction of dinQ but encode

no putative ORFs. Thirty-one nucleotides at the 59 end of agrA and

agrB show antisense complementarity to dinQ (Figure 1B and 1C).

Twenty-five out of 31 nucleotides show complementarity to agrA

while 30 out of 31 nucleotides show complementarity to agrB. This

putative base pairing is indicative of possible RNA interference

with the dinQ transcript. It thus appears that the arsR-gor region

contain one protein coding gene, dinQ, and two small non-coding

RNAs, agrA and agrB, with antisense complementarity to dinQ.

Five dinQ transcripts
To examine a potential role for the small non-coding RNAs agrA

and agrB in regulating dinQ, three single mutants (dinQ, agrA and

agrB), one double mutant (agrAB) and one triple mutant (dinQ

agrAB) were generated (Table S1). To estimate the approximate

size of the dinQ, agrA and agrB transcripts, northern blots with total

RNA isolated from UV exposed (and unexposed) wild type and

mutant strains (dinQ, agrA and agrB) were hybridized with

radiolabeled riboprobes against the respective genes (Figure 2A).

The dinQ probe generates five specific signals (a–e), in which the

main transcript (a) migrates according to the expected size of full-

length dinQ, ,330 nt. DinQ-b, -c, -d and -e migrates as transcripts

of about 290 nt, 250 nt, 200 nt and 130 nt, respectively,

according to the size marker. All signals are absent in the dinQ

mutant demonstrating that all five transcripts are derived from

dinQ. The full-length dinQ product is 3- and 4.6-fold upregulated in

the agrA and agrB mutants respectively under normal growth

(without UV exposure). Notably, the dinQ-b signal is 4.8- and 3-

fold upregulated in the agrB mutant as compared to the wild type

and agrA mutant respectively. The dinQ-c product is not detectable

in the agrB mutant. Further, the dinQ transcripts are induced in

response to UV in wild type and agrA but not in agrB. These data

indicate a regulatory mechanism by RNA interference, in which

the agrA and agrB interfere differently with the dinQ transcript.

Further, primer extension and 39 mapping of dinQ RNA revealed

transcript starts at 0, +44 and +125 corresponding to the estimated

size of dinQ-a, -b and –d, respectively (Figure 2B). In agreement

with the northern analysis we find that the +44 primer extension

product (dinQ-b) is upregulated in the agrB mutant as compared to

wild type and agrA mutant. The primer extension could not

identify any products corresponding to dinQ-c or -e. The agrAB

probes showed that the agrB transcript migrates slightly slower

than the agrA transcript, and none of the transcripts were regulated

in response to UV irradiation (Figure 2A, middle panel). The agrA

transcript is upregulated 9.5 times in the unexposed agrB mutant as

compared to wild type, indicating that the absence of agrB

somehow promotes agrA RNA stability or transcription of agrA.

Further, primer extension revealed that the sequence of transcrip-

tion start was identical for the agrA and agrB genes (Figure 2C). 39

mapping of agrA and agrB showed different transcription stops

around the rho terminator (data not shown), indicating that the

transcripts are processed/terminated differently at the 39end. In

summary, these data demonstrate that both agrA and agrB

downregulate the level of dinQ full-length transcript whereas agrB

is particularly important for down regulation of +44 dinQ (dinQ-b).

Deleting agrB results in UV sensitivity
The 31 nt antisense region in agrB gene (Figure 1C) indicate a

function in antisense regulation of dinQ via RNA interference. This

antisense sequence is partially complementary in agrA (Figure 1C)

suggesting that both the agrA and agrB transcripts could base pair

with the dinQ transcript. To ensure the function of dinQ when

generating mutants, the deletions of agrA and agrB were made

without destroying the dinQ promoter. DinQ belongs to the LexA

regulon in E. coli [1] which regulates the SOS response. Several

mutants of the SOS response, which play a direct role in DNA

repair, display UV sensitivity. To examine the role of the dinQ-

agrAB locus in the SOS response we tested the UV sensitivity of the

various mutants (Figure 3A). The agrB single mutant and agrAB

double mutant showed a significant increase in UV sensitivity

compared to the isogenic wild type. In contrast, the agrA and dinQ

single mutants and the dinQ agrAB triple mutant showed no UV

sensitivity. Further we examined UV survival of the agrB mutant

carrying a plasmid expressing the agrB gene (Figure S1),

demonstrating that the mutant recovered completely. These data

indicate a role for agrB in protection against UV exposure, in

which the agrB transcript modifies the dinQ transcript. According

to the northern analysis (Figure 2A) agrB represses accumulation of

the +44 dinQ/dinQ-b transcript. It thus appears that the +44 dinQ

product mediates the UV sensitivity of the agrB mutant.

AgrB counteracts the UV sensitivity induced by dinQ
To further investigate the role of the arsR-gor intergenic region

in UV protection, we cloned agrA, agrB and dinQ separately or the

entire region containing both small RNAs and the dinQ gene into

the cloning vector pKK232-8. Wild type cells transformed with

pKK232-8-dinQ or pKK232-8 (control plasmid) showed the same

viability during normal growth conditions (data not shown). In

contrast, it was not possible to transform pKK232-8-dinQ into the

agrB mutant (Table S2), indicating that the endogenous level of

agrB in wild type cells is sufficient to inhibit dinQ expression from

Author Summary

Exposure of the bacterium Escherichia coli to DNA
damaging agents induces the SOS response, which up-
regulates gene functions involved in numerous cellular
processes such as DNA repair, cell division, and replication.
Most of the SOS regulated genes in E. coli have been
characterized, but still there are several genes of unknown
function. One of these uncharacterized genes is dinQ. In
this work we characterize dinQ and two novel small RNAs,
agrA and agrB, that regulate expression of dinQ. The DinQ
peptide is localized in the inner membrane as a single
transmembrane peptide of 27 amino acids. Small proteins
of less than 50 amino acids are important in cellular
processes such as regulation, signalling, and antibacterial
action. Here we demonstrate that DinQ modulates
recombination and transformation of nucleoid morpholo-
gy in response to UV damage. Our results provide new
insights into small hydrophobic peptides that could
regulate important DNA metabolic processes dependent
on the inner membrane of the cell.

DinQ Peptide Modulates Nucleoid Compaction
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the pKK232-8-dinQ construct during normal growth. However,

wild type transformed with pKK232-8-dinQ showed increased

sensitivity to UV as compared to wild type transformed with the

control plasmid (pKK232-8) (Figure 3B). When the wild type was

transformed with constructs expressing agrA or agrB they did not

increase sensitivity of the cells to UV (data not shown).

Interestingly, wild type cells transformed with the plasmid carrying

the entire arsR-gor locus, expressing all three genes, showed no UV

sensitivity, demonstrating that agrAB can neutralize the UV

sensitizing effect of dinQ. The agrB mutant (Figure 3A) and the

wild type cells transformed with pKK232-8-dinQ (Figure 3B)

displayed similar sensitivity to UV. These results suggest that the

agrB transcript counteracts the UV sensitivity induced by dinQ

expression.

Slow growth of the agrB mutant
During construction of the agrB and agrAB mutants we

observed that they form small colonies when plated on LB agar.

To further investigate this growth phenotype we compared the

growth rate in LB medium of the agrB, agrA and dinQ mutants and

their isogenic wild type. OD600 was measured during growth and

a sample was diluted and plated for viable counts. This

experiment showed that only the agrB single mutant and agrAB

double mutant grow more slowly than the wild type cells (Figure

S2A). Also in glucose-CAA medium agrB mutant cells grew more

slowly than wild type cells (Figure S2B and S2C). In another set

of experiments we utilized flow cytometry to analyze whether

DNA replication was affected in the growth impaired agrB

mutant. We found that cells were smaller than normal with a

reduced DNA concentration (Figure S2D). The total time for

replication from origin to terminus was shorter in the mutant and

the number of origins and replication forks per cell were fewer

compared to the wild type. There was also a considerable

heterogeneity in the observed reduction in cellular DNA

concentration. This heterogeneity could be due to cell-to-cell

differences in expression of the DinQ peptide.

DinQ is translated from an alternative GTG start codon
The mechanism underlying the UV sensitive phenotype of dinQ

in a multicopy situation or under constitutive upregulation in an

agrB mutant is not clear. The dinQ gene contains two putative

ORFs in which the second ORF contains three putative start

codons (Figure 3C). In this work the corresponding peptides are

termed DinQ I-IV. None of the putative DinQ peptides show

homology to known peptides. To examine if any of the ORFs

mediate the UV sensitivity shown by dinQ, each of the putative

DinQ peptides (I–IV) were cloned into the expression vector

pET28b(+) and expressed under control of IPTG. DinQ I

displayed no increased sensitivity in absence or presence of UV,

suggesting that the putative peptide translated from ORF I

(Figure 3C) does not induce DinQ toxicity (Figure 3D and data not

shown). In contrast, we observed that DinQ peptides II, III and IV

showed a strong toxic/growth inhibitory effect even in absence of

UV, demonstrating that the C-terminal amino acid sequence

translated from start codon IV of the second ORF is sufficient to

induce DinQ toxicity (Figure 3D). Next, expression of DinQ II was

titrated with increasing concentrations of IPTG in absence or

presence of UV (Figure 3E), showing that DinQ is highly toxic to

Figure 1. Overview of the dinQ/agrAB locus. (A) Genomic organization. The locus contains three genes originating from separate promoters; two
constitutively expressed transcripts, agrA and agrB (red box), and one divergently transcribed gene, dinQ (blue box), which is regulated by LexA
repressor binding sites (green box). Transcription initiation sites are indicated by color-coded arrows. Antisense sequences are annotated in orange.
Flanking genes are indicated in light yellow. (B) Sequence of the full length arsR-gor intergenic region with hallmarks. Promoter elements, 210 and
235 and terminator sequences are underlined. LexA operator sequences in bold. Transcription start ( ) and stop ( ) for dinQ, agrA and agrB.
AgrAB repeat sequences are shadowed. (C) Alignment of agrA/agrB sequences antisense to dinQ. The agrAB repeat of dinQ is antisense to sequences
in the agrA and agrB transcripts.
doi:10.1371/journal.pgen.1003260.g001
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the cells at very low doses of IPTG induction and the toxicity was

UV independent.

In another set of experiments we used a coupled in vitro

transcription/translation E. coli T7 S30 extract to examine

translation from pET28b(+) constructs encoding the putative

peptides predicted from DinQ I–IV. Expression of DinQ I could

not be detected whereas DinQ II–IV were highly expressed

(Figure 4A, lanes 2–5). Notably, extracts with the DinQ IV

construct produced two peptides of approximately 7.0 and

5.0 kDa, in which the smallest peptide indicates a fifth start

codon. A closer inspection of the dinQ sequence uncovered a Shine

Dalgarno motif within the DinQ IV sequence in optimal position

to initiate translation at a GTG (termed codon V in Figure 3C),

which encodes a putative peptide of 27 aa, termed DinQ V. To

examine if the DinQ V peptide induces toxicity we cloned the

sequence into pET28b(+), transformed the construct into wild type

cells and monitored cell survival under the control of IPTG

induction in presence or absence of UV exposure. DinQ V

expression induced cell killing independently of UV treatment,

suggesting that the sequence of peptide V is sufficient to mediate

DinQ toxicity (Figure 3C and 3D). In vitro transcription/

translation assays with the pET28b(+) DinQ V construct produced

a peptide corresponding to the predicted molecular weight of

peptide V (Figure 4A, lane 6).

Northern analysis identified five dinQ transcripts (Figure 2A;

dinQ a–e), in which the start site were determined for transcript a, b

and d. To assess the translational activity of the in vivo dinQ

transcripts a, b and d we synthesized the corresponding PCR

products carrying the T7 RNA polymerase promoter and added

E. coli T7 S30 extract. Only the dinQ-b/+44 transcript was

translationally active, generating a peptide with a molecular

weight similar to DinQ V, whereas the other transcripts were

translationally inert (Figure 4A, lanes 7–10). Thus, it appears in vivo

that the biologically active DinQ peptide (peptide V) is translated

from the post transcriptionally modified +44 dinQ RNA.

To examine endogenous expression of DinQ in vivo, a 36FLAG

tag was inserted chromosomally in frame with the C-terminal of

the dinQ gene in the wild type and agrB mutant. Western analysis

revealed a faint band for the FLAG tagged DinQ peptide in the

agrB mutant while the peptide was barely detectable in wild type

(Figure 4B, lanes 5 and 6). In UV treated cells the DinQ level was

about two fold higher in the agrB mutant as compared to wild type

(Figure 4B, lanes 3 and 4). It thus appears that the phenotypes of

the agrB mutant are not due to polar effects of extensive

overexpression of DinQ.

Further, we introduced a chromosomal stop codon in the Lys4

position of dinQ in the agrB mutant and wild type (Figure 3C, base

labeled in red). Survival experiments showed that UV resistance

Figure 2. Expression pattern and transcription start of the dinQ/agrAB locus. (A) Northern analysis of dinQ and agrAB transcripts. A
riboprobe specific to either dinQ (upper panel) or agrAB (lower panel) was hybridized to a northern blot with total RNA extracted from strains lacking
dinQ (BK4040), agrA (BK4042) or agrB (BK4043) and compared to wt (AB1157) before and after UV exposure. Five dinQ transcripts assigned dinQ-a, -b,
-c, -d and -e were detected. (B) A [32P]-labeled primer specific to dinQ was used in a primer extension assay to determine transcription initiation sites
of the various dinQ transcripts. The primer extension assays were performed on total RNA extracted from wt (AB1157) and mutant strains agrA
(BK4042) and agrB (BK4043). The base annotated for transcription initiation is indicated with an asterisk (red) for each transcript. Three primer
extension products were detected that correlated in size to dinQ-a, -b and -d from 39 mapping and the northern blot in (A). (C) A [32P]-labeled primer
specific to agrAB was used in a primer extension assay to determine transcription initiation sites of agrA and agrB. Total RNA from mutant strain agrB
(BK4043) was used to localize agrA transcription start and total RNA from mutant strain agrA (BK4042) was used to localize agrB transcription
initiation, due to the transcripts sequence complementarity. The base annotated for transcription initiation is indicated with an asterisk (red) for each
transcript.
doi:10.1371/journal.pgen.1003260.g002
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Figure 3. DinQ, agrB, and agrA phenotypes. (A) UV survival of dinQ (BK4040, diamond), agrA (BK4042, cross) and agrB (BK4043, star) single
mutants, agrAB double mutant (BK4041, triangle) and the agrAB dinQ triple mutant (BK4044, circle) compared to wt (AB1157, square). The data are
presented as mean of three independent experiments with standard deviation. (B) UV survival of wt (AB1157/pKK232-8, square), wt overexpressing
dinQ (AB1157/pBK444, diamond) and wt overexpressing dinQ-agrAB (AB1157/pBK440, circle). The data are presented as mean of three independent
experiments with standard deviation. (C) Sequence of the full-length dinQ transcript with annotated ORFs. The dinQ transcript contains two ORFs
encoding putative peptides of 18 and 49 aa, in which the 49 aa ORF contain four putative start codons (underlined and assigned). DinQ II of 49 aa,
DinQ III of 42 aa, DinQ IV of 38 aa and DinQ V of 27 aa which is translated from a GTG. Transcription terminator sequences are underlined. RNA start
sites found in the primer extension experiments are assigned with a, b and d. Base mutations are assigned in red. (D) Serially diluted (1021–1025cells
ml21) log phase cultures of wt (ER2566) with expression vector pET28b(+) or vector constructs with putative dinQ encoded peptides (DinQ I–V) were
spotted onto LB plates containing no IPTG (left panel) or 0.6 mM IPTG (right panel). Pictures were taken 1 day after incubation at 37uC. (E) Survival of
wt (ER2566) overexpressing putative dinQ encoded peptides related to UV exposure. DinQ II (diamond), DinQ V (triangle), dinQ (asterisk) compared to
vector controls pET28b(+) (square) and pKK232-8 (cross). Left panel shows survival of IPTG induced DinQ peptides without UV exposure and right
panel shows survival of IPTG induced DinQ peptides when exposed to UV (40 J/m2).
doi:10.1371/journal.pgen.1003260.g003
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was restored to wild type level in the agrB mutant (Figure 4C),

indicating that the UV sensitivity of the agrB mutant is caused by

translation of a functional DinQ peptide. Next, we introduced

three chromosomal point mutations in the dinQ up-stream

sequence predicted to be involved in base pairing with agrB

(Figure 3C, bases labeled in red). Exposure of these strains to UV

Figure 4. DinQ translation and localization. (A) Translation of putative DinQ peptides I–V expressed from pET28b(+) plasmid constructs (lanes
1–6) and PCR products corresponding to dinQ-a, -b and -d mRNAs (lane 7–10) were analyzed with coupled in vitro transcription/translation kits from
Promega. The E. coli T7 S30 extract system for circular DNA was used to analyze DinQ expression from plasmid constructs while S30 extract system for
linear templates was used to analyze PCR products (Promega). Labelling was carried out with [14C]-Leucine. (B) Western analysis of FLAG-tagged
endogenous DinQ expression. Protein extracts from UV exposed (20 J/m2) control cells (BK4044) mixed with plasmid pCR2.1-DinQ-36-FLAG in
lane#1 (pos ctrl), wt (BK5300) in lane#2 (neg ctrl), UV exposed (50 J/m2) DagrB DinQ-36FLAG (BK5372) in lane#3, UV exposed (50 J/m2) wt DinQ-
36FLAG (BK5370) in lane#4, unexposed DagrB DinQ-36FLAG (BK5372) in lane#5, unexposed wt DinQ-36FLAG (BK5370) in lane#6 was resolved by
SDS-PAGE and analyzed by western blotting using Monoclonal ANTI-FLAG M2-Alkaline Phosphatase antibody (SIGMA). Gel migration was monitored
relative to SeeBlue Plus2 prestained standard (Invitrogen) in kDa. Detection was carried out by NBT/BCIP color development substrates. The
intensities of the DinQ bands was analyzed in three independent western blots with the program ImageJ (Rasband,W.S. and ImageJ, U. S. National
Institutes of Health, Bethesda, MD, USA) and normalized against a cross reacting higher molecular weight protein band (not shown in Figure 4B). A
cross reacting low molecular protein band of unknown origin is present in all lanes. (C) Serially diluted (1021–1025cells ml21) log phase cultures of wt
(BK5300), DagrB (BK5342), wt dinQ-K4stop (BK5350), DagrB dinQ-K4stop (BK5352), wt dinQ-A108T-C112G-A115T (BK5360) and DagrB dinQ-A108T-
C112G-A115T (BK5362) were spotted onto LB plates and exposed to UV (0 J/m2 and 20 J/m2). Pictures were taken one day after incubation at 37uC.
(D) Subcellular localization of DinQ in wt (ER2566) cells carrying plasmid pET28b(+)-36FLAG-DinQ V. Subcellular fractions was resolved by SDS-PAGE
and analyzed by western blotting using antibodies against TolC, Lep and FLAG. Lep and TolC detected inner- and outer membrane proteins,
respectively. T: total protein; C: cytoplasmic fraction; IM: inner membrane fraction; OM: outer membrane fraction. (E) DinQ amino acid sequence with
predicted secondary structure elements (H = helix, ‘-’ = other) and corresponding reliability index (range 0–9). (F) 3D modelling of DinQ as a regular a-
helix embedded in a lipid membrane. Polar patch formed by residues Glu17, Arg20 and Gln24 encircled by dashed ellipse.
doi:10.1371/journal.pgen.1003260.g004
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in the agrB mutant background showed wild type levels of survival

(Figure 4C). All together these results suggest that DinQ is

translated into a peptide of 27 aa and the agrB-dinQ RNA

interference is important for correct regulation of DinQ transla-

tion.

DinQ is localized to the inner membrane
To determine the intracellular localization of DinQ, western

analysis was performed on extracts after subcellular fractionation.

As antibodies against the native DinQ peptides could not be

obtained, we introduced a 36FLAG epitope at the N-terminal of

DinQ (peptide V). Spot assays on LB agar containing IPTG

showed that the FLAG tagged peptide induced the same toxicity

as the native peptide, demonstrating that the N-terminal FLAG

tag had no effect on DinQ toxicity (data not shown). Cells were

harvested at several time points after IPTG induction to test the

level of expression by western analysis of whole cell extracts. The

FLAG-DinQ peptide could not be detected before induction, but

showed strong signals 5 to 40 min after induction (data not

shown). To examine subcellular fractionation, antibodies against

Lep and TolC were used as positive markers for inner and outer

membrane fractions, respectively. The western blot showed that

the inner and outer membranes are completely separated whereas

the cytoplasmic fraction contains some contamination from the

inner membrane (Figure 4D, middle panel). DinQ localized to the

inner membrane but could not be detected in the outer membrane

(Figure 4D, lower panel). The faint signal of the FLAG epitope in

the cytoplasmic fraction is possibly due to cross contamination

from the inner membrane. These data suggest that DinQ

localization is confined to the inner membrane of E. coli.

Computer modelling of DinQ predicts a single
transmembrane peptide

Analysis of the DinQ amino acid sequence using the consensus

secondary structure prediction tool Jpred3 [11] revealed that

DinQ has high propensity to form a single a-helix. All residues

except a few on each flanking terminal are predicted with high

confidence to belong to the predicted a-helix (Figure 4E). With

20–22 residues in a single a-helix, the DinQ peptide could

straightforwardly form a transmembrane helix of 6 full turns

spanning more than 30 Å, as shown by modelling of DinQ using a

regular a-helical template (Figure 4F). The two positively charged

lysine residues (Lys4 and Lys9) are close to the phospholipid head

groups, while particularly the charged Glu17, but also Arg20 and

Gln24 may form a polar patch that can interact with other

membrane embedded proteins (Figure 4F). The predicted single

transmembrane peptide supports the localization of DinQ in the

inner membrane (Figure 4D).

DinQ is not affecting induction of the SOS response,
filamentation, or mutagenesis

Previously, we showed that overexpressing another SOS

inducible peptide, TisB, which encodes a small toxic inner

membrane peptide, inhibits several SOS functions in wild type

E. coli [12]. To determine whether DinQ affected induction of the

SOS response we measured the level of recA and lexA mRNA in a

mutant which constitutively overexpressed dinQ, agrB mutant or a

dinQ deletion mutant (Table S1). Exponentially growing cells were

exposed to UV and the amount of recA and lexA mRNA were

determined prior to, and 20 min after irradiation by RT-qPCR.

The expression levels of recA and lexA were similar in both mutants

and wild type indicating that DinQ in contrast to TisB is not

affecting regulation of the SOS response (Figure S3).

To investigate a potential role of dinQ in filamentation, we

stained cell samples with acridine orange prior to and after UV

exposure. All strains showed the same filamentation pattern, in

which cells displayed short filaments 1 h after irradiation and long

filaments after 2.5 h, indicating that DinQ is not involved in the

filamentation process of E. coli (Figure S4). Next, we measured

spontaneous and UV induced mutagenesis as the frequency of

rifampicin resistant colonies in wild type and the dinQ and agrB

single mutants. The results showed no significant differences in

mutation frequency in the mutant strains as compared to wild type

suggesting that DinQ is not altering spontaneous and SOS

induced mutagenesis (data not shown).

DinQ overexpression depolarizes the cell membrane
To examine whether high levels of DinQ induce changes in

membrane potential we tested the ability of E. coli cells

overexpressing DinQ to take up the dye DiBAC4(3) [bis-(1,3-

dibarbituric acid)-trimethine oxanol]. The quantity of dye entering

cells is proportional to membrane polarization, the less polarised

the membrane the greater the quantity entering the cells and so

increased fluorescence intensity due to binding to the membrane

and intracellular components [13]. Cells were analyzed 5 and

20 min after IPTG induction of DinQ expression, incubated with

DiBAC4(3) for 20 min and analyzed by flow cytometry (Figure 5A).

No changes were observed for the plasmid control pET28b(+).

However, IPTG induction of DinQ (peptide V) showed a rapid

increase in DiBAC4(3) uptake (Figure 5A), suggesting that elevated

levels of DinQ depolarize the cell membrane. This data indicates

that DinQ overexpression interferes with membrane polarity and

could therefore lead to a loss of viability.

DinQ overexpression decreases the intracellular ATP
concentration

Subcellular fractionation of E. coli showed that DinQ is localized

to the inner membrane (Figure 4D). DinQ is predicted to be a

hydrophobic single transmembrane peptide that might compro-

mise inner membrane integrity (Figure 4F). We speculated that if

DinQ affected the proton motive force, it would affect ATP

production and intracellular ATP concentration. The intracellular

ATP concentration was measured in wild type cells and in the agrB

mutant, using a quantitative luciferase-based assay. This experi-

ment showed that the concentration of ATP in the agrB mutant

was about 50% of the concentration measured in wild type cells

(Figure 5B). Further, UV exposure increased the ATP concentra-

tion 0.6 fold in both cell types. Thus, it appears that insertion of

the DinQ peptide into the inner membrane of E. coli impairs the

energy supply in the form of ATP.

DinQ modulates conjugal recombination
The agrB mutant displayed sensitivity to UV suggesting that

DinQ could have a role in the repair of UV induced DNA

damage. Both nucleotide excision repair (NER) and recombina-

tional repair (RR) counteract the genotoxic effects of UV

irradiation. NER is required for the repair of UV induced

photoproducts such as thymine dimers and cyclopyrimidine

dimers, while RR is required for the repair of strand gaps and

double strand breaks. To examine if DinQ is involved in NER we

analysed UV sensitivity of the uvrA agrB and uvrA dinQ double

mutants as compared to the single mutants. The survival analysis

showed an additive effect between agrB and uvrA (Figure 6A),

whereas uvrA and dinQ showed no additional effect (Figure S5).

These data indicate that elevated levels of DinQ in the agrB

mutant sensitize the cell to UV via a pathway which is
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independent of NER. To examine the role of DinQ in

recombination, mutant strains dinQ, agrB, recB, (recB agrB) and

(dinQ recB) were exposed to UV irradiation. The double mutant

(recB agrB) was slightly more sensitive to UV than the agrB single

mutant (Figure 6A), whereas recB and dinQ showed no additional

effect (Figure S5).

To further examine the role of DinQ in recombination we

performed Hfr conjugation assays with a donor strain containing

Tn10, which carries the tetracycline resistance gene integrated in

its chromosome and agrB, dinQ and uvrA single mutants as

recipient strains. We used the uvrA mutant as control strain since

UvrA is not involved in recombination (and carry the kanamycin

resistance gene required to detect the recipient). Hfr conjugation

of Tn10 was at least 400-fold more efficient in dinQ and uvrA

mutants as compared to agrB (Figure 6B), suggesting that

elevated levels of DinQ inhibit recombination. To examine if

the conjugational process itself is affected in an agrB recipient we

performed plasmid conjugation assays with a donor strain

carrying an F9-plasmid with tetracycline resistance and the same

recipient strains as in the Hfr conjugation experiment. Hfr

conjugation differs from F9-plasmid conjugation in that transfer

of genes after Hfr requires recombination whereas the F9-

plasmid does not recombine in the recipient. In these experi-

ments we find no differences in plasmid conjugation frequencies

between the dinQ, uvrA and agrB recipient strains (data not

shown). In sum, these results suggest that recombination is

inhibited in the agrB mutant during Hfr conjugation, but not in

the transfer and uptake of DNA or survival of the agrB recipient.

It thus appears that elevated levels of DinQ affect the

recombination process.

Extended duration of nucleoid compaction in agrB
mutant cells after UV irradiation

In dividing cells, replication forks are stalled by DNA lesions

that impair DNA unwinding or block synthesis by the DNA

polymerase subunits. In E. coli, UV lesions cause a delay in DNA

synthesis for a period of time while stalled forks undergo repair.

Fluorescence microscopy of Hoechst stained cells has demon-

strated that the DNA often forms a compact structure during this

phase, and suggests that the nucleoids undergo a major

reorganization after UV exposure [14]. To investigate whether

DinQ affects nucleoid organization, we used this technique to

examine the shape and size of the nucleoids at different time

points after UV exposure. In undamaged cells the nucleoids have

characteristic shapes and numbers depending on the growth

medium. When grown in glucose-CAA medium most cells have

two nucleoids and some (the largest cells) have four (Figure 7A,

0 min). Microscopy of cells 15 min after UV irradiation shows

that all the wild type cells had lost the normal nucleoid

morphology. In approximately 45% of the cells the nucleoids

had been rearranged into a highly compact structure, whereas in

the rest of the cells the nucleoids were found to be extended

throughout the cells (Figure 7A and 7B). Sixty minutes after UV

irradiation all cells were found to contain extended nucleoids.

After 90 min approximately 30% of the cells had divided and

contained nucleoids with normal morphology. In the agrB

mutant the degree of nucleoid compaction was similar to that

Figure 5. Effects of DinQ on membrane potential and
intracellular ATP. (A) Exponentially growing cells were exposed to
IPTG for 0, 5 and 20 min followed by measurement of DiBAC4(3)
fluorescence. An increase in fluorescence intensity is observed as a
consequence of membrane depolarization. Upper panel displays wt
(ER2566) cells carrying expression vector pET28b(+). Lower panel
displays wt (ER2566) cells overexpressing DinQ V (pET28b(+)-DinQ V).
The graphs are representative of at least three repetitions. (B) The staple
diagram shows in vivo levels of ATP before and 20 min after UV

exposure of wt (AB1157) and mutant agrB (BK4043) cells. ATP
concentrations were determined by a luciferase-based assay (Promega)
and the activity is shown as RLU/OD (relative light units related to
optical density). The data are presented as mean of three independent
experiments with standard deviation.
doi:10.1371/journal.pgen.1003260.g005
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of wild type cells at 15 min after UV exposure (Figure 7A and

7B). However, in the period from 30 to 90 min 25–30% of the

nucleoids of the agrB mutant cells were still locked in a compact

state whereas a decreasing number of the wild type cells

contained compact nucleoids. The result indicates that the

transition from compact to extended nucleoid was inhibited in

the agrB mutant.

We also investigated the dinQ mutant with respect to nucleoid

morphology after UV irradiation. At the 15 min time point

approximately 35% of dinQ mutant cells contained a compact

nucleoid compared to about 45% of wild type cells (Figure 7B).

This indicates that the compaction process might be affected in

cells without DinQ. At 30, 60 and 90 min similar numbers of cells

with compact and extended nucleoids were found in the dinQ

mutant compared to in wild type cells (Figure 7B). The results

indicate that cells lacking DinQ have an impaired ability to form a

compact nucleoid structure after UV irradiation. Taken together

the data reveals that the presence of DinQ is required in order to

execute a transformation of nucleoid morphology in response to

UV damage, and that overexpression of DinQ leads to a delay in

decompaction and extension of the nucleoid during the later stages

of the response.

In conclusion, DinQ is under the control of the SOS response

and the agrB antisense RNA, and expresses a single transmem-

brane peptide that has an effect on nucleoid compaction and when

overexpressed on conjugal recombination (summarized in

Figure 7C).

Discussion

Recently, a search for small proteins in E. coli could not detect

any translation of the DinQ ORF [6,7]. In this paper we

characterize the arsR-gor intergenic region of E. coli, which contain

the SOS inducible dinQ gene and two constitutively expressed

small RNAs, agrA and agrB, with antisense complementarity to the

dinQ gene. We show that DinQ is tightly regulated at both the

transcriptional and translational level. Five different dinQ tran-

scripts were identified in which only the endonucleolytic +44

transcript (dinQ-b) is translationally active. Further, agrB appears to

repress accumulation of dinQ-b by RNA interference. Unexpect-

edly, DinQ is not translated from any of the three ATG codons

within the ORF but from an alternative GTG start codon,

encoding a 27 aa peptide which is localized in the inner

membrane. The agrB mutant, which expresses elevated levels of

dinQ-b, displays increased sensitivity to UV induced DNA damage

and an impaired frequency of conjugal recombination. It thus

appears that DinQ could be involved in the modulation of

homologous recombination. Small single transmembrane peptides

such as DinQ may be key regulators of processes at the inner

membrane, in which their expression are strictly regulated to avoid

toxicity. In summary, the experiments presented in this paper

provide insights into the complex regulation of dinQ and suggest a

mode of action within the bacterial inner membrane (Summarized

in Figure 7C).

Regulation and processing of dinQ RNA
Previous attempts to identify a translation product for dinQ have

been unsuccessful, presumably because transcription and transla-

tion of dinQ are strictly regulated. First, the promoter region of the

dinQ gene contains two LexA operators with different HI, which

may suggest differential expression of the transcript early and late

in the SOS response. Second, we identified two novel small non

coding RNAs agrA and agrB with sequence complementarity to

dinQ in the arsR-gor region that regulate dinQ by RNA interference.

Notably, only the agrB RNA repressed the translational active +44

dinQ transcript (dinQ-b) whereas both sRNA repressed the primary

translationally inactive dinQ transcript. Further, only the agrB

antisense RNA counteracts DinQ toxicity. As such the dinQ-agrAB

Figure 6. Genetic interactions between agrB and uvrA/recB and
recombination frequency of agrB. (A) Dilutions of exponentionally
growing wild type (AB1157, open square), agrB (BK4148, open
diamond), uvrA (BK4180, open triangle), recB (BK4110, black diamond),
agrB recB (BK4112, black square), uvrA recB (BK4183, black circle) and
agrB uvrA (BK4182, open circle) cells were plated on LB plates and
exposed to UV irradiation. Colonies were counted one day after
incubation at 37uC. The data are presented as mean of three
independent experiments with standard deviation. (B) Recombination
frequency of uvrA (BK4180), dinQ (BK4040) and agrB (BK4043/BK4148)
determined by Hfr conjugation assays. The data are presented as mean
of three independent experiments with standard deviation.
doi:10.1371/journal.pgen.1003260.g006

DinQ Peptide Modulates Nucleoid Compaction

PLOS Genetics | www.plosgenetics.org 9 February 2013 | Volume 9 | Issue 2 | e1003260



system appears to conform to the definition of a classical type I

toxin-antitoxin (TA) system. It thus appears that the dinQ/agrB

complex inhibit the endonucleolytic cleavage producing the active

mRNA (dinQ-b). Presumably, these antisense sRNAs have been

tandemly duplicated in the genome, in which agrA has partly

degenerated and appears to be non-functional due to less antisense

sequence complementarity with the dinQ sequence as compared to

agrB.

The genomic organization and mode of antisense regulation of

dinQ in the arsR-gor region resembles regulation of another SOS

induced TA system, tisAB [15,16]. Similar to the dinQ RNA,

endonucleolytic processing of the primary tisAB transcript is

required to generate an active mRNA producing the toxic TisB

peptide. Further, the tisAB locus contains an antisense RNA, IstR-

1 that inactivates the translationally active mRNA by RNaseIII

dependent cleavage. It appears that agrB may have a similar role in

RNase dependent cleavage of the translationally active dinQ

mRNA (dinQ-b). In addition, Darfeuille et al revealed that the

antisense RNA IstR-1 inhibits translation of the TisB toxin by

competing with standby ribosomes binding upstream of the

translation initiation region (TIR). It is proposed that binding to

the ‘‘standby’’ site is required for initiation of protein synthesis at

the highly structured tisB TIR by ribosome sliding to the

transiently open TIR [16]. In a similar manner, we speculate

that the agrB antisense RNA regulates/inhibits translation from the

active +44 transcript by binding a potential ‘‘standby’’ site

upstream of the dinQ TIR.

DinQ mode of action
In order to investigate DinQ biochemically, we have attempted

to purify DinQ, including fusion peptides. However, all attempts

to purify DinQ as well as chemical synthesis of the peptide failed

because of the hydrophobic nature of the peptide. Further, a

general feature of small hydrophobic peptides including DinQ is

the lack of obvious phenotypes associated with their inactivation

[17–20]. As an alternative strategy we characterized the pheno-

type of augmented DinQ in an agrB mutant. The DinQ

concentration in the agrB mutant after UV treatment is elevated

only two fold as compared to the wild type, indicating that the

DinQ levels in the agrB mutant is physiologically relevant. Of

particular interest was the 400-fold reduction in the recombination

frequency in the agrB mutant as compared to wild type cells,

suggesting that augmented DinQ inhibits recombination in the

agrB mutant. However, genetic data suggests that DinQ may also

play a role in UV protective mechanisms independent of

recombination.

It appears that the large, ordered hyperstructures involved in

homologous recombination are associated with the cell membrane

[21]. The hyperstructures are dynamic and their size is dependent

on the extent of the initial or ongoing DNA damage. The DinQ

Figure 7. Nucleoid compaction during DNA repair and model
of regulation and mechanism of action for DinQ. (A) Exponen-
tially growing wt (AB1157), dinQ (BK4040) and agrB (BK4043) cells in
glucose-CAA medium were exposed to UV (3 J/m2). Samples were
harvested at the indicated time points and cells were fixed, stained with

Hoechst 33258 and mounted on microscope slides. The panel of
pictures shows a mosaic of representative cells. (B) The fraction of cells
with compact nucleoids (i.e. cells containing one or two non-extended
nucleoids instead of two or four normal nucleoids, respectively) were
scored for each time point. The average of three experiments and a
total of 250–500 cells were counted for each time point. Error bars
indicate the standard deviation. Note that normal nucleoids as well as
extended, diffuse nucleoids were scored as ‘‘non-compact’’. (C) This
model summarizes all the data presented in this work, including
regulation of transcription and translation, and the proposed mecha-
nism of action at the inner cell membrane. All RNA secondary structures
are computer models generated by the mfold web server software.
doi:10.1371/journal.pgen.1003260.g007
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peptide is localized in the inner membrane of the cell and it is

tempting to speculate about a role for DinQ in regulating DNA

repair hyperstructures at the inner membrane. In addition, the

prolonged period of nucleoid condensation in the agrB mutant may

contribute to the impairment of DNA repair processes. Although

such a direct role for DinQ is speculative, several small

hydrophobic peptides have been demonstrated to modulate

membrane dependent processes. The B1500 protein (65 aa)

interacts with the PhoQ sensor [18], the 30 aa protein MgtR

(30 aa) interacts with MgtC [19], the KdpF protein (29 aa) is part

of the Kdp complex [9] and the SidA protein (29 aa) interacts

directly with FtsW and FtsN [22].

The intracellular concentration of ATP was reduced in the

agrB mutant compared to the wild type both before and after UV

exposure. In wild type cells UV irradiation induces a two fold

increase in ATP concentration during the first 20 to 30 min after

exposure, and the increase is RecBC dependent [23]. These data

suggest that loss of agrB and thereby excess of DinQ limit the

cellular energy supply and may also explain some of the observed

phenotypes. Our FLAG tag experiments revealed that DinQ

increases only two fold in an agrB mutant and this apparently

modest increase is sufficient to mediate dramatic effects on

conjugal recombination rates, membrane depolarization, ATP

levels and nucleoid reorganization. In a wild type cell population

the level of DinQ translation is kept strictly under control by the

LexA repressor, antisense agrB RNA and dinQ RNA processing,

so for the majority of cells DinQ may never reach a level high

enough to mediate the effects observed in an agrB mutant.

Heterogeneity in the expression of LexA repressed genes has

been observed by studying SOS promoter fusions in combination

with imaging techniques and a subpopulation of cells clearly

have a stronger SOS induction [24–26]. It is tempting to

speculate that a higher level of DinQ is reached only in a

subpopulation of cells where SOS induction is particularly strong

or long lasting leading to a permanent or temporary agrB

phenotype. Such an effect has been proposed for some toxin/

antitoxin pairs in promoting formation of persister cells [27,28].

To gain a more detailed knowledge about the biological function

of DinQ the agrB mutant could be an excellent model for

studying the effects of DinQ and similar hydrophobic peptides in

bacterial subpopulations.

Materials and Methods

Strains, plasmids, and media
The experiments were carried out in an AB1157 background

[29]. Except for chromosomal point mutations and chromosomal

36FLAG tags all mutants were made in strain BW25113-

pKD46 [30] and introduced into AB1157 via T4GT7 transduc-

tion [31]. The agrA (BK4042), agrB (BK4043) and dinQ (BK4040)

single mutants were made by deleting each of the genes and

introducing a kanr cassette. Next, the agrAB double mutant

(BK4041) was generated by deleting both genes and introducing

a kanr cassette. To construct a triple mutant the entire arsR-gor

intergenic region containing dinQ, agrA and agrB was deleted

(BK4044) and replaced with the kanr cassette. Table S1

summarizes all strains used and generated in this work. Vector

pKK232-8 (10–25 copies pr cell in E. coli) contains a promoter

less cat gene allowing selection of DNA fragments containing

promoter activity [32]. pBK440 (dinQ-agrAB)/pBK444 (dinQ)

is based on the vector pKK232-8 (Pharmacia) with a 2065/

415 bp insert respectively from the intergenic region between

arsR-gor in MCS, resulting in a plasmid that expresses E. coli dinQ

from its own SOS inducible promoter. Cloning primers are listed

in Table S3. Expression plasmids pET28b(+)-DinQ I,

pET28b(+)-DinQ II, pET28b(+)-DinQ III, pET28b(+)-DinQ

IV and pET28b(+)-DinQ V contain the DinQ I to V ORFs

inserted in the NcoI-BamHI restriction sites of the pET28b(+)

vector (Novagen). Chromosomal point mutations in dinQ to either

introduce a premature translational stop codon in DinQ ORFV

(K4stop) or introduce three point mutations in the agrB antisense

region of dinQ (A108T, C112G, A115G) or to introduce a

chromosomal DinQ C-terminal 36FLAG tag were made by

splicing PCR products with overlap extension (SOEing PCR) and

recombine the final SOEing PCR product into a MG1655

background as described [30]. All SOEing products contained a

flanking kanr cassette close to the arsR gene to facilitate selection of

recombinants. To avoid unwanted recombination between the

kanr cassette and the point mutations or the 36FLAG tag during

strain construction the SOEing products were transformed into

strain BK5444-pKD46 which lacks the chromosomal dinQ-agrAB

locus and where insertion/recombination of the SOEing products

is possible only in the flanking homologous DNA sequences. The

final PCR products were transformed into MG1655 containing

pKD46. Cells were cured for pKD46 and insertions verified by

PCR and sequencing. Details of strain construction and oligos

used are listed in Tables S1 and S3, respectively. GenScript Corp.

gene service constructed DinQ II and V with an N-terminal

36FLAG tag that was inserted in the NcoI-BamHI restriction sites

of the pET28b(+) vector (Novagen). Cells were grown in LB- or

K-medium [33] with appropriate antibiotics (100 mg/ml ampi-

cillin and 50 mg/ml kanamycin). For the nucleoid compaction

studies cells were grown in AB minimal medium [34] supple-

mented with 1 mg/ml thiamine, 0.2% glucose and 0.5%

casamino acids.

In vitro transcription/translation
In vitro transcription/translation on circular pET28b(+) tem-

plates or linear PCR products were performed according to

Promegas protocols E. coli T7 S30 Extract System for Circular

DNA and E. coli S30 Extract System for Linear Templates,

respectively, with [14C]-Leucine as radiolabeled amino acid. The

translation products were analysed by SDS-PAGE and visualized

on Typhoon 9410 (Amersham).

Protein fractionation and membrane localization
Aliquots of exponentially growing ER2566/pET28b(+)-DinQ V

were harvested by centrifugation 20 min after IPTG induction

(1 mM). Cells were resuspended in 4 ml 50 mM phosphate buffer

pH 7.2 and sonicated three times for 15 sec. Further fractionation

was performed as described by [20]. Proteins from all fractions

were acetone precipitated 1:1 overnight at -20uC, pellets after

centrifugation was resuspended in 46 NuPAGE sample loading

buffer (Invitrogen) and loaded onto 10% NuPAGE Novex Bis-Tris

gels (Invitrogen).

Flow cytometry
Cells were grown to OD600<0.4 in LB and induced with IPTG

(1 mM). At 0, 5 and 20 min culture samples were diluted 1:10 in

filtered AB minimal medium [34] +10 mg/ml DiBAC4(3) (Sigma-

Aldrich). After 20 min incubation in the dark at room tempera-

ture, cells were analysed in a Flowcytometry LSRII (Becton

Dickinson) equipped with an argon ion laser and a krypton laser

(both Spectra Physics). DiBAC4(3) was detected using 488 nm

laser. The distribution of DiBAC4(3) fluorescence was plotted on a

logarithmic scale. The data obtained was analyzed by winMDI

software.
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ATP assay
Cell aliquots were harvested before and 20 min after induction

with IPTG (1 mM) and washed once in 50 mM Tris-acetate

pH 7.75. ATP was extracted from washed cells by 1% trichlor-

oacetic acid (TCA) in 50 mM Tris-acetate pH 7.75 for 10 min.

Tris-acetate pH 7.75 was added 1:10 to obtain optimal pH of 7.75

before mixing with rL/L reagent (ENLITEN ATP assay,

Promega) at room temperature. The amount of ATP extracted

(RLU value) was measured with 20/20 Luminometer (Turner

Designs) and related to the OD600 for each sample.

Frequency of recombination by Hfr conjugation
Aliquots of exponentially growing recipient strains dinQ

(BK4040), agrB (BK4043) and uvrA (BK4180) were mixed in equal

volumes with donor strains BW7623 (with the tetracycline

resistance gene, Tn10, integrated in its chromosome) or ER2738

(carrying a tetracycline resistance conjugative plasmid) and

incubated at 37uC for 30 minutes. BW7623 was used to examine

chromosomal transfer to the recipient strains (recombination

dependent) whereas ER2738 was used for plasmid conjugation.

Cells were vortexed thoroughly and spread on selective LB plates.

Hfr recombination rate and plasmid conjugation rate was

calculated as number of recombinants/conjugated cells pr 106

cells.

Nucleoid compaction
Exponentially growing wt (AB1157), dinQ (BK4040) and agrB

(BK4043) cells were UV irradiated with 3 J/m2 while stirring.

1.5 ml samples were taken at 0, 15, 30, 60 and 90 min after

irradiation. Washed once and resuspended in 100 ml cold, filtered

TE buffer. Then 1 ml of cold, filtered 77% ethanol was added for

fixation. Fixed cells were mounted on a poly-L-lysine coated

microscope slide and the DNA was stained with Hoechst 33258

(5 mg/ml, Sigma) in mounting medium (40% glycerol in PBS

pH 7.5). Visualization of stained cells was performed using a Leica

DM6000B phase-contrast/fluorescence microscope equipped with

a 636 objective and a BP340-380 excitation filter. Pictures were

taken using a Leica DFC350 FX digital camera that was

connected to a computerized image analysis system (LAS AF

software, version 2.0.0, Leica). The fluorescent image was merged

with the phase-contrast image.

Supporting Information

Figure S1 Complementation. Serially diluted (1021–1025cells

ml21) log phase cultures of wt (AB1157) or agrB (BK4043) with

expression vector pKK232-8 or vector constructs with agrB

(pKK232-8-agrB = pBK446) were spotted onto LB plates and

exposed to 0 J/m2 UV (left panel) or 50 J/m2 UV (right panel).

Pictures were taken 1 day after incubation at 37uC.

(TIF)

Figure S2 Growth curves, DNA histograms, and cell cycle

analysis of wild-type cells and agrB mutant cells. (A) Growth rates

of wt (AB1157, diamond) compared to dinQ (BK4040, square),

agrAB (BK4041, triangle), agrA (BK4042, cross), agrB (BK4043,

star) and dinQ-agrAB (BK4044, open circle). (B, C and D) Cell cycle

analysis and flow cytometry of wt (AB1157) (B) and agrB (BK4043)

(C). Cells were grown exponentially in AB minimal medium

supplemented with 1 mg/ml thiamine, 0.2% glucose and 0.5%

casamino acids at 37uC to OD450 = 0.15. Cells were either

harvested or treated with 300 mg/ml rifampicin and 10 mg/ml

cephalexin for 5 generations. The left and middle panels show

DNA histograms of exponentially growing cells and cells treated

with rifampicin (rif) and cephalexin (cpx), respectively, where the

number of cells is plotted against the number of chromosome

equivalents. The number of chromosome equivalents for rifam-

picin- and cephalexin-treated cells corresponds to the number of

origins at the time of drug action. The right panel shows a

schematic diagram of the cell cycle. The timeline at the bottom

shows the generation time (t) as well as the times for initiation (ai)

and termination (at) of replication. Each horizontal bar represents

one generation where the ‘‘current’’ generation is denoted k, the

‘‘mother’’ generation k-1 and the ‘‘grandmother’’ generation k-2.

The C period (elongation) is colored red and the D period

(segregation and cell division) is colored grey as one replication

cycle is followed through three (AB1157, B) and two (BK4043, C)

generations. Cells showing the replication pattern at the time of

initiation and termination of replication are drawn on top of the

diagram. A black dot and a grey circle represent the origin and the

chromosome, respectively. The C+D period was determined from

the initiation age, generation time and number of generations

spanned by C+D. The initiation age and number of generations

spanned were found from the rif/cpx histogram and the relative

lengths of C and D were found from the exponential histogram.

Relative DNA content per mass of the agrB mutant as compared to

wt is calculated and presented in the table (D). For details on cell

cycle analysis and flow cytometry, see [14]. From the cell cycle

analysis we found that the wt (AB1157) cells (B) initiated

replication at four origins in the ‘‘grandmother’’ generation. The

C period was determined to be 55 minutes while the D period was

determined to last one generation (35 minutes). The agrB mutant

(BK4043) cells (C) were found to initiate at two origins when

newborn in the ‘‘mother’’ generation. Since the replication and

segregation periods (C+D) spanned fewer generations, the C

period was found to be shorter than in wt cells (41 minutes

compared to 55 minutes). The D period was determined to last for

one generation (41 minutes) as in wt cells. The values found for the

cell cycle parameters are average values for the respective cell

cultures. Especially the mutant cells have a large cell-to-cell

variability as can be seen in the rif/cpx histogram which shows

that some cells have initiated replication, but not divided, and

some cells have divided but not initiated replication.

(TIF)

Figure S3 RT–qPCR showing stable recA and lexA mRNA

concentrations with regards to rrsB in various dinQ regulon mutant

strains both before and after UV exposure. The graphs show the

mRNA concentrations of the SOS response regulators recA

mRNA (A) and lexA mRNA (B) relative to the rrsB transcript

before and after UV exposure. The relative concentrations in

various mutant strains: dinQ (BK4040), agrAB (BK4041), agrA

(BK4042), agrB (BK4043), dinQ-agrAB (BK4044) and the isogenic

wt reference strain (AB1157) are compared. No significant

difference was seen between the different strains indicating that

the disrupted regions do not affect the induction of the SOS

response at the transcription level. cDNA was synthesized from

DNaseI treated total RNA (1 mg) using the High Capacity cDNA

Reverse Transcription Kit (ABI) according to the manufactures’

instructions. Power SYBR Green PCR MasterMix together with a

StepOnePlus Real-time PCR System (ABI), cDNA (5 ng) and

rrsB, recA or lexA primers (Table S2) to generate real-time plots

that were automatically processed by the StepOne Software v2.0.1

to calculate cycle threshold (Ct) values. The primers were

automatically selected using the Primer Express 3.0 software

(ABI). Four independent samples were run in quadruplet to

generate a mean Ct value relative to the rrsB (16S ribosomal RNA)

transcript, DCt, which was used as the endogenous control. The

DCt values fall after UV exposure due to the stable larger amount
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of rrsB transcript and a rising but reduced amount of recA or lexA

transcript.

(TIF)

Figure S4 Filamentation. Fluorescence microscopy of UV

exposed (50 J/m2) strains as indicated followed by growth for 1

and 2.5 h. Cells were grown in K-medium and stained with

acridine orange. Each image is quantified and median values in

mm are given together with number of cells measured (in

parentheses).

(TIF)

Figure S5 Survival of (dinQ,recB) and (dinQ, uvrA) mutants.

Serially diluted Serially diluted (1021–1025cells ml21) log phase

cultures of wt (AB1157), DdinQ (BK4140), uvrA::kan (BK4180),

DdinQ,uvrA (BK4141), recB::kan (BK4110) or DdinQ,recB::kan

(BK4142) were spotted onto LB plates and exposed to 4 J/m2

(right panel), unexposed panels to the left. Pictures were taken 1

day after incubation at 37uC.

(TIF)

Table S1 Characteristics of bacterial strains and plasmids used

in this study.

(DOCX)

Table S2 Transformation efficiency. Exponentially growing cells

of wt (AB1157) and agrB (BK4043/BK4180) were transformed by

electroporation with plasmids pKK232-8 and pBK444 (dinQ).

Dilutions were spread on LB plates and transformed cells were

counted.

(DOCX)

Table S3 Oligonucleotides used in this study.

(DOCX)
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