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Abstract: Surface plasmon field-enhanced fluorescence microscopic observation of a live breast
cancer cell was performed with a plasmonic chip. Two cell lines, MDA-MB-231 and Michigan
Cancer Foundation-7 (MCF-7), were selected as breast cancer cells, with two kinds of membrane
protein, epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR),
observed in both cells. The membrane proteins are surface markers used to differentiate and classify
breast cancer cells. EGFR and EpCAM were detected with Alexa Fluor® 488-labeled anti-EGFR
antibody (488-EGFR) and allophycocyanin (APC)-labeled anti-EpCAM antibody (APC-EpCAM),
respectively. In MDA-MB231 cells, three-fold plus or minus one and seven-fold plus or minus
two brighter fluorescence of 488-EGFR were observed on the 480-nm pitch and the 400-nm pitch
compared with that on a glass slide. Results show the 400-nm pitch is useful. Dual-color fluorescence
of 488-EGFR and APC-EpCAM in MDA-MB231 was clearly observed with seven-fold plus or minus
two and nine-fold plus or minus three, respectively, on the 400-nm pitch pattern of a plasmonic
chip. Therefore, the 400-nm pitch contributed to the dual-color fluorescence enhancement for these
wavelengths. An optimal grating pitch of a plasmonic chip improved a fluorescence image of
membrane proteins with the help of the surface plasmon-enhanced field.

Keywords: surface plasmon; fluorescence microscopic observation; breast cancer cell;
membrane protein

1. Introduction

Recently, plasmonics that utilize the surface plasmon resonance (SPR) technique have been widely
applied in global research studies. One of these applications is biosensing [1–5]. Many papers in
this field have already been published and the optical characteristics of SPR have been clarified in
detail [6–8]. The electric field of SPR generates a strongly enhanced field. Various signals, such as light
absorption due to molecular polarization and fluorescence emission, are then detected with high
sensitivity [9,10]. Propagating SPR can provide an enhanced electric field over a wide area compared
to localized SPR [11]. Among propagating SPR, the grating-coupled SPR (GC-SPR) on a metal
grating surface with a 102-nm scale pitch [12,13] does not require special optics such as a prism
in prism-coupled SPR.

As one of the applications of GC-SPR, a plasmonic chip (a thin metal-coated substrate with
a wavelength-scale grating structure) provides the enhanced fluorescence [14–17]. This occurs due
to the direct coupling of incident light with the collective oscillations of free electrons (referred to
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as surface plasmons) on the metal surface [12,13]. For microscopic observation, it is convenient that
incident light couples to surface plasmons directly, without requiring special optics such as a prism.
Brighter fluorescence imaging was obtained when a plasmonic chip was used on a sample stage instead
of a cover glass. Fluorescence microscopic observation using a plasmonic chip has great potential for
biological application.

The surface plasmon field-enhanced fluorescence is obtained within 200 nm from the chip
surface [12,13,15]. When the plasmonic chip is used for the immunosensor chip, the characteristics
reduce unwanted background noise generated in the water a significant distance away from the chip
surface. It is also suitable for observing the surface with a fluorescence microscope. In the resonance
condition of GC-SPR, when the wavenumber of surface plasmon polaritons (spp) is equal to the
sum of the wavenumber vector of incident light and the grating vector, the enhanced electric
field can be obtained near the chip surface. This resonance condition is described by following
Equations (1) and (2) [12].

kspp = kphsin θ ± mkg (1)

ω/c
√

ε1ε2/(ε1 + ε2) = n(ω/c) sin θ ± m2π/Λ (2)

In Equation (1), kspp, kph, and kg indicate the wavenumber vector of the surface plasmon, incident
light, and grating, while m represents an integer. In Equation (2), ω and c indicate an angular frequency
and the speed of light, and ε1 and ε2 are complex dielectric constants of a metal and a dielectric.
θ, n, and Λ indicate the incident angle, the refractive index of the dielectric, and the pitch of the grating,
respectively. According to Equations (1) and (2), the resonance wavelength of SPR shifts with a change
in Λ. Under the microscope, the range of the incident angle θ is determined by the numerical aperture
of the objective. When the resonance angle is included within the range of incident angles, an enhanced
electric field is generated. The surface plasmon-enhanced effect can be obtained at both excitation
and emission wavelength in fluorescence microscopy. When excitation light couples to plasmons,
excitation probability increases. Moreover, when fluorescence emitted from fluorescent molecules
couples again to surface plasmons, surface plasmon-coupled emission (SPCE) occurs [18].

As for the study on a breast cancer cell, the most suitable marker for a tumor-specific probe
was widely examined [19]. It has been studied by several different methods including total internal
reflection fluorescence microscopy (TIRFM) [20], the combination of fluorescence imaging and magnetic
resonance imaging (MRI) [21], and in vivo near-infrared imaging (NIR) [22]. In our previous study,
a breast cancer cell was observed with a whole array-type plasmonic chip under the fluorescence
microscope [23]. The nucleus and the epithelial cell adhesion molecule (EpCAM)—a surface marker
used to differentiate and classify breast cancer cells—were stained. The fluorescence image of EpCAM
adsorbing to the plasmonic chip surface was enhanced more than 10 times compared with the
same materials on the glass slide [23]. On the other hand, the fluorescence image of the nucleus
was not enhanced because the nucleus is located a significant distant away from the surface of the
plasmonic chip.

In this study, the distribution of two membrane proteins, EpCAM and epidermal growth
factor receptor (EGFR), was observed in two types of living breast cancer cell lines, Michigan
Cancer Foundation-7 (MCF-7) and MDA-MB-231 [24–26]. Dual-color fluorescence images were
obtained with an epifluorescence microscope using a control coverslip and a plasmonic chip.
EpCAM and EGFR positioned in a cell membrane were simultaneously detected at different
fluorescence wavelengths when using different fluorescent-labeled antibodies. These antibodies
are allophycocyanin (APC)-labeled anti-EpCAM antibody (emitting red fluorescence) and Alexa
Fluor® 488-labeled anti-EGFR antibody (emitting green fluorescence). The plasmonic chip used in
this study was composed of concentric periodic circles. As such, it was referred to as a bull’s eye
structure. A bull’s eye structure can utilize the light from the entire azimuth under a fluorescence
microscope when coupling with surface plasmons [27–32]. To clearly detect the dual-color fluorescence
even for membrane proteins with the small expression rate, the appropriate grating pitch of a bull’s
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eye-plasmonic chip was examined. While the 480-nm pitch can effectively couple with red light,
the 400-nm pitch can create a better enhancement effect based on the resonance of the shorter
wavelength region, such as green or blue light as found from Equation (1). The optimal pitch for dual
fluorescence imaging of a single cell, such as the pitch contributing to the enhancement of an excited
field or SPCE, was investigated on the plasmonic chip.

2. Materials and Methods

2.1. Fabrication of a Bull’s Eye-Plasmonic Chip

A bull’s eye replica was fabricated by a UV nanoimprint method. A UV-curable resin (PAK-02-A;
Toyo Gousei, Tokyo, Japan) was dropped on the cover glass and the mold fabricated with electron-beam
lithography technique by NTT-AT (Kanagawa, Japan) was superimposed on top. The substance was
exposed to UV light. In the replica, two kinds of 100 µm φ-bull’s eye patterns composed of 400 nm
pitch and 480 nm pitch gratings, individually, were arranged as shown in Figure 1a. The groove
depth was 30 nm for both (Figure 1b,c). The grating structure was covered with thin films of elements
Ti, Ag, and Ti, and the SiO2 by radio frequency sputtering. Each film thickness was <1, 130 ± 20,
<1, and 25 ± 5 nm, respectively. Their film thicknesses were assessed using the calibration curve of
absorbance against the film forming time, which was earlier obtained by calculating the association
between absorbance and the film thickness. This association was measured by fitting the SPR spectra
(reflectivity against incident angle) to the simulation curve. SiO2 film was prepared on the surface of
the plasmonic chip using the required film thickness to suppress the fluorescence quench predicted
by the CPS model [33,34]. Finally, the surface of the plasmonic chip was coated with collagen film to
observe the live cells. Collagen coating solution (TCC-050; Toyobo, Osaka, Japan) was dropped onto
the plasmonic chip and spread by a spin coater (1000 rpm, 30 s), followed by incubating the sample
for 10 min. The collagen film was finally washed with MilliQ water and the cells were then seeded.
The grating pattern was evaluated by using atomic force microscopy (AFM, SPI3800N, SII) as shown
in Figure 1b,c.
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patterns with 400 nm pitch and 480 nm pitch grating. Bar corresponds to 100 m. Atomic force 
microscopy (AFM) images of a periodic structure on a bull’s eye-pattern and their contour of the 
cross-section images; (b) with 480 nm pitch, and (c) with 400 nm pitch. 

2.2. Cell Culture and Preparation for Microscopic Observation on a Glass Slide and a Plasmonic Chip 

MCF-7 and MDA-MB-231 cell lines were obtained from the American Type Culture Collection. 
Both cell lines were cultured in Dulbecco’s modified Eagle’s medium (Gibco, Thermo Fischer 
Scientific, Waltham, MA, USA) containing 10% fetal bovine serum and antibiotics (100 U/mL 
penicillin/streptomycin (Gibco), and 250 ng/mL fungizone (Gibco)). The cell lines were then 
harvested using trypsin. 

Figure 1. (a) Bright-field microscope image of arrangement for two types of 100 µm φ-bull’s eye
patterns with 400 nm pitch and 480 nm pitch grating. Bar corresponds to 100 µm. Atomic force
microscopy (AFM) images of a periodic structure on a bull’s eye-pattern and their contour of the
cross-section images; (b) with 480 nm pitch, and (c) with 400 nm pitch.

2.2. Cell Culture and Preparation for Microscopic Observation on a Glass Slide and a Plasmonic Chip

MCF-7 and MDA-MB-231 cell lines were obtained from the American Type Culture Collection.
Both cell lines were cultured in Dulbecco’s modified Eagle’s medium (Gibco, Thermo Fischer
Scientific, Waltham, MA, USA) containing 10% fetal bovine serum and antibiotics (100 U/mL



Sensors 2017, 17, 2942 4 of 10

penicillin/streptomycin (Gibco), and 250 ng/mL fungizone (Gibco)). The cell lines were then harvested
using trypsin.

Alexa Fluor® 488-labeled antihuman EGFR antibody (488-EGFR; Ex: 495 nm, Em: 519 nm;
Biolegend, San Diego, CA, USA) and APC-labeled anti-EpCAM monoclonal antibody (APC-EpCAM;
Ex: 633 nm, Em: 660 nm; Biolegend, San Diego, CA, USA) were used to stain the membranes of the
membrane proteins, EGFR and CD326 (called EpCAM). EGFR is known to be highly expressed
in MDA-MB-231 compared to its expression in MCF-7. EpCAM, on the other hand, is highly
expressed in MCF-7 compared to its expression in MDA-MB-231. 488-EGFR and APC-EpCAM
solutions were added to all cell solutions in concentrations of 1.0 × 108 and 1.0 × 105 molecules/cell,
respectively, and they were gently mixed for 30 min in a dark place. Then, they were followed by
gentle centrifugation, and the supernatant was discarded. Cell solutions were finally washed with
culture medium. This process was repeated three times.

2.3. Microscopy

The cells were observed with an upright microscope (BX51WI; Olympus, Tokyo, Japan) using
a 40× objective (UPLAN FLN ×40; Olympus, Tokyo, Japan). The light source was from an Hg
lamp (BH2-RFL-T3; Olympus, Tokyo, Japan) and the detection camera was an electron multiplying
charge-coupled device camera (EM-CCD, iXon; Andor, Belfast, UK). GFP (UMGFPHQ; Olympus,
Tokyo, Japan) and Cy5 (Cy5-4040C; Semrock, New York, NY, USA) filter units were used for multicolor
fluorescence imaging. 488-EGFR and APC-EpCAM were excited with GFP (460–480 nm) and Cy5
(605–645 nm) filters and detected with GFP (490–545 nm) and Cy5 (670–715 nm) filters, respectively.
The plasmonic enhancement effect was seen in both APC-EpCAM and 488-EGFR. All fluorescence
images were taken at a fixed exposure time. The EM gain for each cell and the fluorescence intensity
was normalized in order to compare fluorescence images on the plasmonic chip and on the glass slides.
Bright-field images were recorded without EM gain.

3. Results and Discussion

3.1. Enhanced Fluorescence Microscopic Observation of EGFR in Shorter Wavelength (Green Color)

Bright field images (as seen in Figure 2a–c) and fluorescence images of 488-EGFR (as seen in
Figure 2d–f) are shown for MDA-MB-231 cells on the glass slide (as seen in Figure 2a,d), the 480 nm
pitch bull’s eye pattern (as seen in Figure 2b,e), and the 400 nm pitch bull’s eye pattern (as seen
in Figure 2c,f). The darkest fluorescence image was seen on the glass slide, in which the largest
fluorescence intensity was detected at the edge of the cell (Figure 2d). The cell outline was clearly
observed due to the integration of fluorescence in the cell membrane along the z-axis.

In contrast, on the 400-nm pitch bull’s eye plasmonic chip, the brightest fluorescence was detected
among the chips [18]. Fluorescence intensity was especially enhanced at the cell membrane adsorbing
to the plasmonic chip as shown in Figure 2f. The enhancement factor was evaluated as follows.
Background noise including direct and scattering excited light was subtracted from fluorescence
intensities while the mean fluorescence intensities on the glass slide and the plasmonic chip were
evaluated. The enhancement factor was obtained as the ratio between the mean value on a plasmonic
chip and the mean value on a glass slide. To evaluate the enhancement factor of the fluorescence at the
midpoint of the cells, three to five cells were chosen on a glass slide and a plasmonic chip, individually.
A three-fold plus or minus one increase of fluorescence intensity was found at the center area of a cell
on the 480-nm pitch bull’s eye-plasmonic chip.

The surface plasmon-enhanced electric field exponentially decreased with the distance from the
metal. Therefore, it was discovered that enhanced fluorescence is obtained from the cells adsorbing on
the collagen surface. Moreover, on the 400-nm pitch bull’s eye-plasmonic chip, fluorescence intensity at
the cell’s midpoint was strongly enhanced compared to that on the 480-nm pitch bull’s eye-plasmonic
chip. The enhancement factor was seven plus or minus two. The surface plasmon enhancement effect
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was found to depend on the pitch of the grating and the wavelengths of excitation and emission.
At the direction of substrate normal, the resonance wavelengths were calculated from Equation (1) as
570 nm and 670 nm at the 400-nm pitch and 480 nm pitch, respectively. Therefore, the 400-nm pitch,
rather than the 480-nm pitch, is appropriate to collect the SPCE effectively through the objective at the
emission wavelength ranges of 488-EGFR emission.
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Figure 2. Bright-field images (a–c) and fluorescence images of 488-epidermal growth factor receptor
(EGFR) (d–f) in MDA-MB-231 cells. The left, center, and right columns show images on the glass
slide, and the 480-nm pitch and 400 nm pitch bull’s eye-plasmonic chips, respectively. The 488-EGFR
images shown in (d–f) were adjusted to the same scale between minimum to maximum brightness
corresponding to 3000 counts. Bar corresponds to 10 µm.

The fluorescence microscopic observation of 488-EGFR in MCF-7 was also conducted in the
same manner as for MDA-MB-231. Fluorescence images were compared between those on the glass
slide (as seen in Figure 3a,d) and those on the 480-nm pitch (as seen in Figure 3b,e) and the 400-nm
pitch (as seen in Figure 3c,f). On the glass slide, fluorescence intensity was too weak to evaluate the
distribution of the EGFR (Figure 3d). In contrast, the 400-nm pitch provided a brighter fluorescence
image (as seen in Figure 3f) than that for 480 nm pitch (as seen in Figure 3e). Despite the small
expression amount of EGFR in the MCF-7 cell [35], the distribution was clearly visible on the plasmonic
chip. While the enhanced electric field for silver is beneficially larger for longer wavelengths such as
a red light, the enhancement factor for 488-EGFR was seven plus or minus two in both MDA-MB231
and MCF-7 cells likely due to the complex dielectric constants of silver. The 400-nm pitch bull’s
eye plasmonic chip precisely detected membrane proteins with a low expression rate under the
fluorescence microscope with green emission.
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3.2. Dual-Color Fluorescence Microscopic Observation in MDA-MB-231

In our previous study [23], surface plasmon-enhanced dual-color fluorescence observation of
breast cancer cells was performed for membrane protein (EpCAM) and cell nucleus stained with
APC-anti EpCAM antibody (APC-EpCAM) and 4’, 6-diamino-2-phenylindole, respectively. Only the
fluorescence emitted from APC-EpCAM within the surface plasmon-enhanced field, i.e., within the
distance of 200 nm from the metal surface, was enhanced. In this study, two kinds of membrane
proteins (EGFR and EpCAM) in MDA-MB-231 cells were stained with two kinds of fluorescently
labeled antibody (488-EGFR and APC-EpCAM).

Fluorescence images of 488-EFGR on the 400-nm pitch were brighter than those observed on the
glass slide (Figure 4b,e). The enhancement factor of 488-EGFR on the 400-nm pitch was seven plus or
minus two as described in Section 3.1. In turn, fluorescence of APC-EpCAM was also enhanced on the
400-nm pitch bull’s eye. This is considered to be due to the fact that the range of excitation wavelength
is closed to the resonance wavelength when observing it at the substrate normal for a 400-nm pitch.
The relative expression rates of EpCAM were found to be 0.26 and 0.0009 for MCF7 and MDA-MB231,
respectively [36]. Regardless of the low expression rate of EpCAM in MDA-MB-231, the distribution
of EpCAM was clearly observed as shown in Figure 4f with the enhancement factor at nine plus or
minus three.

Surface plasmon-enhanced fluorescence intensity depended on the wavelength, and was generally
larger at a longer wavelength of light. Therefore, APC-EpCAM with emission at a longer wavelength
was enhanced more strongly than 488-EGFR. This enhancement effect was improved on the 480-nm
pitch by up to 10-fold (not shown here). This is due to 480-nm pitches making use of the SPR state
for the wavelength ranges of excitation (605–645 nm) and emission (670–715 nm) when compared to
400 nm pitches. However, when the expression distributions of both 488-EGFR and APC-EpCAM
were simultaneously observed with dual-color fluorescence, the 400-nm pitch was superior to the
480-nm pitch. The surface plasmon coupling at the 400-nm pitch contributed to the enhancement of
the excitation field for APC-EpCAM and to the collection of the SPCE for 488-EGFR effectively under
the microscope.

It is generally complex when dual-color fluorescence intensities are simultaneously enhanced
based on plasmonic resonance conditions. An example of dual fluorescence imaging is when
surviving dual fluorescence resonance energy transfers molecular beacons with fluorophores to
form one donor–acceptor pair. This occurs in order to improve the specific detection of cancer
cells [37]. In this study, the 400-nm pitch of a plasmonic chip exhibited an advantage for the dual-color
fluorescence microscopic observation. The existence of two kinds of proteins EGFR and EpCAM
and their distribution were clearly demonstrated by dual-color fluorescence imaging. As shown in
Figure 4b,c, it is difficult to determine the distribution of EGFR and EpCAM on the glass slide. On the
plasmonic chip, as shown in the cell for a bottom side in Figure 4e,f, the 488-EGFR homogeneously
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dispersed but APC-EpCAM concentrated to the bottom right. The different distributions for two kinds
of proteins were demonstrated with the 400-nm pitch plasmonic chip.
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and MDA-MB231, respectively [36]. Regardless of the low expression rate of EpCAM in MDA-MB-
231, the distribution of EpCAM was clearly observed as shown in Figure 4f with the enhancement 
factor at nine plus or minus three. 

  
(a) (b) (c) 

  
(d) (e) (f) 

Figure 4. Bright-field images (a,d), fluorescence images of 488-EGFR (b,e), and fluorescence
images of allophycocyanin-labeled anti-epithelial cell adhesion molecule antibody (APC-EpCAM),
(c,f) in MDA-MB-231 cells. The upper and lower columns show images on the glass slide and the 400-nm
pitch bull’s eye-plasmonic chip, respectively. The 488-EGFR and APC-EpCAM images shown in (b,e)
or (c,f) were adjusted to the same scales between minimum and maximum brightness corresponding
to 3000 and 2000 counts, respectively. Bar corresponds to 10 µm.

In the future, integration of nanoparticles on the plasmonic chip and combination between the
plasmonic chip and confocal microscopy [38] may improve the fluorescence imaging. The former
may improve the detection sensitivity by combining the enhanced electric field between GC-SPR and
localized SPR while the latter can improve the spatial resolution in fluorescence images. The plasmonic
chip is a prospective candidate for developing molecular sensing and microscopic imaging.

4. Conclusions

In this study, dual-color fluorescence observations for two kinds of membrane proteins, EGFR and
EpCAM, were detected with a plasmonic chip by using surface plasmon-enhanced fluorescence
microscopy in two kinds of breast cancer cell lines, MDA-MB-231 and MCF-7. The enhancement
factors of 488-EGFR and APC-EpCAM were seven plus or minus two and nine plus or minus three,
respectively, in the 400-nm pitch plasmonic chip. Fluorescence intensity on the 400-nm pitch was
sufficient to observe expression distribution of the membrane proteins. The 400-nm pitch was
advantageous for dual-color fluorescence (green and red) observation.

This enhancement effect will enable the real-time fluorescence detection of a single-nanoparticle.
By selecting an appropriate grating pitch, the surface plasmon-enhanced fluorescence effect allows
multicolor fluorescence microscopic observation. This offers a great advantage for medical fields,
such as in early-stage diagnosis.
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