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Abstract: The electrocardiogram (ECG) is widely used for cardiovascular disease diagnosis and daily
health monitoring. Before ECG analysis, ECG quality screening is an essential but time-consuming
and experience-dependent work for technicians. An automatic ECG quality assessment method can
reduce unnecessary time loss to help cardiologists perform diagnosis. This study aims to develop
an automatic quality assessment system to search qualified ECGs for interpretation. The proposed
system consists of data augmentation and quality assessment parts. For data augmentation, we
train a conditional generative adversarial networks model to get an ECG segment generator, and
thus to increase the number of training data. Then, we pre-train a deep quality assessment model
based on a training dataset composed of real and generated ECG. Finally, we fine-tune the proposed
model using real ECG and validate it on two different datasets composed of real ECG. The proposed
system has a generalized performance on the two validation datasets. The model’s accuracy is 97.1%
and 96.4%, respectively for the two datasets. The proposed method outperforms a shallow neural
network model, and also a deep neural network models without being pre-trained by generated
ECG. The proposed system demonstrates improved performance in the ECG quality assessment, and
it has the potential to be an initial ECG quality screening tool in clinical practice.

Keywords: data augmentation; deep learning; ECG quality assessment

1. Introduction

Electrocardiogram (ECG) is widely used for cardiovascular disease diagnosis, treat-
ment, and daily personal health monitoring via wearable devices [1,2]. ECG signals are
expected to have sufficient signal quality to extract temporal and morphological infor-
mation for further analysis, such as heart rate variability (HRV) analysis and arrhythmia
classification [3,4]. Low-quality ECG signals owing to baseline wander, muscle artifacts,
and power-line interferences may cause false ECG arrhythmia alarms [5]. Additionally,
ECG collected by wearable devices may include severe electrode motion artifacts, plain
lines, and huge impulses due to lead-off. In particular, electrode motion artifacts may be
treated as ectopic beats and cannot be removed by simple filters. This is one of the major fac-
tors that cause alarm fatigue [6–8]. In clinical practice, before disease diagnosis, low-quality
ECG signals are expected to be removed through manual screening by technicians. How-
ever, manual quality screening is time-consuming, laborious, and experience-dependent.
Therefore, a reliable automatic ECG signal quality assessment system is significant for ECG
technicians and cardiologists.

To date, many studies have been conducted on ECG quality assessment. PhysioNet
organized a challenge in cardiology in 2011 to classify 12-lead ECG signals as acceptable
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or unacceptable [6,9]. Quesnel et al. evaluated the quality of ECG signals contaminated
with various levels of motion artifacts. They segmented PQRST complexes, which were
aligned and averaged to form an estimate of true PQRST complexes. Then, a signal-to-
noise ratio (SNR) was estimated by comparing each PQRST complex to the average PQRST
complex. In this way, they got a 0.89 Pearson correlation coefficient between estimated
and real SNRs [10]. The machine learning technique was also implemented in the ECG
quality assessment. Redmond et al. used a Parzen window classifier to classify noisy and
clean ECG, and got 82% and 78.7% accuracies using human and automatic annotation
features, respectively [11]. Shahriari et al. obtained ECG signals from an ECG alarm
study at the University of California, San Francisco (UCSF) and PhysioNet Computing
in Cardiology Challenge 2011. They developed an image-based ECG quality assessment
method. They computed a structural similarity measure (SSIM) at first, and then selected
representative ECG images from the training dataset as templates. The SSIM between each
ECG image and all the templates were used to build the features and input them into a
linear discriminant analysis classifier. The classifier achieved 93.1% and 82.5% accuracies in
the UCSF and Cardiology Challenge 2011 database, respectively [12]. Zhao et al. manually
extracted six features, such as R peaks, the power spectrum distribution of QRS complexes,
and so forth to build fuzzy vectors. They used the fuzzy comprehensive evaluation
method as a feature analysis module. Their model demonstrated a 94.67% accuracy,
90.33% recall, and 93.00% specificity, training and testing on data from the PhysioNet
computing in Cardiology Challenge 2011 and 2017 [13]. In 2019, Moeyersons et al. used
data from a sleep study collected by the University Hospital Leuven, PhysioNet Computing
in Cardiology Challenge 2017 and MIT-BIH Noise Stress Test Database with manual
labels. They segmented the ECG signal into 5 s episodes after filtering. Each episode was
characterized by an autocorrelation function, and then three features were extracted and
fed to a RUSBoot classifier. For Challenge 2017 and Sleep Study Datasets, they obtained
a recall of 79.4% and 96.6%, specificity of 78.7% and 84.8%, and area under the curve of
0.928 and 0.970, respectively [14]. More recently, Fu et al. assessed the quality of wearable
ECG signals collected via Lenovo H3 Devices. They compared three machine learning
algorithms: the support vector machine (SVM), least-squares SVM (LS-SVM), and long
short-term memory (LSTM) with manually extracted features. The LSTM models achieved
the best performance with 95.5% accuracy [15].

The above studies usually follow three procedures. The first procedure is signal
prepossessing, such as filtering. Then, feature extraction is the most important step, and di-
rectly affects the model’s performance. However, no gold standard exists to identify
necessary, effective, or redundant features. As a result, feature extraction usually depends
on the experiences of researchers. The final step is model development using machine
learning techniques or designing decision rules via setting thresholds or computing related
statistical values based on extracted features. However, feature extraction, decision rules,
or threshold-making are experience-dependent, and it is hard to cover or find out all signif-
icant features, such as QRS-related information [11,13], R-peak-related information [13],
or autocorrelation function-related features [14]. In addition, significant features may vary
with decision strategies and models. Furthermore, features manually extracted from a
certain dataset may not be generalized on other datasets. For example, Shahriari et al.
manually extracted the same features on two datasets: the UCSF and Cardiology Chal-
lenge 2011 database, but their model had a considerable difference of performance on
another two datasets (UCSF vs. Cardiology Challenge 2011: accuracy: 93.1% vs. 82.5%,
sensitivity: 96.3% vs. 83.9%, specificity: 90.0% vs. 77.7%) [12]. Manually extracted features
generalized for different datasets are usually impractical in view of the costly and limited
medical databases.

In this study, the proposed ECG quality assessment system consists of two stages:data
augmentation using adversarial networks, and quality assessment using deep neural
networks. The goal of data augmentation is to generate versatile ECG to improve the
training efficiency. The proposed system can automatically extract features from raw
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ECG signals and make final decisions. In this case, the system can avoid relying on
experience- and database-specific manual features for model development, and thresholds
or rules for decision-making; therefore, they may have better generalization ability. The
system demonstrates improved performance on two different datasets, and outperforms
the shallow neuronal networks model and deep neural networks model without data
augmentation. All the experiments were conducted using MATLAB R2019b [16] and
TensorFlow 2.3.0. [17].

2. Materials and Methods
2.1. Datasets Introduction and Construction

This study uses data from PhysioNet Computing in the Cardiology Challenge 2017
(PCCC2017) database [18], TELE ECG database [19], MIT-BIH arrhythmia database (MIT-
BIHA) [20], and MIT-BIH normal sinus rhythm database (MIT-BIHNSR) [21].

PCCC2017 aims to classify single-lead ECG recordings to the sinus rhythm, atrial
fibrillation (AF), alternative rhythm, or as too noisy. All the recordings last for 9 to 60 s,
sampled at 300 Hz. Then, each recording was resampled to 500 Hz and segmented into
segments of 10 s duration with 2 s and 4 s overlap, respectively, to increase the number
of unacceptable segments (in the noisy category). In total, there are 555 unacceptable and
select 2618 acceptable ECG segments from this dataset, each with 10 s duration.

The TELE ECG database was initially recorded by Redmond et al. [11] from 288 home-
dwelling patients. Each ECG recording was collected with single-lead and sampled at
500 Hz. Khamis et al. regarded this database as poor-quality telehealth ECG [22]. In this
study, all the recordings are marked as noisy ECG signals as well. After signal segmentation,
there are 734 unacceptable 10 s ECG segments.

The PCCC2017 and TELE ECG database officially provided specific quality labels
for ECG segments, and then the two databases are combined to a new dataset named as
COMD. COMD consists of 1289 unacceptable and 2618 acceptable ECG segments in total.

MIT-BIHA contains 48 two-channel ECG recordings, each with a duration of 30 min,
sampled at 360 Hz. MIT-BIHNSR includes 18 long-term ECG recordings, and all the record-
ings are sampled at 128 Hz. The MIT-BIH noise stress test database (MIT-BIHNST) was
created by using two clean ECG recordings (118 and 119) from the MIT-BIHA and adding
noise recordings on them [7]. The noise recordings are available in MIT-BIHNST, including
baseline wander (bm), muscle artifact (ma), and electrode motion artifact (em). Inspired
by the construction method of MIT-BIHNST, the original ECG recordings in MIT-BIHA
and MIT-BIHNSR as regarded clean signals (acceptable recordings) as well in this study,
and then the same noise-added rules as MIT-BIHNST are followed to recreate a new noise-
included dataset (RECD for short) using a WFDB software package [23]. The recreated ECG
recordings will include severe “ma”, “bm”, or “em” noises provided by MIT-BIHNST or a
Gaussian noise and power interference simulated by MATLAB. The detailed noise-added
rule is listed in Table 1, where “g” means Gaussian noise generated by a MATLAB function
“awgn” in the WFDB software package, and “p” means a power interference simulated
by a sine function, with 60 Hz frequency. To increase data diversity, RECD is created by
complying with different noise combinations. Then, all the ECG recordings in RECD are
resampled at 500 Hz. After that, there were 7557 unacceptable and 20114 acceptable ECG
segments available.

ECG segments in COMD were used to train a conditional generative adversarial net-
works (CGANs) model for ECG segment generation at first. Then, generated unacceptable
and real acceptable ECG data were used to pre-train a quality assessment model. Finally,
training sets in COMD and RECD were both used for fine-tuning the assessment model,
and testing sets were used to test the model. The detailed usage of data is illustrated in
Table 2.
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Table 1. The noise-add rules of dataset recreation.

Noise Type MIT-BIHA MIT-BIHNSR

bw - “19093”, “19140”, “19830”
em - All 17 recordings

ma
“101_V1”, “106_V1”, “112_V1”, “113_V1”, “114_V5”,
“115_V1”, “122_V1”, “200_V1”, “205_V1”, “209_V1”,
“215_V1”, “220_V1”, “221_V1”, “222_MLII”

All 17 recordings

bw, g - Recordings expect “19093”, “19140”, “19830”
(Total 14 recordings)

bw, p - Recordings expect “19093”, “19140”, “19830”
(Total 14 recordings)

em, g
“101_V1”, “106_V1”, “112_V1”, “113_V1”, “114_V5”,
“115_V1”, “122_V1”, “200_V1”, “205_V1”, “209_V1”,
“215_V1”, “220_V1”, “221_V1”, “222_MLII”

-

ma, bw “112”, “113”, “114”, “115”, “116”, “117”, “118”, “119”,
“121”, “122”, “123”

-

ma, em “124”, “200”, “201”, “202”, “203”, “205”, “207”, “208”,
“209”, “210”, “213”, “214”, “215”

All 17 recordings

bw, g, p
“101_V1”, “106_V1”, “112_V1”, “113_V1”, “114_V5”,
“115_V1”, “122_V1”, “200_V1”, “205_V1”, “209_V1”,
“215_V1”, “220_V1”, “221_V1”, “222_MLII”

-

em, bw, g “212”, “217”, “219”, “220”, “221”, “228”, “230”, “231”,
“232”, “233”, “234”

-

ma, em, bw “100”, “101”, “102”, “103”, “104”, “105”, “106”, “107”,
“108”, “109”, “111”

-

g first 5 min of each recording first 5 min of each recording
p first 5 min of each recording first 5 min of each recording

Table 2. Usage of datasets.

Usage
COMD Generated

Unacceptable
ECG

RECD
Training Set Testing Set Parts of

Acceptable ECG
Training Set Testing Set

Train CGANs
√

- -
Pretrain Assessment
Model -

√ √
-

Finetune Assessment
Model

√
- - -

√
-

Test Assessment Model -
√

- - -
√

2.2. Methods
2.2.1. Data Augmentation

Insufficient and imbalanced data may reduce the performance of deep learning mod-
els [24,25]. Thus, the first procedure of the work was to automatically generate unac-
ceptable ECG segments to solve data imbalance issues and perform data augmentation.
Although traditional mathematical modeling methods can generate realistic heartbeats,
the synthetic heartbeat’s morphology lacks diversity or is even almost the same as those
of training data [26]. Recently, several studies have confirmed that the generative adver-
sarial networks (GANs) model has the ability to generate real-like ECG segments and
arrhythmia [26–31]. The proposed system is shown in Figure 1, a GANs model [32] is
developed and trained based on COMD to obtain an ECG generator (G’), and G’ is used
to generate unacceptable ECG segments with 10 s duration (G’(z|y = 1)). The generator
and discriminator are abbreviated as G and D, respectively. Figure 2(a) shows the structure
of the proposed CGANs model. The label information is used as the condition, and each
label (“0” for acceptable and “1” for unacceptable) is assembled to an M1-element vector
representation, one input of G. The other input of G is a random M2-element noise signal,
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and following the uniform distribution, their amplitude is limited in –1 to 1. Here, M1 and
M2 are determined to be 20 and 700, respectively, by trials and errors. G mainly consists
of two LSTM layers with 200 and 600 units, respectively. The main layers of D are two
convolutional neural network (CNN) layers, with 128 and 64 units, respectively. Their
kernel sizes are set to 10 and 5, respectively, and the alpha of the “LeakyReLU” activation
layer is set to 0.2. The dropout rate is 0.3. The Dense layer has 32 units and uses “ReLu” as
the activation function. For the output layer, we use “sigmoid” as its activation function.
The Adam optimizer with a 0.0002 learning rate and binary crossentropy loss function are
applied to train the CGANs model. By trials and errors, D is updated three times, and G is
then updated once to train the model. After that, an ECG generator (G’) is obtained from
the CGANs model for unacceptable ECG segment generation.

Figure 1. The proposed ECG quality assessment system. It consists of two parts: data augmentation by CGANs and a
quality assessment model.

2.2.2. Quality Assessment

The generated unacceptable ECG segments and parts of real acceptable segments
in RECD (5000 unacceptable and 5000 acceptable ECG segments in total) were used to
pre-train the quality assessment model. The structure of the model is shown in Figure 2b,
and consists of three branches: two CNN branches (branch1: left; branch2: middle) and an
LSTM branch (branch3: right). For branch1, the number of filters in the two CNN layers
is 128 and 32 with a kernel size of 50 and 10, respectively. A dropout rate was set to 0.3,
and the pooling size to 10. Branch2 has the same structure as branch1, where its two CNN
layers use 64 and 16 filters and the kernel size of each is 25 and 2, respectively. The dropout
rate and pooling size are the same as branch1. The number of units in the two LSTM
layers of branch3 are 200 and 100, respectively. The Dense layer has 32 units with a “ReLu”
activation function. A batch size of 64, an Adam optimizer with a 0.0002 learning rate, and
binary crossentropy loss function were applied for training. For model fine-tuning, the
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three branches were frozen and only parameters in the final two layers (Dense and Output
layers) were updated with real data.

(a) (b)

Figure 2. Structures of the proposed models. (a) The structure of CGANs; (b) the structure of the assessment model.

Considering the limited number of data in COMD, each 10 s ECG segment was further
segmented into 10 examples with 1 s duration to increase the number of input examples
for the training of the assessment model. Because our aim was to assess the quality of
each 10 s ECG segment, we conducted a post-processing procedure as shown in Figure 3.
The threshold was set to 3 for the quality assessment of ECG segment by trial an error.
After model pre-training, the COMD and RECD datasets were randomly split 10 times
to obtain training sets, which were used for model fine-tuning, and testing sets, which
were used for testing the average performance of the model. For fair comparison, the
same number of ECG segments in COMD and RECD datasets was used for fine-tuning
(3000 segments with 1000 unacceptable and 2000 acceptable)), and the rest were used
for testing.

Figure 3. Post-processing for quality assessment of ECG segment.
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3. Results
3.1. Data Augmentation

Figure 4 illustrates the training curves of CGANs and confirms their convergence.
In Figure 4a, for the “Loss” figure, the blue line “d_real” means the loss of D when it is
updated by real ECG segments, the orange line “d_fake” is the loss of D when it is updated
by generated segments, and the green line “g” represents the loss of G. T-distributed
stochastic neighbor embedding (tSNE) [33] was used to map real and generated segments
to a three-dimensional space for visualization, as shown in Figure 4b. tSNE maps the
similar segments to close points, and dissimilar segments were mapped to distant points.
Figure 5 visualizes several real segments and generated segments by G’.

(a) (b)

Figure 4. Training process of CGANs (a) and visualization of ECG segment distribution (b).

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Samples of real and generated ECG segments. (a,b) The generated unacceptable ECG segments; (c,d) the real
unacceptable ECG segments from the derivation dataset.

3.2. Quality Assessment

The performance of the proposed quality assessment model was measured by three
indexes: accuracy, sensitivity, and specificity, which were calculated based on true positive
(TP), true negative (TN), false positive (FP), and false negative (FN), as shown as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Sensitivity =
TP

TP + FN
, (2)

Speci f icity =
TN

TN + FP
. (3)

Figure 6a,b shows the average performance of the assessment model. The specificities
are 96.4% and 95.0%, sensitivities are 98.6% and 99.1%, and accuracies are 97.1% and 96.4%,
respectively for COMD and RECD.

For comparison, some additional experiments were conducted as listed in Table 3.
A CGANs model for 1 s example generation was developed. The quality assessment
model performs 95.5% accuracy (acc), 94.5% sensitivity (sen), and 96.0% specificity (spe) on
COMD, all lower than the performance of the proposed system. In addition to CGANs, a
GANs model was also developed for data augmentation. The model failed in convergence
when trained for 10 s ECG segments generation, but it was possible to generate 1 s ECG
examples. Using the data generated by the GANs model, the quality assessment model
shows an accuracy of 95.4%, sensitivity of 99.3% and specificity of 93.4% on COMD, which
are not as good as the performance of the proposed method.

Moreover, to prove the necessity of training the quality assessment model using
examples with a duration of 1 s, the quality assessment model was pre-trained directly
using ECG segments with 10 s duration, and adding L2 regularization in CNN, LSTM,
and Dense layers to alleviate overfitting; however, the model still performed differently
between the training and testing sets. For COMD, the training accuracy of the model
was 95.8%, the sensitivity was 91.2%, and the specificity was 98.0%, while the testing
accuracy, sensitivity, and specificity were 84.4%, 75.8%, and 88.2%, respectively. This may
indicate that training by segments with 1 s may improve the generalization of the quality
assessment model.
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(a) (b)

Figure 6. Performances of the proposed quality assessment model on COMD (a) and RECD (b).

Without data augmentation and pre-training the assessment model by generated ECG
data, each 10 s ECG segment was segmented to 10 examples with 1 s duration to directly
increase the number of examples and then use them to directly develop the assessment
model. Its performance declined on both COMD and RECD compared with the proposed
system, as listed in Table 3.

In addition to data generation, downsampling is a possible way to assist to train a deep
learning model [34]. Thus, a comparison with a previous quality assessment method [35]
was conducted. The previous study downsampled ECG segments from 500 Hz to 50 Hz
and developed a shallow neural networks model to avoid overfitting. The accuracy of the
proposed system increased by 1.3% and 2.6%, respectively, on COMD and RECD.

Table 3. Performance of models for quality assessment.

Data Augmentation Performance of Quality Assessment
Remark

Model Duration of
Generated ECG COMD RECD

CGANs 10 s
acc: 97.1%;
sen: 98.6%;
spe: 96.4%

acc: 96.4%;
sen: 99.1%;
spe: 95.0%

Proposed method

CGANs 1 s
acc: 95.5%;
sen: 94.5%;
spe: 96.0%

- -

GANs 10 s - - GANs: convergence failed

GANs 1 s
acc: 95.4%;
sen: 99.3%;
spe: 93.4%

- -
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Table 3. Cont.

Data Augmentation Performance of Quality Assessment
Remark

Model Duration of
Generated ECG COMD RECD

CGANs 10 s
acc: 84.1%;
sen: 75.8%;
spe: 88.2%

-

Directly using 10 s ECG segments for
assessment model development, and
adding L2 regularization in CNN, LSTM,
and Dense layers, but the model still
performs overfitting;
acc: 95.8% vs. 84.1%
(trainng set vs. testing set);
sen: 91.2% vs. 75.8%;
spe: 98.0% vs. 88.2%

- -
acc: 94.1%;
sen: 96.5%;
spe: 92.9%

acc: 94.0%;
sen: 98.1%;
spe: 91.9%

Without data augmentation, but segment
each 10 s ECG segment to 10 examples
with 1 s duration to naturally
increase the number of examples.

- -
acc: 95.8%;
sen: 96.5%;
spe: 95.5%

acc: 93.8%;
sen: 89.0%;
spe: 96.2%

Using shallow model and downsampled
ECG segments, which is similar to the
previous work [35], to avoid overfitting.

4. Discussion

In this study, ECG generated by CGANs benefited the ECG quality assessment task.
Although downsampling is a way to assist to train deep learning models with a small
training dataset, it may limit the complexity of deep neural network models and thus
reduce the final performance. In this work, with the same training dataset, after pre-
training with generated ECG data, the developed deep neural networks model obtained a
better performance (on COMD, data augmentation by CGANs vs. downsampling: 97.1%
vs. 95.8% for accuracy, 98.6% vs. 96.5% for sensitivity and 96.4% vs. 95.5% for specificity;
on RECD, data augmentation by CGANs vs. downsampling: 96.4% vs. 94.0% for accuracy,
99.1% vs. 89.0% for sensitivity and 95.0% vs. 96.2% for specificity). Finally, it just needed to
retrain two layers in the whole deep model; in this way, the size of the required training
set may be greatly reduced compared with training from scratch. This indicates that the
GANs technique may be effective to assist the training of deep neural network models for
ECG-related decision-making, such as arrhythmia detection [28].

Traditional mathematical modeling methods are limited to synthesize a normal real-
istic heartbeat or ECG signals generally with the same morphology [36,37]. To generate
ECG signals with arrhythmia, the traditional method needs to manually control position
parameters of P, Q, R, S, or T waves [36] to enrich the morphology of heartbeats. On the
contrary, the GANs method can instinctively generate ECG signals with a larger diversity,
which better matches with real ones [26]. The ECG signal is made up of temporal sequences,
and thus, generating longer durations of ECG segments is preferred. In this work, CGANs
demonstrated a reliable convergence when they were trained for generating a 10 s ECG
segment, but GANs failed to converge. It may be attributed to how the discriminator
in CGANs is required to not only identify generated or real ECG segments, but to also
provide a correct label to each real segment. This gives a stronger constraint for model
training than GANs.

In this study, the proposed system assessed the quality of each 10 s ECG segment
by consecutively analyzing the quality of 10 examples, each 1 s in length. This improved
the reliability of the system. For example, for a 10 s ECG segment, a threshold of 3 was
set in post-processing, as shown in Figure 3; that is, if there were more than 3 out of the
10 consecutive 1 s examples which were determined as “unacceptable” by the model,
the corresponding 10 s ECG segment was classified as “unacceptable”. In this case, despite
the quality of the rest of the seven consecutive examples, the final result did not change
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and the sensitivity was assured. This characteristic is confirmed in the results, as shown in
Figure 6; that is, the sensitivity of the model validated by COMD and RECD is higher than
both the specificity and accuracy.

This work has some limitations, as follows.
(1) The proposed system is suitable for an initial ECG quality assessment, without con-

sidering specific applications. The quality requirement may vary for different purposes.
For better explanation, several ECG segments that were labeled as “noisy” in PCCC2017 are
shown in Figure 7. For example, for a task of AF detection, one of the characteristics for the
detection of AF is that there are irregular heartbeats and no regular P waves in ECG. How-
ever, P waves in Figure 7a,b (Figure 7a: recording “A07/A07983”, time: 10:10:15–10:10:25;
Figure 7b: recording “A01/A01938”, time: 05:05:40–05:05:50) were hardly observed because
of severe noise; thus, the quality of ECG segments in Figure 7a,b is unacceptable because
they cannot be used for further AF detection using P waves. In contrast, the segment in
Figure 7a can be used for HRV time-domain analysis since it has obvious R peaks (green
circle), and thus, the heart rate can be accurately calculated. In this case, it should be
regarded as acceptable. Moreover, it can identify premature ventricular contraction (PVC)
rhythms in Figure 7b (purple rectangle) and normal beats (green rectangles); thus, it is
acceptable when used for PVC detection. In Figure 7c (recording “A00/A00445”, time:
09:09:09–09:09:19), the ECG segment can be partly regarded as acceptable (green rectangle)
or unacceptable (two sides). The ECG segment in Figure 7d (recording “A01/A01116”,
time: 04:02:47–04:02:57) should be totally unacceptable because the signal is completely
contaminated by noise.

(2) In this study, the system only considered a quality assessment for single-lead
ECG; therefore, the proposed method cannot be directly applied to 12-lead ECG quality
assessments. The system is suitable for the quality assessment of ECGs collected by bedside
monitors or wearable devices, but should be improved for the diagnosis of cardiovascular
diseases using 12-lead ECG, such as acute myocardial infarction.

(3) In this study, the proposed system was unable to provide specific signal-to-noise
ratio information for acceptable and unacceptable ECG signals; thus, it may be hard to
quantize the quality of ECG signals.

In future, it is expected that we develop a multi-hierarchical and meticulous ECG
quality assessment system. The system will identify low-quality ECG signals and perform
task-specific quality assessments.

(a)

(b)

Figure 7. Cont.
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(a)

(b)

Figure 7. Samples of noisy ECG signals in PCCC2017 (a): recording “A07/A07983”, time: 10:10:15–10:10:25; (b): recording
“A01/A01938”, time: 05:05:40–05:05:50; (c) recording “A00/A00445”, time: 09:09:09–09:09:19, (d) recording “A01/A01116”,
time: 04:02:47–04:02:57 [18].

5. Conclusions

The CGANs technique is a possible method for ECG generation, and the generated
data will help to improve the results of ECG quality assessments. The proposed system
is expected to be applied for the accurate initial screening of ECG quality. In particular,
for patients with wearable ECG recording devices, the system may assist inexperienced
users to collect ECG signals with a quality that meets diagnostic requirements. For clinical
technicians, the proposed system is expected to relieve them from tedious and time-
consuming quality screening work.
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