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Every year, influenza causes high morbidity and mortality especially among the immunocompromised persons worldwide. 'e
emergence of drug resistance has been a major challenge in curbing the spread of influenza. In this paper, a mathematical model is
formulated and used to analyze the transmission dynamics of influenza A virus having incorporated the aspect of drug resistance.
'e qualitative analysis of the model is given in terms of the control reproduction number, Rc. 'e model equilibria are computed
and stability analysis carried out. 'e model is found to exhibit backward bifurcation prompting the need to lower Rc to a critical
value R∗

c for effective disease control. Sensitivity analysis results reveal that vaccine efficacy is the parameter with the most control
over the spread of influenza. Numerical simulations reveal that despite vaccination reducing the reproduction number below
unity, influenza still persists in the population. Hence, it is essential, in addition to vaccination, to apply other strategies to curb the
spread of influenza.

1. Introduction

Influenza is a contagious respiratory illness caused by in-
fluenza viruses. 'ere are three major types of flu viruses:
types A, B, and C. 'e majority of human infections are
caused by types A and B. Of major concern is influenza A
virus which is clinically the most vicious. It is a negative-
sense single-stranded RNA virus with eight gene segments.
'e segmented nature of influenza A virus genome allows
the exchange of gene segments between viruses that coinfect
the same cell [1]. 'is process of genetic exchange is termed
reassortment. Reassortment leads to sudden changes in viral
genetics and to susceptibility in hosts. Influenza A virus has
a wide range of susceptible avian hosts and mammalian
hosts such as humans, pigs, horses, seals, and mink. In
addition, the virus is able to repeatedly switch hosts to infect
multiple avian and mammalian species. 'e unpredictability

of influenza A virus evolution and interspecies movement
creates continual public health challenges [2].

Influenza A virus constantly mutates and is able to elude
the immune system of an individual. It can mutate in two
different ways: antigenic shift and antigenic drift. Antigenic
shift is an abrupt, major change in the influenza virus which
happens occasionally and results in a new subtype that most
people have no protection against. Such a shift occurred in
the spring of 2009 in Mexico and United States, when H1N1
virus with a new combination of genes emerged to infect
people and quickly spread, causing a pandemic [3]. 'is
antigenic shift was as a result of extensive reassortment in
swine that brought together genes from avian, swine, and
human flu viruses [4]. On the other hand, antigenic drift
refers to small changes in the genes of influenza viruses that
occur continually as the virus replicates. Over time, these
small genetic changes result in new strains which the
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antibodies can no longer recognize. 'e changes in the
influenza viruses are the main reason why individuals are
infected with the flu more than once. 'e viruses infect the
nose, throat, and lungs. 'ey usually are spread through the
air when the infected people cough, sneeze, or talk making
the surrounding air and surfaces to be temporarily con-
taminated with infected droplets [5, 6]. People get infected
when they inhale the infected droplets. A person might also
get flu by touching the surface or object that has flu virus on
it and then touching their own mouth, eyes, or possibly their
nose [6].

Influenza can be prevented by getting vaccination each
year. However, given that the virus mutates rapidly, a vac-
cine made for one year may not be useful in the following
year. In addition, antigenic drift in the virus may occur after
the year’s vaccine has been formulated, rendering the vac-
cine less protective, and hence, outbreaks can easily occur
especially among high-risk individuals [7]. According to [8],
other preventive actions include staying away from people
who are sick, covering coughs and sneezes, and frequent
handwashing.

Influenza spreads rapidly around the world during
seasonal epidemics and pandemics [9]. It has afflicted the
human population for centuries. For instance, the 1918
influenza pandemic infected nearly one quarter of the
world’s population and resulted in the deaths of about 100
million people [10]. Studies show that this pandemic is
especially responsible for the high morbidity and mortality
among vulnerable groups such as children, the elderly, and
patients with underlying health conditions [11]. Within the
past one hundred years, there have been four pandemics
resulting from the emergence of a novel influenza strain for
which the human population possessed little or no immu-
nity. Table 1 gives a brief summary of the four influenza
pandemics.

Besides the influenza pandemics, there is an outbreak of
influenza every year around the world which results in about
three to five million cases of severe illness and about 250,000
to 500,000 deaths [14]. According to a report by Centers for
Disease Control and Prevention (CDC), as of December
2017, the estimated number of deaths worldwide resulting
from seasonal influenza had risen to between 291,000 and
646,000 [15]. 'is new estimate was from a collaborative
study by CDC and global health partners. In the temperate
northern hemisphere (i.e., north of the Tropic of Cancer)
and temperate southern hemisphere (i.e., south of the Tropic
of Capricorn), influenza has been observed to peak in the
winter months [16, 17]. In tropical regions, influenza sea-
sonality is less obvious and epidemics can occur throughout
the year and more specifically during the rainy seasons [18].
According to [19], the mortality rates due to this respiratory
disease are much higher in Africa than anywhere else in the
world. Poor nutritional status, poor access to healthcare
including vaccination and antibiotics, and the presence of
other, less measurable factors related to poverty in Africa
may be additional risk factors for higher mortality rates.
WHO Global Influenza Surveillance and Response System
(GISRS) monitors the evolution of influenza viruses.

Figures 1 and 2 show the global circulation of influenza
viruses from 2016 to week 24 of 2018 [20, 21].

Influenza-attributable mortality varies across the sea-
sons. 'ere is however paucity of published estimates of
influenza mortality for low- and middle-income countries.
Data from Centers for Disease Control and Prevention
(CDC) databases from the 1999–2000 to the 2014–2015
seasons for the U.S. population aged 65 years and above were
used to estimate excess deaths per month over that 15-year
span [22]. 'e data are presented in Figure 3.

In addition to pandemics and seasonal epidemics caused
by influenza A virus, over the past 20 years, multiple zoo-
notic influenza A virus outbreaks have occurred causing
a great concern to public health [23–26]. For instance, H5N1
influenza virus from avian hosts poses an ongoing threat to
human and animal health due to its high mortality rate
[26–28]. H7N9 is yet another highly pathogenic subtype of
influenza A virus that is of major concern. According to the
World Health Organization (WHO), as of January 2018,
1566 laboratory-confirmed cases of human infection with
H7N9 virus have been reported in China, including at least
613 deaths [29]. In addition to the ongoing H5N1 and H7N9
influenza A virus outbreaks, other subtypes, such as H5N6,
H9N2, H10N8, and H6N1, have sporadically caused serious
human infections in China and Taiwan [30–33]. 'e death
toll from influenza is unacceptably high, given that it is
preventable. Efforts to combat it must therefore be
accelerated. In view of the catastrophic effects of influenza
globally, several models have been proposed and analyzed
with the aim of shedding more light in the transmission
dynamics of influenza, for instance [34–41]. Among the
pioneer mathematical models used to describe influenza
dynamics is one developed by [38].

Emergence of drug resistance which is a growingmenace
globally [42] complicates influenza even more [43, 44]. Drug
resistance refers to reduction in the effectiveness of a drug in
curing a disease. It occurs when microorganisms such as
bacteria, viruses, fungi, and parasites change in ways that
render themedications used to cure the infections they cause
ineffective [45, 46].'emicroorganisms are therefore able to
survive the treatment. According to [47], epidemics with
drug-resistant strains and those with drug-sensitive strains
are fundamentally different in their growth and dynamics.
Drug-sensitive epidemics are fuelled by only one process,
that is, transmission; however, drug-resistant epidemics are
fuelled by two processes: transmission and the conversion of
treated drug-sensitive infections to drug-resistant infections

Table 1: Summary of influenza pandemics in the past one hundred
years.

Pandemic
name Year Strain Approximate number

of deaths
Spanish flu 1918–1920 H1N1 40–100 million
Asian flu 1957–1958 H2N2 1–2 million
Hong Kong flu 1968–1970 H3N2 0.5–2 million
Swine flu 2009–2010 H1N1 Up to 575,000
Source: [10, 12, 13].
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(acquired resistance). 'erefore, the rate of increase in drug-
resistant infections can be much faster than the rate of
increase in drug-sensitive infections. Studies from [48] show
that drug resistance is a function of time and treatment rate.
In addition, immunosuppression especially in individuals
with compromised immune systems contributes to lack of
viral clearance often despite antiviral therapy leading to
emergence of antiviral resistance [49].

'ere are two classes of antiviral drugs that are used to
treat influenza: adamantanes and neuraminidase inhibitors.

'e adamantanes are only effective against influenza A vi-
ruses, as they inhibit the M2 protein, which is not coded by
influenza B [50]. 'ese drugs are associated with several
toxic effects and rapid emergence of drug-resistant strains.
'e neuraminidase inhibitors interfere with the release of
progeny influenza virus from infected host cells, a process
that prevents infection of new host cells and thereby halts
the spread of infection in the respiratory tract [7]. Since
these drugs act at the stage of viral replication, they must
be administered as early as possible. According to [51],
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Figure 1: Global circulation of influenza viruses from 2016 to 2017.
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influenza viruses mutate constantly, either from one season
to the next or within the course of one flu season. As a flu
virus replicates, the genetic makeup may change rendering
the virus resistant to one or more of the antiviral drugs used
to treat or prevent influenza. Antiviral resistance in influenza
may not only emerge during treatment but also sometimes
transmit widely to replace wild-type strains in the absence of
drug pressure. 'e transmission of resistant strains is evi-
denced by the global spread of adamantane-resistant A
(H3N2) viruses since 2003, oseltamivir-resistant seasonal A
(H1N1) viruses since 2007, and adamantane-resistant
pandemic A(H1N1) viruses in 2009, leading to increased
challenges in the management of influenza [52]. With the
development of drug-resistant influenza viruses, various
models have also been formulated in order to understand
this phenomenon better. Among them are [53–57].

'e morbidity, mortality, and economic burden of in-
fluenza cannot be overlooked. With the emerging menace of
drug resistance, this burden becomes even more compli-
cated. In order to curb the spread of influenza, there is a dire
need to understand among its many aspects, its transmission
dynamics especially in light of the drug resistance aspect. In
this paper, a mathematical model that illustrates the
transmission dynamics of a wild-type influenza strain and
the development and transmission of drug-resistant in-
fluenza strain is formulated and analyzed.

2. Mathematical Model

2.1. Model Formulation. 'e model subdivides the total
population into five compartments: Susceptible (S), Vacci-
nated (V), Infected with Wild-type strain (Iw), Infected with
Resistant strain (IR), and Recovered (R). Individuals in
a given compartment are assumed to have similar charac-
teristics. Parameters vary from compartment to compart-
ment but are identical for all individuals in a given
compartment. Individuals enter the population at the rate of
π, and all recruited individuals are assumed to be susceptible.
'e Susceptible get infected after effective contact with either
the Infected with Wild-type strain or the Infected with
Resistant strain. 'e force of infection is given by either λ1 �

βwIw (Infection by Wild-type strain) or λ2 � βrIR (Infection
by Resistant strain), where βr � f(βr, b). Parameters βw and

βr refer to the transmission rate of wild-type strain and
resistant strain, respectively. Parameter b is the rate of de-
veloping drug resistance. 'e susceptible can only be in-
fected by one strain at a time. 'e rate of vaccination is ϕ.
'e vaccinated can also become infected with either the
wild-type strain or the resistant strain. 'is depends on the
vaccine efficacy. When the vaccine efficacy is 100%, the
vaccinated cannot become infected. Individuals who are
infected with the wild-type strain are treated and recover at
the rate of α, while those who are infected with the resistant
strain recover at the rate of αr. 'e wild-type strain is as-
sumed to mutate to resistant strain, and hence, those in-
fected with the wild type join those infected with the
resistant strain at the rate of b. Individuals with wild-type
strain and those with resistant strain suffer disease-induced
death at the rates aw and ar, respectively. 'e recovered lose
immunity at the rate of ϑ joins the susceptible class. In-
dividuals in all the epidemiological compartments suffer
natural death at the rate of μ. 'e model diagram is given in
Figure 4.

2.2. Model Equations. Given the dynamics described in
Figure 4, the following system of nonlinear ordinary dif-
ferential equations, with nonnegative initial conditions,
describes the dynamics of influenza:

dS

dt
� π + ϑR− ϕ + μ + λ1 + λ2( S(t),

dV

dt
� ϕS(t)− (1− ε)λ1 +(1− ε)λ2 + μ( V(t),

dIw

dt
� λ1S(t) +(1− ε)λ1V(t)− b + μ + aw + α( Iw(t),

dIR

dt
� λ2S(t) +(1− ε)λ2V(t) + bIw(t)− μ + αr + ar( IR(t),

dR

dt
� αIw(t) + αrIR(t)−(ϑ + μ)R(t),

(1)

where λ1 � βwIw and λ2 � βr(1 + b2)IR.
We assume that all the model parameters are positive

and the initial conditions of the model system (1) are given
by

S(0)> 0, V(0)≥ 0, IW(0)≥ 0, IR(0)≥ 0, R(0)≥ 0. (2)

Table 2 gives the description of the various parameters
used in the model along with reasonable estimates of their
values.

3. Model Analysis

3.1. Basic Properties

3.1.1. Positivity of Solutions. 'e model system (1) monitors
the changes in human population. It is therefore important
to prove that the solutions of system (1) with nonnegative
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initial conditions will remain nonnegative for all t> 0. 'us,
we have the following theorem:

Theorem 1. Given that the initial conditions of system (1) are
S(0)> 0, V(0)≥ 0, IW(0)≥ 0, IR(0)≥ 0, and R(0)≥ 0, the
solutions S(t), V(t), Iw(t), IR(t), and R(t) are non-
negative for all t> 0.

Proof. Assume that
t � sup{t> 0 : S(t)> 0, V(t)> 0, Iw(t)> 0,

IR(t)> 0, R(t)> 0} ∈ [0, t].
(3)

'us t> 0, and it follows directly from the first equation
of system (1) that

dS

dt
≥ π − λ1 + λ2 + μ( S. (4)

Using the integrating factor method to solve inequality
(4), we have

d

dt
S(t) exp μt + 

 t

0
λ1(s) + λ2(s)(  ds  

≥ π exp μt + 
 t

0
λ1(s) + λ2(s)(  ds .

(5)

Integrating both sides yields

S(t) exp μt + 
t

0
λ1(s) + λ2(s)(  ds 

≥
t

0
π exp μt + 

t

0
λ1(w) + λ2(w)(  dw  dt + C,

(6)

where C is the constant of integration. Hence,

S(t)≥ S(0) exp − μt + 
t

0
λ1(s) + λ2(s)(  ds  

+ exp − μt + 
t

0
λ1(s) + λ2(s)(  ds  

· 
t

0
π exp μt + 

t

0
λ1(w) + λ2(w)(  dw  dt > 0.

(7)

Hence, S(t)> 0 ∀ t> 0.
From the second equation in system (1), we obtain

dV

dt
≥− (1− ε)λ1 +(1− ε)λ2 + μ( V. (8)

Hence,

V

IR

R

IW

S

μS μR

λ2 S

π

μV

blw

λ 1S

(μ + aw)Iw

(μ + ar)IR

α rI R

αw Iw

ϕS

(1 – ε)λ1V

(1 – ε)λ2V

ϑR

Figure 4: Schematic diagram showing population flow between different epidemiological classes.

Table 2: Description and values of parameters used.

Parameter Description Value Reference
βw Transmission rate of wild-type strain 0.00102 day−1 Estimated
βr Transmission rate of resistant strain 0.00026 day−1 Estimated
ε Vaccine efficacy 0.77 [58]
ϕ Vaccination rate 0.00027375 day−1 [59]
b Rate of developing drug resistance 0.118 Estimated
α Recovery rate for individuals in Iw class 0.1998 day−1 [6]
αr Recovery rate for individuals in IR class 0.0714 day−1 Estimated
ϑ Rate of losing immunity 0.00833 day−1 [34]
aw Death rate due to infection with wild-type strain 0.01 [39]
1
μ Average human lifespan 70 × 365 days Estimated
π Recruitment rate 0.0381 Estimated
ar Death rate due to infection with resistant strain 0.021 Estimated
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V(t)≥V(0)

· exp − μt + 
t

0
(1− ε)λ1(s) +(1− ε)λ2(s) ds  > 0.

(9)

Similarly, it can be shown that

Iw(t)≥ Iw(0) exp − b + α + aw + μ( t > 0,

IR(t)≥ IR(0)exp − αr + ar + μ( t > 0,

R(t)≥R(0) exp −(ϑ + μ)t > 0.

(10)

'erefore, all the solutions of system (1) with non-
negative initial conditions will remain nonnegative for all
time t> 0.

3.1.2. Invariant Region. We show that the total population is
bounded for all time t> 0. 'e analysis of system (1) will
therefore be analyzed in a region Ω of biological interest.
'us, we have the following theorem on the region that
system (1) is restricted to.

Theorem 2. Ae feasible region Ω defined by

Ω �  S(t), V(t), IW(t), IR(t), R(t)(  ∈ R
+
5 ∣ 0≤N

≤maxN(0),
Π
μ

,

(11)

with initial conditions S(0)≥ 0, V(0)≥ 0, IW(0)≥ 0,

IR(0)≥ 0, and R(0)≥ 0, is positively invariant and
attracting with respect to system (1) for all t> 0.

Proof. Summing up the equations in (1), we obtain that the
total population satisfies the following differential equation:

dN(t)

dt
� π − μN− awIw − arIR. (12)

In the absence of influenza infection, it follows that
dN(t)

dt
≤ π − μN. (13)

It can easily be seen that

N(t)≤
Π
μ

+ N(0)−
Π
μ

 exp(−μt). (14)

From (14), we observe that as t→∞, N(t)→ (Π/μ). So
if N(0)≤ (Π/μ), then limt→∞N(t) � (Π/μ). On the other
hand, if N(0)> (Π/μ), then N will decrease to (Π/μ) as
t→∞. 'is means that N(t)≤max N(0), (Π/μ) .

'erefore, N(t) is bounded above. Subsequently,
S(t), V(t), Iw(t), IR(t), and R(t) are bounded above.'us,
in Ω, system (1) is well posed. Hence, it is sufficient to study
the dynamics of the system in Ω.

3.2. Existence of Equilibrium Points. In the absence of in-
fluenza (Iw � IR � 0), system (1) has a disease-free equi-
librium, which is given by

E0 � S
0
, V

0
, 0, 0, 0  �

Π
ϕ + μ

,
ϕΠ

μ(ϕ + μ)
, 0, 0, 0 .

(15)

3.2.1. Ae Control Reproduction Number. 'e control re-
production number, Rc, is a key threshold that determines
the behaviour of the system in the presence of vaccination. In
order to analyze the stability of system (1), we obtain the
threshold condition for the establishment of the disease.
'us, we employ next-generationmatrix operator method as
explained in [60]. 'e matrices of new infections and
transition terms evaluated at the disease-free equilibrium are
given by

F �

Πβw(ϕ(1− ε) + μ)

μ(μ + ϕ)
0

0
Πβr(ϕ(1− ε) + μ)

μ(μ + ϕ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V �

b + α + μ + aw 0

−b μ + ar + αr

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(16)

'e dominant eigenvalue corresponding to the spectral
radius ρ(FV−1) of the matrix FV−1 is the control re-
production number, which is given by

Rc � max Rcw, Rcr , (17)

where

Rcw �
βwπ(μ + ϕ(1− ε))

μ(ϕ + μ) α + b + aw + μ( 
,

Rcr �
βrπ(μ +(1− ε)ϕ)

μ(ϕ + μ) αr + ar + μ( 
.

(18)

Rcw is a measure of the average number of secondary wild-
type influenza infections caused by a single infected indi-
vidual introduced into the model population. On the other
hand, Rcr gives the average number of secondary resistant
influenza infections caused by one infected individual in-
troduced into the model population.

From 'eorem 2 in [60], we have the following results.
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Proposition 1. Ae disease-free equilibrium is locally
asymptotically stable whenever Rc is less than unity and
unstable otherwise.

Proof. 'e Jacobian matrix evaluated at E0 is obtained as

J E0(  �

−ϕ− μ 0 −βwS0 −βrS0 ϑ

ϕ −μ −(1− ε)βwV0 −(1− ε)βrV0 0

0 0 βwS0 +(1− ε)βwV0 −Q1 0 0

0 0 b βrS0 +(1− ε)βrV0 −Q2 0

0 0 α αr −ϑ− μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(19)
where Q1 � α + b + aw + μ and Q2 � αr + ar + μ.

For the DFE to be locally stable, the eigenvalues of J(E0)

must have negative real parts.
'e characteristic polynomial of J(E0) is given by

P(λ) � (λ + μ)(λ + μ + ϑ)(λ + μ + ϕ)

· μ(μ + ϕ) ar + λ + μ + αr( −Πβr(μ− εϕ + ϕ) 

· μ(μ + ϕ) aw + α + b + λ + μ( −Πβw(μ− εϕ + ϕ)( .

(20)
Clearly, the following eigenvalues with negative real

parts can be obtained from the polynomial (20):
λ1 � −μ, λ2 � −μ− ϑ, and λ3 � −μ−ϕ. Other roots can be
obtained from the remaining part of the polynomial (20),
which is given by

P1(λ) � μ(μ + ϕ) ar + λ + μ + αr( −Πβr(μ− εϕ + ϕ) 

· μ(μ + ϕ) aw + α + b + λ + μ( −Πβw(μ− εϕ + ϕ)( .

(21)
Hence, we obtain

λ4 �
−μ(μ + ϕ) ar + μ + αr(  + πβr(μ + ϕ(1− ε))

μ(μ + ϕ)
,

∴ λ4 � −Q2 1−Rcr( ,

λ5 �
−μ(μ + ϕ) b + α + μ + aw(  + πβw(μ + ϕ(1− ε))

μ(μ + ϕ)
,

∴ λ5 � −Q1 1−Rcw( .

(22)

From (22), if Rcr < 1, then λ4 < 0, and if Rcw < 1, then
λ5 < 0.

We therefore conclude that the disease-free equilibrium
E0 is locally asymptotically stable whenever Rc < 1. 'e
biological implication of Proposition 1 is that if Rc < 1,
influenza will be eliminated from the model population
provided that the initial sizes of the subpopulations in
various compartments of model (1) are in the basin of at-
traction of the influenza-free equilibrium.

3.2.2. Effective Reproduction Number. 'e effective re-
production number (Re(t)) is the actual average number of
secondary cases per primary case at calendar time t (for t> 0)
[61]. Re(t) shows time-dependent variation due to decline in

susceptible individuals and the implementation of control
measures. 'e effective reproduction number is therefore
used to characterize transmissibility in a population that is
not entirely susceptible. It is the basic reproduction number
times the fraction of the population that is susceptible to
infection at time t.

'e basic reproduction number (R0) is the average
number of secondary infections generated by a single infective
individual in a totally susceptible population [60]. From
model (1), the basic reproduction number is obtained as

R0 � max
βwπμ

μ2 α + b + aw + μ( 
,

βrπμ
μ2 αr + ar + μ( 

 . (23)

'us, the effective reproduction number Re(t) � fR0,
where f is the fraction of population susceptible to infection
at a time t.

3.3. EndemicEquilibria. 'e endemic equilibria of model (1)
are the steady states where influenza may persist in the
population. 'is happens when at least one of the infected
classes of the model is nonempty. 'e rate of change in
populations in each compartment is zero at equilibrium;
hence, the right-hand side of (1) is set to zero as follows:

0 � π + ϑR
∗ − ϕ + μ + λ1 + λ2( S

∗
,

0 � ϕS
∗ − (1− ε)λ1 +(1− ε)λ2 + μ( V

∗
,

0 � λ1S
∗

+(1− ε)λ1V
∗ − b + μ + aw + α( I

∗
w,

0 � λ2S
∗

+(1− ε)λ2V
∗

+ bI
∗
w − μ + αr + ar( I

∗
R,

0 � αI
∗
w + αrI

∗
R −(ϑ + μ)R

∗
.

(24)

Next, S∗, V∗, I∗w, I∗R, and R∗ are solved from (24) in
terms of the two forces of infection, λ1 and λ2 to obtain

S
∗

�
π + ϑR∗

μ + ϕ + λ1 + λ2
,

V
∗

�
ϕ π + ϑR∗( )( 

μ + ϕ + λ1 + λ2(  μ−(−1 + ε)λ1 −(−1 + ε)λ2( ( 
,

I
∗
w �

π + ϑR∗( )λ1 μ + ϕ− εϕ−(−1 + ε)λ1−(−1 + ε))λ2( ( 

Q1 μ + ϕ + λ1 + λ2(  μ−(−1 + ε)λ1 −(−1 + ε)λ2( ( 
,

I
∗
R �

π + ϑR∗( ) μ + ϕ− εϕ−(−1 + ε)λ1 −(−1 + ε)λ2(  bλ1 + Q1λ2( ( 

Q1Q2 μ + ϕ + λ1 + λ2(  μ−(−1 + ε)λ1 −(−1 + ε)λ2( ( 
,

R
∗

�
π μ + ϕ− εϕ−(−1 + ε)λ1 −(−1 + ε)λ2 αQ2λ1 + αr( bλ1 + Q1λ2( ( ( 

−ϑ αQ2 + bαr( λ1 μ + ϕ− εϕ−(−1 + ε)λ1 + λ2 − ελ2(  + Q4( 
.

(25)

where

Q1 � α + b + aw + μ,

Q2 � αr + ar + μ,

Q3 � ϑ + μ,

Q4 � Q1 ϑαrλ2( ( −μ + (−1 + ε)ϕ +(−1 + ε)λ1
+(−1 + ε)λ2+ Q2Q3 μ + ϕ + λ1 + λ2( 

· μ−(−1 + ε)λ1 + λ2 − ελ2( .

(26)
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Upon dividing and simplifying the two expressions for
λ1 and λ2, we obtain the following polynomial:

p λ1, λ2(  � πQ3λ1 μ + ϕ− εϕ−(−1 + ε)λ1 −(−1 + ε)λ2( 

· ( −Q2βwλ2 + βr bλ1 + Q1λ2( .

(27)

Note that if λ1 � 0 in the equation obtained when
polynomial (27) is set to zero, then clearly λ2 � 0. 'is gives
the disease-free equilibrium previously obtained in (15). 'e
solutions to the remaining part of the polynomial (27),
described by (28), define the possible endemic states of
system (1).

p λ∗1 , λ∗2(  � μ + ϕ− εϕ−(−1 + ε)λ1 −(−1 + ε)λ2( 

· −Q2βwλ2 + βr bλ1 + Q1λ2(   � 0.
(28)

'e existence of the endemic equilibrium points for
system (1) depends on the solutions of (28), and the roots of
the equation must be real and positive to guarantee existence
of the endemic equilibrium point(s). Due to mathematical
complexity, we are not able to express explicitly the endemic
steady states of system (1). We shall however represent the
polynomial in (28) graphically as shown in Figure 5.

From the surface plot in Figure 5, it can be observed that
there exist endemic steady states for the two-strain influenza
model. 'e steady states only exist for positive values of
p(λ1, λ2). 'e endemic equilibria exist in the case where
only the wild-type strain is present, the case where only the
resistant strain exists or both strains coexist.

3.3.1. Existence of an Endemic State with Wild-Type Strain
Only. 'ere exists an endemic state when the wild-type
strain persists and the resistant strain dies out. Solving (1)
in terms of λ1 yields

S
∗

�
π + ϑR∗

μ + ϕ + λ1
,

V
∗

�
ϕ π + ϑR∗( )( 

μ + ϕ + λ1(  μ + λ1 − ελ1( ( 
,

I
∗
w �
− π + R∗( )λ1 −μ−ϕ + εϕ− λ1 + ελ1( ( 

Q1 μ + ϕ + λ1(  μ + λ1 − ελ1( ( 
,

R
∗

�
απλ1(μ + ϕ− εϕ−(−1 + ε))

Q1Q3 μ + ϕ + λ1(  μ−(−1 + ε)λ1(  + αϑλ1 −μ +(−1 + ε)ϕ + −1 + ελ1( ( ( 
.

(29)

Substituting I∗w obtained in (29) into λ∗1 yields poly-
nomial (30) given by

λ1( Q1Q3 μ + ϕ + λ1(  μ−(−1 + ε)λ1( 

− μ + ϕ− εϕ−(−1 + ε)λ1(  ϕQ3βw + αϑλ1( .
(30)

It is important to note that when λ1 � 0, a wild-type
strain-free equilibrium is obtained which is given by

S
0
, V

0
, 0, 0  �

Π
ϕ + μ

,
ϕΠ

μ(ϕ + μ)
, 0, 0 . (31)

'e remaining part of polynomial (30) can be expressed
as

P λ1(  � D2λ
2
1 + D1λ1 + D0. (32)

where

D2 � (1− ε) Q1Q3 − αϑ( ,

D1 � Q3 (−(−1 + ε)μ + ϕ− εϕ)Q1 +(−1 + ε)πβw( 

− α(μ + ϕ− εϕ)ϑ,

D0 � Q3 μ(μ + ϕ)Q1 1−Rcw( ( .

(33)

'e roots of the quadratic equation obtained when the
polynomial in (32) is set to zero can be obtained by the
quadratic formula given by

λ1 �
−D1 ±

����������

D2
1 − 4D2D0



2D2
. (34)

Note that D0 > 0 if Rcw < 1, D0 � 0 if Rcw � 1, and D0 < 0
if Rcw > 1. If D0 < 0, the discriminant Δ� D2

1 − 4D2D0 > 0
and (32) have a unique positive solution, and hence, the
model system (1) has a unique wild-type influenza persistent
equilibrium. If Rcw < 1, then D0 > 0, and by adding the
conditions D1 < 0 and Δ> 0, two positive real equilibria are
obtained. If Rcw � 1, then D0 � 0, and there is a unique
nonzero solution of (32) which is positive if and only if
D1 < 0. 'e following theorem summarizes the existence of
the wild-type influenza endemic equilibria.

Theorem 3. Ae model system (1) has

(i) a unique endemic equilibrium if Rcw > 1
(ii) two endemic equilibria if Rcw < 1, D1 < 0, and Δ> 0
(iii) one positive equilibrium for Rcw � 1 and D1 < 0
(iv) no wild-type influenza endemic equilibrium

otherwise

Epidemiologically, 'eorem 3 item (ii) implies that
bringing Rcw below unity does not suffice for the eradication
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Figure 5: Endemic equilibrium points of the two-strain influenza
model.
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of wild-type influenza since system (1) exhibits backward
bifurcation when Rcw < 1. 'e existence of backward bi-
furcation indicates that in the neighbourhood of 1, for
Rcw < 1, a stable wild-type influenza-free equilibrium co-
exists with a stable wild-type influenza persistent equilib-
rium. In order to eradicate the disease, the control
reproduction Rcw should be decreased below the critical
value R∗cw. To obtain R∗cw, the discriminant in (32) is set to
zero and Rcw made the subject of the relation. 'is yields

R
∗
cw � 1−

D2
1

4μ(μ + ϕ)Q1Q3D2
. (35)

It follows that backward bifurcation occurs for values of
Rcw such that R∗cw <Rcw < 1. 'is is illustrated by Figure 6.

3.3.2. Existence of Resistant Influenza Strain Only Endemic
State. 'ere exists an endemic state when the resistant strain
persists and the wild-type strain dies out. Solving (1) in terms
of λ2 and substituting I∗R into λ∗2 yields the following
equation:

λ2( −Q2Q3 μ + ϕ + λ2(  μ−(−1 + ε)λ2( 

+ μ + ϕ− εϕ−(−1 + ε)λ2(  ϕQ3βr + αrϑλ2  � 0.
(36)

When λ2 � 0, resistant influenza-free equilibrium is
obtained. 'e remaining part of polynomial (36) can be
expressed as

P λ2(  � A2λ
2
2 + A1λ2 + A0, (37)

where

A2 � (−1 + ε) Q2Q3 − αrϑ( ,

A1 � αrϕϑ(ε− 1) + Q2Q3μ(1− ε) + Q2Q3ϕ(1− ε)

+ Q3βrπ(ε− 1)− αrμϑ,

A0 � Q3 μ(μ + ϕ)Q2 1−Rcr( ( .

(38)

Using the procedure as in Section 3.3.1, it can be shown
that the system exhibits a backward bifurcation when Rcr < 1.
'is is illustrated by Figure 7.

4. Sensitivity Analysis

In order to curb the spread of influenza in a given pop-
ulation, it is essential to know the relative importance of the
different parameters responsible for its transmission and
prevalence. Influenza transmission and endemicity are di-
rectly related to Rc. As in [62, 63], the normalized forward
sensitivity analysis is used for this model. 'e normalized
sensitivity index which measures the relative change in
a parameter k, with respect to the reproduction number Rc is
given by Pq � (k/Rc)(zRc/zk),[64]. 'e sign of Pq de-
termines the direction of changes, increasing (for positive
Pq) and decreasing (for negative Pq) [65]. 'e sensitivity
indices of the model reproduction number to the parameters
in the model at the parameter values described in Table 2 are
calculated. 'ese indices reveal how crucial each parameter
is to disease transmission and spread making it possible to

discover parameters that have a high impact on Rc and
should be targeted by intervention strategies. 'e calculated
sensitivity indices of Rc are given in Table 3.

Small variations in a highly sensitive parameter lead to
large quantitative changes; hence, caution should be taken
when handling such a parameter. A positive sensitivity index
indicates that Rc is an increasing function of the corre-
sponding parameter, and hence, an increase in the pa-
rameter while other factors are held constant leads to an
increase in the reproduction number and could lead to
disease spread [65]. On the other hand, a negative sensitivity
index shows that an increase in the parameter while other
factors are held constant leads to a decrease in the re-
production number, which could then lead to disease
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control. For instance, if the vaccination rate, ϕ, is increased
by 10%, Rc would decrease by about 2.5%. Increasing the
recruitment rate by 10% increases the Rc by 10%.

5. Numerical Simulation

5.1. Effects of Drug Resistance. For the parameter values in
Table 2, as the drug resistance increases, the changes in the
reproduction numbers can be observed as shown in Figure 8.

In conformity with the expectation, increased drug re-
sistance leads to an increase in Rcr. It can also be observed
that Rcw decreases with increased drug resistance. 'e im-
plication of increased drug resistance on infected population
is discussed in the next section.

5.1.1. Effects of Drug Resistance on Infected Population.
'e rate of drug resistance is varied holding all the other
parameter values constant. Figures 9 and 10 are obtained.

It can be observed from Figure 9 that when there is no
development of drug resistance (b � 0), the number of in-
dividuals infected with resistant strain decreases to zero. An
increase in the rate of drug resistance leads to an increase in
the number of individuals infected with resistant strain.

Next, the effect of drug resistance on individuals infected
with wild-type strain is investigated.

From Figure 10, it can be observed that an increase in the
rate of drug resistance leads to a decrease in the number of
individuals infected with wild-type strain. For instance,
when b � 1, the number of individuals infected with wild-
type strain decrease to zero. 'is could be attributed to the
mutation of the wild-type strain to resistant strain.

5.2. Effect of Vaccination on Reproduction Number and on
InfluenzaPrevalence in theModelPopulation. Figures 11 and
12 show the population dynamics of the infected individuals
in a case where there is no vaccination. 'e reproduction

number of the resistant strain is obtained as 2.7762, while
that of the wild-type strain is obtained as 3.0288.

Note that the reproduction number for the two cases is
greater than one. It can be observed from Figures 11 and 12
that the resistant strain and the wild-type strain persist in the
population.

Next, numerical simulation is done in the case where
there is vaccination. Using the parameter values in Table 2,
Figures 13 and 14 are obtained. 'e control reproduction
number (17), Rcr, is obtained as 0.9059, and Rcw is obtained
as 0.9883.

Note that the reproduction number in this case is less
than one. Vaccination reduces the reproduction number.
However, from Figures 13 and 14, it can be observed that
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Table 3: Sensitivity indices of Rcw and Rcr.

Parameter Sensitivity index
Sensitivity indices of Rcw

βw 0.99999
π 1
ϕ −0.2582418982
ε −2.064509968
α −0.6094452335
aw −0.0305027644
b −0.3599326204
μ −0.7418774828
Sensitivity indices of Rcr
βr 0.99999
π 1
b 0.02746556942
ϕ −0.2582418983
ε −2.064509968
αr −0.7724001063
ar −0.2271765018
μ −0.7421814939
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both the resistant strain and the wild-type strain do not
completely die out from the population despite the re-
production number being less than one. 'ese findings are
consistent with Figures 6 and 7 obtained in Sections 3.3.1
and 3.3.2, respectively. 'is shows that bringing the re-
production number below unity does not describe the
necessary effort to curb the spread of influenza. 'erefore,
the intervention strategies should be carefully implemented
to bring the reproduction number below the critical value. It
can also be observed from Figures 11–14 that the level of
persistence of the resistant strain is higher than that of the
wild-type strain.

5.3. Effect of Transmission Rates βw and βr on Infected
Population

5.3.1. Case 1: Effect of βw on Iw Individuals. From Figure 15,
it can be observed that the higher the transmission rate, the
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higher the number of infected individuals. 'e number of
infected individuals drastically decreases to zero within
a short period of time but then starts to increase again
shortly after and the disease does not completely die out
after that (this is when βw � 0.002 and 0.0015). When
βw � 0.00095, it can be observed that the number of infected
individuals declines to zero and the disease completely dies
out. It should be noted that for this case, the Rcw � 0.9205
which is below the critical value R∗cw � 0.9351.

5.3.2. Case 2: Effect of βr on IR Individuals. It is observed
from Figure 16 that the higher the transmission rate, the
higher the number of infected individuals. It is also in-
teresting to note that when βr � 0, there still exist individuals
infected with the resistant strain and the strain persists in the
population. 'is shows that curbing the spread of the re-
sistant strain is quite difficult. 'is could be due to the fact
that the spread of the resistant strain is fuelled by two
processes: transmission and mutation of the wild-type strain
to resistant strain.

6. Conclusion

To completely wipe out influenza from a population con-
tinues to prove difficult.'is is because the virus evolves very
rapidly and is able to change from one season to the other.
'is is extensively explained in [3, 7, 9]. Results from our
model show that vaccination reduces the reproduction
number, and hence, it could be used as a control strategy.
However, caution should be taken because influenza can still
persist in case there is backward bifurcation. Results also
show that it is easier to curtail the spread of the wild-type
strain especially in a given season than the resistant strain.
'is could be through social distancing and issuing travel

bans to areas affected with the virus. For the resistant strain,
social distancing could also be used as a control strategy in
addition to reducing the mutation of the wild-type strain.
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for pandemic influenza: the role of limited antiviral treatment
and isolation,” Journal of Aeoretical Biology, vol. 265, no. 2,
pp. 136–150, 2010.

[41] O. Prosper, O. Saucedo, D. 'ompson, G. Torres-Garcia,
X. Wang, and C. Castillo-Chavez, “Modeling control strate-
gies for concurrent epidemics of seasonal and pandemic
H1N1 influenza,” Mathematical Biosciences and Engineering,
vol. 8, no. 1, pp. 141–170, 2011.

[42] M. Woolhouse and J. Farrar, “Policy: an intergovernmental
panel on antimicrobial resistance,” Nature, vol. 509, no. 7502,
pp. 555–557, 2014.

Computational and Mathematical Methods in Medicine 13

https://www.cdc.gov/flu/protect/habits.htm
https://www.cdc.gov/flu/protect/habits.htm
https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html
https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html
https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html
http://www.who.int/mediacentre/factsheets/2003/fs211/en/
https://www.cdc.gov/media/releases/2017/p1213-flu-death-estimate.html
https://www.cdc.gov/media/releases/2017/p1213-flu-death-estimate.html
http://www.who.int/influenza/gisrs_laboratory/updates/summaryreport_20171002/en/
http://www.who.int/influenza/gisrs_laboratory/updates/summaryreport_20171002/en/
http://www.who.int/influenza/gisrs_laboratory/updates/summaryreport_20171002/en/
http://www.who.int/influenza/gisrs_laboratory/updates/summaryreport/en/
http://www.who.int/influenza/gisrs_laboratory/updates/summaryreport/en/
http://www.who.int/influenza/gisrs_laboratory/updates/summaryreport/en/
https://www.rgare.com/knowledge-center/articles/seasonal-influenza-and-mortality
https://www.rgare.com/knowledge-center/articles/seasonal-influenza-and-mortality
http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_25_01_2018_FINAL.pdf
http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_25_01_2018_FINAL.pdf
http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_25_01_2018_FINAL.pdf


[43] E. van der Vries, M. Schutten, P. Fraaij, C. Boucher, and
A. Osterhaus, “Influenza virus resistance to antiviral therapy,”
Advances in Pharmacology, vol. 67, pp. 217–246, 2013.

[44] T. Li, M. C. Chan, and N. Lee, “Clinical implications of
antiviral resistance in influenza,” Viruses, vol. 7, no. 9,
pp. 4929–4944, 2015.

[45] CDC, About Antimicrobial Resistance—Antibiotic/
Antimicrobial Resistance, CDC, Atlanta, GA, USA, 2017,
https://www.cdc.gov/drugresistance/about.html.

[46] J. D. Hayes and C. R. Wolf, “Molecular mechanisms of drug
resistance,” Biochemical Journal, vol. 272, no. 2, p. 281,
1990.

[47] S. Blower, A. Aschenbach, H. Gershengorn, and J. Kahn,
“Predicting the unpredictable: transmission of drug-resistant
HIV,” Nature Medicine, vol. 7, no. 9, pp. 1016–1020, 2001.

[48] S. Blower and P. Volberding, “What can modeling tell us
about the threat of antiviral drug resistance?,” Current
Opinion in Infectious Diseases, vol. 15, no. 6, pp. 609–614,
2002.

[49] M. G. Ison, L. V. Gubareva, R. L. Atmar, J. Treanor, and
F. G. Hayden, “Recovery of drug-resistant influenza virus
from immunocompromised patients: a case series,” Journal of
Infectious Diseases, vol. 193, no. 6, pp. 760–764, 2006.

[50] A. Kamali and M. Holodniy, “Influenza treatment and pro-
phylaxis with neuraminidase inhibitors: a review,” Infection
and Drug Resistance, vol. 6, p. 187, 2013.

[51] CDC, Influenza Antiviral Drug Resistance, CDC, Atlanta, GA,
USA, 2017, https://www.cdc.gov/flu/about/qa/antiviralresistance.
htm.

[52] F. G. Hayden and M. D. de Jong, “Emerging influenza an-
tiviral resistance threats,” Journal of Infectious Diseases,
vol. 203, no. 1, pp. 6–10, 2011.

[53] M. Lipsitch, T. Cohen, M. Murray, and B. R. Levin, “Antiviral
resistance and the control of pandemic influenza,” PLoS
Medicine, vol. 4, no. 1, p. e15, 2007.

[54] K. Jnawali, B. Morsky, K. Poore, and C. T. Bauch, “Emergence
and spread of drug resistant influenza: a two-population game
theoretical model,” Infectious Disease Modelling, vol. 1, no. 1,
pp. 40–51, 2016.

[55] J. M. McCaw, J. G. Wood, C. T. McCaw, and J. McVernon,
“Impact of emerging antiviral drug resistance on influenza
containment and spread: influence of subclinical infection
and strategic use of a stockpile containing one or two drugs,”
PLoS One, vol. 3, no. 6, Article ID e2362, 2008.

[56] N. M. Ferguson, S. Mallett, H. Jackson, N. Roberts, and
P. Ward, “A population-dynamic model for evaluating the
potential spread of drug-resistant influenza virus infections
during community-based use of antivirals,” Journal of Anti-
microbial Chemotherapy, vol. 51, no. 4, pp. 977–990, 2003.

[57] N. I. Stilianakis, A. S. Perelson, and F. G. Hayden, “Emergence
of drug resistance during an influenza epidemic: insights from
amathematical model,” Journal of Infectious Diseases, vol. 177,
no. 4, pp. 863–873, 1998.

[58] ISG, Vaccine Efficacy and Effectiveness, Influenza Specialist
Group, Melbourne, VIC, Australia, 2017, http://www.isg.org.
au/index.php/vaccination/vaccine-efficacy-and-effectiveness/.

[59] CDC, Flu Vaccine Coverage Remains Low Ais Year, Centers
for Disease Control and Prevention, Atlanta, GA, USA, 2017,
https://www.cdc.gov/media/releases/2016/p1207-flu-vaccine-
coverage.html.

[60] P. Van den Driessche and J. Watmough, “Reproduction
numbers and sub-threshold endemic equilibria for com-
partmental models of disease transmission,” Mathematical
Biosciences, vol. 180, no. 1, pp. 29–48, 2002.

[61] H. Nishiura and G. Chowell, “'e effective reproduction
number as a prelude to statistical estimation of time-
dependent epidemic trends,” in Mathematical and Statisti-
cal Estimation Approaches in Epidemiology, pp. 103–121,
Springer, Berlin, Germany, 2009.

[62] H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres,
“Sensitivity analysis in a dengue epidemiological model,”
Conference Papers in Science, vol. 2013, Article ID 721406,
7 pages, 2013.

[63] N. Chitnis, J. M. Hyman, and C. A. Manore, “Modelling
vertical transmission in vector-borne diseases with applica-
tions to rift valley fever,” Journal of Biological Dynamics,
vol. 7, no. 1, pp. 11–40, 2013.

[64] F. Hategekimana, S. Saha, and A. Chaturvedi, “Dynamics of
amoebiasis transmission: stability and sensitivity analysis,”
Mathematics, vol. 5, no. 4, p. 58, 2017.

[65] G. Chowell and J. M. Hyman, Mathematical and Statistical
Modeling for Emerging and Re-emerging Infectious Diseases,
Springer, Berlin, Germany, 2016.

14 Computational and Mathematical Methods in Medicine

https://www.cdc.gov/drugresistance/about.html
https://www.cdc.gov/flu/about/qa/antiviralresistance.htm
https://www.cdc.gov/flu/about/qa/antiviralresistance.htm
http://www.isg.org.au/index.php/vaccination/vaccine-efficacy-and-effectiveness/
http://www.isg.org.au/index.php/vaccination/vaccine-efficacy-and-effectiveness/
https://www.cdc.gov/media/releases/2016/p1207-flu-vaccine-coverage.html
https://www.cdc.gov/media/releases/2016/p1207-flu-vaccine-coverage.html

