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Abstract. The Saccharomyces cerevisiae CDC42 gene 
product is involved in the morphogenetic events of the 
cell division cycle; temperature-sensitive cdc42 mu- 
tants are unable to form buds and display delocalized 
cell-surface deposition at the restrictive temperature 
(Adams, A. E. M., D. I. Johnson, R. M. Longnecker, 
B. E Sloat, and J. R. Pringle. 1990. J. Cell Biol. 
111:131-142). To begin a molecular analysis of 
CDC42 function, we have isolated the CDC42 gene 
from a yeast genomic DNA library. The use of the 
cloned DNA to create a deletion of CDC42 confirmed 
that the gene is essential. Overexpression of CDC42 
under control of the GALIO promoter was not grossly 
deleterious to cell growth but did perturb the normal 
pattern of selection of budding sites. Determination of 
the DNA and predicted amino acid sequences of 

CDC42 revealed a high degree of similarity in amino 
acid sequence to the ras and rho (Madaule, P., 
R. Axel, and A. M. Myers. 1987. Proc. Natl. Acad. 
Sci. 84:779-783) families of gene products. The 
similarities to ras proteins (,,~40% identical or related 
amino acids overall) were most pronounced in the 
regions that have been implicated in GTP binding and 
hydrolysis and in the COOH-terminal modifications 
leading to membrane association, suggesting that 
CDC42 function also involves these biochemical prop- 
erties. The similarities to the rho proteins (~60% 
identical or related amino acids overall) were more 
widely distributed through the coding region, suggest- 
ing more extensive similarities in as yet undefined bio- 
chemical properties and functions. 

T 
rIE Saccharomyces cerevisiae CDC24, CDC42, and 
CDC43 gene products play critical roles in the estab- 
lishment of cell polarity, the localization of secretion 

and cell-surface deposition, and the development of normal 
cell shape (Hartwell et al., 1974; Sloat and Pringle, 1978; 
Field and Schekman, 1980; Sloat et al., 1981; Pringle and 
Hartwell, 1981; Pringle et al., 1986; Adams et al., 1990). 
Yeast strains carrying temperature-sensitive lethal mutations 
in these genes have essentially identical morphological 
phenotypes. At permissive temperatures, the mutants grow 
and bud normally; at restrictive temperatures, the nuclear 
cycle continues but bud formation is blocked. Cell mass and 
volume continue to increase, resulting in greatly enlarged, 
unbudded cells. The cytoplasmic actin network appears dis- 
organized (Adams and Pringle, 1984; Adams et al., 1990), 
and chitin and other cell surface materials appear to be de- 
posited randomly or uniformly throughout the enlarging cell 
walls, in contrast to their normal highly localized patterns 
of deposition. In addition, some temperature-sensitive cdc24 
mutants show abnormal positioning of budding sites when 
grown at permissive temperatures, suggesting that the 
CDC24 gene product is involved in the initial selection and 
organization of the budding site (Sloat et al., 1981). Another 
cdc24 mutant was identified among a collection of calcium- 
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sensitive mutants, suggesting a possible interaction of the 
gene product with calcium (Ohya et al., 1986a,b). The 
CDC24 gene has been cloned (Coleman et al., 1986; Ohya 
et al., 1986a) and sequenced (Miyamoto et al., 1987). The 
predicted gene product contains two putative Ca2+-binding 
domains. 

As a step in the further analysis of this system, we have 
begun a molecular characterization of the CDC42 gene and 
its product. We report here the isolation and sequence analy- 
sis of CDC42, as well as the phenotypes associated with its 
deletion or overexpression. Remarkably, the predicted amino 
acid sequence of the CDC42 product is strikingly similar to 
the ras (Capon et al., 1983; Powers et al., 1984; Tatchell, 
1986) and rho (Madaule and Axel, 1985; Madaule et al., 
1987; Anderson and Lacal, 1987) families of gene products 
from yeast and larger eukaryotes. 

Materials and Methods 

Reagents 

Enzymes, M13 dideoxy sequencing kits, and other reagents were obtained 
from standard commercial sources and used according to the suppliers' 
specifications. 35S-dATP was obtained from Amersham Corp. (Arlington 
Heights, IL) and 32p-dATP was obtained from ICN Biomedicals, Inc. (Ir- 
vine, CA). Calcofluor White M2R New was a gift from American Cyan- 
amid Co. (Bound Brook, NJ). 
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Media, Growth Conditions, Strains, and Plasmids 
Conditions for the growth and maintenance of bacterial and yeast strains 
have been described (Maniatis et al., 1982; LiUie and Pringle, 1980; Sher- 
man et al., 1986). The permissive and restrictive temperatures for growth 
of temperature-sensitive mutants were 23 and 36°C, respectively. Esche- 
richia coli strain I-IBI01 was routinely used as a plasmid host. The S. cere- 
visiae strains used were C276, MATa/MAT~ gal2/gal2 prototrophic, and 
C276-4A, MATa gal2 prototrophic (Wilkinson and Pringle, 1974); 
JPT163BD5-5C, MATv~ cdc42-1 gal2 (Adams et al., 1990; Adams, A., and 
J. R. Pringle, unpublished results); TD4, MATa ura3 his4 leu2 trpl gal2, 
and TD1, MATa ura3 his4 trpl gal2 (both provided by G. Fink, Whitehead 
Institute, Cambridge, MA); DJTD2-16D, MATa cdc42-1 ura3 his4 leu2 trpl 
gal2, and DJTD2-16A, MATa cdc42-1 ura3 his4 leu2 trpl gal2 (both con- 
structed by crossing JPT163BD5-5C to TD4); DJIDT-1, MATa/MATc~ 
cdc42-1/+ ura3/ura3 his4/his4 leu2/+ trpl/trpl gal2/gal2 (constructed by 
mating DJTD2-16A to TD1); DJMD2-7C, MATc~ cdc42-1 ura3 his4 leu2 
gal2 RDNI::LEU2 (Johnson et al., 1987); DJMD4-30B, MATa ura4 asp5 
his3 ilv5 leu2 GAL2 (Johnson et al., 1987); DJMD22-3B MATa cdc42-1 his4 
leu2 trpl GAL2 (constructed by crossing DJMD4-30B to DJTD2-16D); and 
DJD1, MATa/MATct cdc42-1/cdc42-t ura3/+ his4/his4 leu2/leu2 trpl/trpt 
GAL2/gal2 (constructed by mating DJMD22-3B to DJTD2-16D). 

Plasmids pBR322, YEp24, YRp7, YIpS, and YEp51 have been described 
elsewhere (Maniatis et al., 1982; Botstein et ai., 1979; Broach et al., 1983). 
The yeast-E, coil shuttle plasmid YEpl03 contains the URA3 selectable 
yeast marker and the 2-# plasmid origin of replication (Lillie, S., and J. R. 
Pringie, unpublished results). The yeast genomic DNA library in plasmid 
YEp24 (provided by D. Botstein, Genentech, South San Francisco, CA) 
contains fragments produced by partial Sau 3A digestion of DNA from 
S. cerevisiae strain DBY939 (Carlson and Botstein, 1982). 

DNA and RNA Manipulations 
Standard procedures were used for recombinant DNA manipulations 
(Maniatis et al., 1982), E. coli and yeast transformations (Maniatis et al., 
1982; Hinnen et al., 1978), plasmid isolation from E. coli (Birnboim and 
Doly, 1979) and yeast (Sherman et al., 1986), and nick translations using 
32p-dATP (Maniatis et al., 1982). Total yeast DNA was isolated essentially 
as described previously (Bloom and Carbon, 1982). Total RNA was pre- 
pared from strain C276-4A growing exponentially in the rich, glucose-con- 
taming medium YM-P (LiUie and Pringle, 1980) essentially as described 
by Maccecchini et al. (1979). Poly(A)-containing RNA was then isolated 
by chromatography on poly(U)-Sephadex (Bethesda Research Laborato- 
ries, Gaithersburg, MD), following the manufacturer's instructions. DNA 
and RNA blot hybridizations were performed essentially as described previ- 
ously (Maniatis et al., 1982; Thomas, 1980), using 1% agarose gels and 
nitrocellulose paper. The DNA-DNA hybridizations were performed at 
65°C for ,,o16 h in a solution containing 5 × SSC salts (Maniatis et al., 1982) 
and 1% sarkosyl. The RNA-DNA hybridizations were performed at 42°C 
for ",,16 h in 50 mM sodium phosphate buffer, pH 7, containing 5× SSC 
salts, 250 #g/ml calf thymus DNA, 0.02% bovine serum albumin, 0.02% 
FicoU 400, 0.02% polyvinylpyrollidone, and 50% formamide. 

MI 3 dideoxy sequencing (Sanger et al., 1977) was performed essentially 
as described in the Bethesda Research Laboratories M13 sequencing man- 
ual, using 35S-dATP and the vectors M13mp8, M13mplS, and M13mpl9. 
Exonuclease III generation of M13 deletion derivatives used in dideoxy- 
sequencing reactions was performed using a modification (Beltzer et al., 
1986) of the procedure of Henikoff (1984). The mutagenic oligonucleotide 
GAGACCCTAGTCATAT (the underlined A is T in the wild-type sequence) 
and certain sequencing primers were provided by The University of Michi- 
gan Center for Molecular Genetics Oligonucleotide Synthesis Facility (Ann 
Arbor, MI). Site-directed mutagenesis (Kunkel, 1985) was performed using 
the MUTA-GENE TM kit from Bio-Rad Laboratories (Richmond, CA), fol- 
lowing the supplier's instructions. 

The mTn3 (URA3) minitransposon (Seifert et al., 1986) was used for in- 
sertional inactivation of the CDC42 gene. The Sea I-Xba I fragment from 
pBR(42)l (see Results) and a fragment from YEp24 containing the 2-# plas- 
mid origin of replication were inserted by standard procedures into plasmid 
pHSS6 (Seifert et al., 1986) to generate plasmid pHSS6(42)l. After co- 
transformation of pHSS6(42)l and a mTn3 (URA3) transposon-containing 
plasmid into the appropriate E. coli strain (Seifert et al., 1986), cells that 
contained a mTn3(URA3) transposon inserted into pHSS6(42)1 were 
selected. The locations and orientations of the insertions were then deter- 
mined relative to the Xho I and Pvu I sites of pHSS6(42)l by restriction- 
enzyme analysis (see Results). 

Computer Programs 
DNA sequences were analyzed on an IBM-compatible computer using the 
Pusteil sequence analysis programs (International Biotechnologies, Inc., 
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Figure 1. (A) Restriction maps of the CDC42 region and of the in- 
serts of plasmids discussed in the text. YEp(42)l and YEp(42)2 
were primary isolates from the YEp24 library, pBR(42)l was con- 
structed by inserting the 3.7-kb Barn HI-Sad I fragment from 
YEp(42)2 into Barn HI/Sad I-digested pBR322. YRp(42)l was con- 
structed by inserting the 1.1-kb TRP1/ARSI Eco RI fragment from 
YRp7 into the Eco RI site of pBR(42)l. YRp(42)2 was constructed 
by deleting a 3.3-kb Ava I fragment from pBR(42)l (using a site in 
the vector) and then inserting the TRP1/ARS1 fragment as just de- 
scribed, pBR(42)3 was constructed from pBR(42)l by deleting 
DNA to the left of the Sea I site and to the right of the Nde I site 
using restriction sites within the vector. YRp(42)3 was constructed 
by inserting the TRP1/ARSI fragment into pBR(42)3 as just described. 
The cdc42-complementing activity of each plasmid capable of rep- 
licating in yeast was determined by streaking plasmid-containing 
DJTD2-16D cells onto YEPD plates at 36°C; + indicates essen- 
tiaUy uniform growth at 36°C, - indicates no growth at 36°C. Re- 
striction sites are indicated: A, Ava I, B, Barn HI, E, Eco RI, Hp, 
Hpa I, J, vector-insert junction, N, Nde I, P, Pvu I, V, Eco RV, S, 
Sad I, Sc, Sea I, Sp, Spe I, X, Xba I, Xh, Xho I. All sites are shown 
for each enzyme. (B) Expanded maps of the cdc42-complementing 
Sca I-Nde I region and of the inserts of additional plasmids. Restric- 
tion sites are indicated as in A except that some but not all Rsa I 
(R) and HinfI  (Hf) sites are also shown. YEp(42)3 was constructed 
by inserting the l.l-kb Hpa I-Xba I fragment from pBR(42)l into 
Sma I/Nhe I-digested YEp24. YEp(42)4 was constructed by insert- 
ing the ,,o0.5-kb Rsa I fragment from pBR(42)3 into Pvu II-digested 
YEp24. YEp(42)5 was constructed by inserting the ,~0.6-kb HinfI  
fragment from pBR(42)3 into Pvu H-digested YEp24. Plasmids 
were tested for cdc42-complementing activity as described in A; 
+ / -  indicates that most cells failed to grow at 36°C but that %+ 
papillae appeared at a high frequency (see text). Circles indicate the 
sites of transposon insertions that did ( - )  or did not (+)  inactivate 
cdc42-complementing activity (see text). Arrows and associated 
numbers indicate the directions and lengths (in codons) of the ATG- 
initiated open reading frames revealed by sequencing (see text). 
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New Haven, CT). Amino acid sequence similarities were determined using 
the Microgenie TM sequence-analysis programs (Beckman Instruments, Inc., 
Fullerton, CA). 

Visualization of Chitin Rings 

Plasmid-containing yeast cells were grown under conditions selective for 
the plasmid, with 2% glucose or 2% galactose as the sole carbon source. 
Chitin rings were visualized by fluorescence microscopy after staining cells 
in 0.1% Calcofluor for 3 rain and washing in distilled water (Sloat and Prin- 
gle, 1978). 

Resu l t s  

Isolation and Identification of CDC42 

Plasmids that complemented the temperature-sensitive 
cdc42ol mutation in strain DJTD2-16D were isolated from 
a yeast genomic-DNA library in the URA3-containing plas- 
mid YEp24. 24 primary Ura + Ts + transformants were ob- 

tained. From each transformant, a plasmid was recovered 
into E. coli that could retransform DJTD2-16D to Ura + 
Ts +. The Ura + and "Is + phenotypes of  these transformants 
cosegregated after growth on nonselective media (data not 
shown), indicating that the complementation of  cdc42-1 was 
due to the autonomously replicating recombinant plasrnids. 
Restriction enzyme analyses and D N A - D N A  blot hybridiza- 
tion experiments (data not shown) indicated that all 24 plas- 
mids contained overlapping regions of  DNA. Several repre- 
sentative plasmids that were examined in more detail shared 
a common 2.7-kb region of  DNA (Fig. 1 A). D N A - D N A  blot 
hybridization experiments using total yeast DNA and a 
probe derived from one of  these plasmids revealed only the 
fragments expected if the cloned DNA was derived without 
rearrangement from contiguous chromosomal DNA that was 
single copy in the haploid genome (Fig. 2 A, lanes 1-5). 

The observation that all 24 complementing plasmids con- 
tained overlapping DNA inserts suggested that the CDC42 

Figure 2. (A and B) DNA-DNA blot hybridization analyses of chromosomal DNA from parental and transformed strains. After digestion 
with the indicated restriction enzymes, DNA fragments were separated and hybridized to radioactively labeled pBR(42)l as described 
in Materials and Methods. The sizes of the fragments visualized are indicated in kilobase pairs. (A) Total DNA from strain TD4 (lanes 
1-5) and from the same strain after integration of a plasmid containing cdc42-complementing sequences and the URA3 gene (see text; 
lane 6) was digested with Eco RI (lane I) ,  Eco RI + Xba I (lane 2), Eco RI + Pvu I (lane 3), Eco RI + Xho I (lane 4), or Eco RI 
+ Barn HI (lanes 5 and 6). As the integrated vector sequence contains a single Bam HI site, the replacement of the original 4.3-kb F_,co 
RI fragment (lane 5) by two new Eco RI/Bam HI fragments in the transformant (lane 6) indicates that the integration had occurred at 
the chromosomal site homologous to the cdc42-complemendng DNA. (B) Total DNA from strain DJID7-1 (lanes 1 and 2) and from the 
same strain after integration of a fragment in which cdc42-complementing DNA had been replaced by URA3 (see text; lanes 3 and 4) 
was digested with Eco RI (lanes I and 3) or Eco RI + Xba I (lanes 2 and 4). The URA3 fragment used contained an Eco RI site immediately 
adjacent to the Spe I site used in the cloning. Thus, integration of the hybrid fragment at the chromosomal site homologous to the cdc42- 
complementing DNA would result in the loss of the chromosomal Xba I site but the addition of a new Eco RI site at nearly the same 
location. Therefore, digestion of DNA from the transformant with Eco RI should yield two new fragments of about the same sizes as those 
generated by an Eco RI + Xba I digestion of the parental DNA, together with the original 4.3-kb Eco RI fragment (from the chromosome 
not involved in the integration event). Digestion of DNA from the transformant with Eco RI + Xba I should yield doublet bands at the 
positions of the two new bands in the Eco RI digest. The results shown conform to these predictions. (C) Analyses of mRNA transcripts 
encoded by the cdc42-complementing region. Poly(A)+-RNA from strain C276 (20 ~g/lane in lanes 1 and 2; 10 tzg/lane in lanes 3 and 
4) was separated and hybridized to radioactive probes as described in Materials and Methods. The probe for lanes I and 2 was pBR(42)3; 
autoradiography was for 9.5 (lane 1 ) and 140 h (lane 2). The probes for lanes 3 and 4 were single-strand DNAs prepared by primer extension 
in the presence of 32P-dATP on templates of M13mpl8 (lane 3) and M13mpl9 (lane 4) into which the cdc42-complementing Sca I-Xba 
I fragment had been cloned using the Sma I and Xba I sites of the vectors. 
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AATCATCTAC 
GAGCTTCGTG 
AAAGCAACGC 
GCATTATTTC 
ATATACAGGT 
GGTCATTCAA 
AGTGATAAAA 
TGTTTTGATA 
GCAATAGGTT 

TAGGTTAACA 

ATG CAAACG 
Met Gln Thr 

ATC TCC TAT 
Ile Set Tyr 

GCG GTG ACT 
Ala Val Thr 

CAA GAA CAT 
Gln Glu Asp 

TGT TTC AGT 
Cys Phe Ser  

GTA CAT CAC 
Hal His His 

CAT GAC AAG 
Asp Asp Lys 

CAA GGT TCC 
Gln Gly Set 

ACA CAA CGC 
Thr Gln Arg 

GTT ATC AAG 
Val I1e Lys 

TCATATTAGT 

TTTTATTATC 
CATCCGTCTG 
TGTTCTTCAA 
CTTAACATCA 
TATGAAACAT 

GCC 
GGTATAAATA ACAATTTAAT TTACGTCTCT 
CTTATAGCAA CATTCGGTTT CCGAAGTTTC 
GACCCGTCGT GGGTTCAATC CCCACCTCGA 
TATCAACTGT TGTAGCTACG TTACACCTAA 
AAATACGGCA CATTGTCTTC TAAACATCGC 
TACGGGTAAT ACTGCTTCCA TTGGGCCCTT 
AAAAGCAAAC AAGGTTGATT GATCGATGAT 
AATAGGTTCC AGGTGTACCG AGATATACTG 
TCCTTTGTCG CAAAAAATIA_T~T~CGTTAT 

AACGAATTAG AGAAGCAAAA CTCATAAAAC 

CTA AAG TGT GTT GTT 
Leu Lys Cys Val Val 

ACA ACG AAT CAA TIT 
Thr Thr Asn Gln Phe 

GTG ATG ATT GGT GAT 
Val MeU Ile Gly Asp 

TAG CAT CGA TTG AGA 
Tyr Asp Arg Leu Arg 

GTT ATT TCC CCA CCC 
Val Ile Ser Pro Pro 

CAT TGT CCA GGT GTA 
His Cys Pro Gly Val 

GTA ATC ATC GAG AAG 
Val Ile Ile Clu Lys 

AGG TTA GCA AGA GAA 
Arg Leu Ala Arg Clu 

GGT TTG AAG AAT GTA 
Gly Leu Lys Ash Hal 

AAA AGT AAA AAA TGT 
Lys Ser Lys Lys Cys 

GTC GGT CAT 
Val Gly Asp 

CCA CCC GAC 
Pro Ala Asp 

GAA CCA TAT 
Glu Pro Tyr 

CCC~--~TCA 
Pro~Leu~Ser 

TCT TTT GAA 
Set Phe Glu 

CCA TGC CTG 
Pro Cys Leu 

TTG CAA AGA 
Leu Gln Arg 

CTG AAAGCA 
Leu Lys Ala 

TTC CAT GAA 
Phe Asp Olu 

ACA ATT TTG 
Thr Ile Leu 

ATATGCCCAT CTTTTCTTAA TCTATATCTA 

GTTGTATTTC ATTTTTTCGC TTTGCTCAGA 
TTCAAGGCGG AGTAGTGCAA AAAAGTCGAG 
CGCTAAACGC GACATTTGCG AGTCCTACCA 
AAAATTTGCG CTTTTCTTGC TTTTTTCTGA 

GGAACTCAAA AGGGTAATTT CGTGA,~'~C -701 
TTCGAAAATG CTCGTGTAGC TCAGTGGTTA -631 
TGTGCCAAAG ACCTTTCAAA CAGGCCTTTA -561 
GCACTTTCTC TTTTTTTTTT AAAAAAAGTT -491 
TTTTGTATTG TAGACTGTTA GATAATCCAC -421 
ATTAAAGATG TCTTCCACCG TCGATTCAAG -351 
CCAAATGAAA CAAGATACGG GAAAAAGTAA -281 
AGACGCGATT CTTCGAAAAG GCAAGAGCAG -211 
ATTATCCTTC TCTGTCATTC TTCACTTTTT -141 
TTATIAIA~T ATTCTATTTT CCTGAGGAGA -71 

AAGAAATAAA CGTATTAGGT CTTCCACAAA -I 

GGT GCT GTT GGG AAA ACG TGC CTT CTA 60 
Gly Ala Val Gly Lys Thr Cys Leu Leu 

TAT GTT CCA ACA GTG TTC GAT AAC TAT 120 
Tyr Val Pro Thr Val Phe Asp Ash Tyr 

ACG TTA GGT TTG TTT CAT ACG GCC GGT 180 
Thr Leu Gly Leu Phe Asp Thr Ala Gly 

TAT CCT TCT ACT CAT GTA TTT TTG GTT 240 
Tyr Pro Ser Thr Asp Val Phe Leu Val 

AAC GTT AAA GAA AAA TGG TTC CCT GAA 300 
Asn Val Lys Glu Lys Trp Phe Pro Glu 

GTC GTC GGT ACG CAG ATT GAT CTA AGG 360 
Val Val Gly Thr Gin lle Asp Leu Arg 

CAA AGA TTA CGT CCG ATT ACA TCA GAA 420 
Gln Arg Leu Arg Pro Ile Thr Set Glu 

GTA AAA TAT GTC GAG TGT TCG GCA CTA 480 
Val Lys Tyr Val Glu Cys Set A1a Leu 

GCT ATC GTG GCC GCC TTC GAG CCT CCT 540 
Ala Ile Val Ala Ala Leu Glu Pro Pro 

TAG 576 
End 

AAATTAACTT ATATATACAC CTTCCTATCC 646 

GTTGATTCTC TTTGTTTCTT GCGCCAGGAT 716 
CCGTCAAGCC CCAAACGTTC AATACTTCCA 786 
CGTCTTCTCC GTTTACGGGC AAAAACACCT 856 
AATATATTCG TTGCATAGAC ACGGTATCCA 926 

Figure 3. Nucleotide sequence 
of the CDC42 region and pre- 
dicted amino acid sequence 
of the CDC42 product. The 
CDC42 open reading frame 
was identified as described in 
the text. The nucleotide se- 
quence is numbered relative 
to the A of the putative initia- 
tor codon. The Xho I, Hpa I, 
and Pvu I sites (underlined) 
are located at positions -525 
to -520, -67  to -62,  and 
+192 to +197, respectively. 
The TTG L~" codon altered by 
site directed mutagenesis is 
boxed. Multiple inframe stop 
codons ( . . . )  are present with- 
in the 40-bp 5' to the putative 
initiator ATG and within the 
30-bp 3' to the putative termi- 
nation codon. Possible TATA 
promoter sequences (broken 
underlines) are present at po- 
sitions -112 to -107 and -96  
to -91. In addition, a 17-bp 
stretch of poly(dA-dT) is pres- 
ent at position - 5  I0 to -494. 
Similar stretches of poly(dA- 
dT) have been implicated in 
the constitutive expression 
of certain promoters (Struhl, 
1986). These sequence data 
are available from EMBL/Gen- 
Bank/DDBJ under accession 
number X51906. 

gene itself, rather than a plasmid borne suppressor, had been 
cloned. This hypothesis was supported by the observations 
that CDC42 maps to chromosome XII and that the cloned 
DNA hybridized to the chromosome XII band after or- 
thogonal field alternation gel electrophoresis (Johnson et al., 
1987). To test further the identity of the cloned DNA, we in- 
tegrated a plasmid containing cdc42-complementing se- 
quences and the yeast selectable marker URA3 into a 
CDC42 ÷ yeast strain and then determined the meiotic link- 
age between the integrated URA3 gene and a cdc42 muta- 
tion. The 2.5-kb Xho I-Sal I fragment from plasmid 
pBR(42)l was inserted into the Sal I site of the URA3- 
containing plasmid YIp5 (which cannot replicate autono- 
mously in yeast). The resulting plasmid was linearized 
within the insert at the unique Xba I site and transformed into 
strain TIM, selecting for Ura ÷. Two stable Ura ÷ transfor- 
mants were shown by DNA-DNA blot hybridization to have 
the plasmid integrated at the chromosomal site homologous 
to the cdc42-complementing DNA (Fig. 2 A, lanes 5 and 6). 
These transformants were crossed to the cdc42-1 strain 
DJMD2-7C. 80 of 84 four-spore tetrads were parental di- 

types (2 Ura ÷ Ts+: 2 Ura- Ts-); the remaining four tetrads 
segregated 3 Ts÷: 1 Ts-. Thus, integration had indeed oc- 
curred at the CDC42 locus. 

The recessive, temperature-sensitive lethal phenotype of 
the cdc42-1 mutation suggests that the CDC42 gene product 
is essential for vegetative growth. To test this conclusion and 
complete the identification of the cloned DNA, we generated 
a deletion mutation by replacing the cdc42-complementing 
region with the URA3 gene. The DNA between the unique 
Hpa I and Xba I sites in plasmid pBR(42)l (Fig. 1 A) was 
replaced with the URA3-containing Sma I-Spe I fragment 
from YEp24. A 2.5-kb Xho I-Spe I fragment, which con- 
tained the URA3 gene flanked on both sides by DNA from 
the cdc42-complementing region, was excised from the re- 
suiting plasmid and used to transform the CDC42/cdc42 het- 
erozygous diploid strain DJID7-1 to Ura +. Two stable Ura + 
Ts- transformants were shown by DNA-DNA blot hybridi- 
zation to have sustained fragment replacement by the trans- 
forming sequences at the site homologous to the cdc42-com- 
plementing DNA (Fig. 2 B). Dissection of 22 tetrads from 
these transformants yielded exclusively a segregation of 2 live, 
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Figure 4. DNA sequence of the region altered by site-directed 
mntagenesis. Mutagenesis was performed as described in Materials 
and Methods using M13mpl9 containing the 1.8-kb Sca I-Xba I 
fragment (see text) as template. The column of letters is the wild- 
type CDC42 sequence; the T to A transversion produced by muta- 
genesis is also indicated. Sequence 1 is of a control template that 
was not altered by the mutagenesis; note that the uppermost two 
bands in the G lane are "ghost bands" that were not present in other 
sequencing runs on control templates. Sequence 2 is of a template 
containing the mutation. The dideoxy nucleotide used in each se- 
quencing reaction is indicated above the corresponding lane. 

Ura- Ts- : 2 dead, showing that the insertion of URA3 had 
produced a lethal mutation that was at or near the CDC42 lo- 
cus. Microscopic examination of the dead spore clones showed 
that they had undergone several rounds of cell division before 
arresting as large, unbudded cells (like the cdc42-1 ts mu- 
tant). Moreover, the Ts- phenotype of the original diploid 
transformants showed that the new lethal mutation failed to 
complement the cdc42-1 ~ mutation, providing further evi- 
dence that the bona fide CDC42 gene had been cloned. 

Localization of  CDC42 on the Complementing DNA 

To localize the CDC42 gene, subclones were constructed as 
described in Fig. 1 A. Complementation of the cdc42-1 mu- 
tation by plasmids YRp(42)l and YRp(42)3, but not by 
YRp(42)2, indicated that CDC42 lies within the 1.6-kb Sca I- 
Nde I region. Subclones derived from this region all failed 
to complement the cdc42-1 mutation (Fig. 1 B). However, 
cdc42-1 cells transformed with plasmid YEp(42)3 yielded 
Ts + subclones at a frequency of ~10 -t when plated at 36°C. 
These subclones were stably Ts ÷ and Ura ÷ when grown un- 
der nonselective conditions, suggesting that integration of 
the plasmid had generated a complete, Ts ÷ copy of CDC42 
from the complete, but mutant, copy originally in the chro- 
mosome and an incomplete, but otherwise wild-type, copy 
in the plasmid. Although the frequency of integration 
seemed surprisingly high (see Discussion), this result sug- 
gested strongly that the cdc42-1 mutation lies to the right of 
the Hpa I site. In contrast, cdc42-1 cells transformed with 
either plasmid YEp(42)4 or YEp(42)5 yielded Ts ÷ subclones 
at frequencies no greater than those observed with the con- 
trol plasmid YEp24, indicating that recombination-mediated 
marker rescue could not occur. This result was surprising in 
view of the data (presented below) suggesting that these two 

fragments span the entire CDC42 coding region (see Dis- 
cussion). 

Localization of CDC42 was also attempted by determining 
the distribution of sites at which transposon insertion could 
inactivate cdc42-complementing activity. Transposon-con- 
taining plasmids were collected and analyzed as described 
in Materials and Methods, then tested for cdc42-comple- 
menting activity in strain DJTD2-16D. The results (Fig. 1 B) 
suggested that the CDC42 gene occupied a ~,0.9-kb region 
lying mostly between the Hpa I and Nde I sites. 

Analysis of  mRNA Transcripts 

RNA-DNA blot hybridization using a probe spanning the 
cdc42-complementing region revealed only one major tran- 
script (Fig. 2 C, lane/) ~1 kb long (as judged by its comigra- 
tion with the URA3 transcript; data not shown). A 14-fold 
longer exposure of the autoradiogram revealed a faint band 
corresponding to a transcript of ,'-, 3 kb, but did not reveal 
any additional transcripts of lower molecular weight (Fig. 2 
C, lane 2; see Discussion). Hybridization of the ~l-kb tran- 
script to one of two single-strand probes (Fig. 2 C, lanes 3 
and 4) indicated that it is transcribed from left to right as 
shown in Fig. 1 B. 

Analysis of CDC42 Nucleotide and Predicted Amino 
Acid Sequences 

The 1.8-kb Sca I-Xba I fragment from pBR(42)l was in- 
serted into M13mpl8 and M13mpl9 that had been digested 
with Sma I and Xba I. These phages and appropriate deletion 
derivatives (see Materials and Methods) were then used in 
dideoxy-sequencing reactions. Both strands of the cdc42- 
complementing region between the Sca I and Nde I sites 
(Fig. 1 B) were completely sequenced using this strategy 
(Fig. 3). This analysis revealed the presence of eight ATG- 
initiated open reading frames (ORFs) ~ of >140 codons (Fig. 
1 B)  and no TACTAAC consensus splicing sequence (Lang- 
ford et al., 1984), suggesting an absence ofintrons. The vari- 
ous data presented above suggested strongly that the 191 
codon ORF was the CDC42 gene, but did not completely 
eliminate the possibility that the 100 codon ORF on the other 
strand was responsible for CDC42 activity. To settle this 
point, we used site-directed mutagenesis to change the 
TTG L~u codon at nucleotides 208-210 of the 191 codon 
ORF (see Fig. 3) to a TAG nonsense codon (Fig. 4). The cor- 
responding change in the 100 codon ORF was from ACA TM 

to ACT TM at codon 2; as both of these threonine codons are 
used frequently (Bennetzen and Hall, 1982), this change 
presumably would not affect the expression of the hypotheti- 
cal 100 amino acid gene product. DNA sequence analyses 
showed the absence of any other nucleotide changes within 
the 191 codon or 100 codon ORFs. After mutagenesis and 
sequence analysis, the Xho I-Hind III fragment containing 
the CDC42 region (see Fig. 1; the Hind 1II site is next to the 
Xba I site in M13mpl9) was isolated from phage with and 
without the mutation and inserted into Sal I/Hind III- 
digested plasmid YEpl03. The resulting plasmids that con- 
tained the mutation were unable to complement the cdc42-1 
mutation in strain DJTD2-16D. In contrast, two control plas- 
mids that had been generated using the same procedure, but 

1. Abbreviation u.~ed in this paper: OR.F, open reading frame. 
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Figure 5. Similarities between the predicted amino acid 
sequences of the CDC42 gene product, the S. cerevisiae 
RII01 and Rtt02 gene products (Madaule et al., 1987), 
the human rho gene product (Madaule and Axel, 1985), 
and the human H-ras gene product (Capon et al., 1983). 
The one letter amino acid code is used. Numbering cor- 
responds to the human H-ras amino acid sequence. 
Dashes and asterisks indicate amino acids identical and 
related, respectively, to those of the CDC42 gene prod- 
uct. (Amino acids considered related were aspartate and 
glutamate; isoleucine, leucine, valine, and alanine; lysine 
and arginine; asparagine and glutamine; and serine and 
threonine.) Gaps were introduced by eye to maximize the 
amino acid similarities. Overlines indicate the regions for 
which peptide sequence data are available for the mam- 
malian protein G25K (see tex0. Note that the amino- 
terminal sequence of the human rho protein is missing 
because the available sequence was derived from an in- 
complete cDNA. 

did not contain the mutation, retained cdc42-complementing 
activity. Thus, it seems clear that the 191 codon ORF en- 
codes the CDC42 gene product. 

The predicted CDC42 product is a polypeptide of 191 
amino acids with molecular weight of 21,356 and a net 
charge of +2  (Fig. 3). Comparison of the amino acid se- 
quence with the National Biomedical Research Foundation 
protein database revealed a high degree of similarity between 
the CDC42 product and members of the ms and rho families 
of gene products (Fig. 5). For example, the CDC42 product 
is 30% identical (40% identical or related) in predicted 
amino acid sequence to the human H-ras product and com- 
parably similar to the yeast RAS1 and RAS2 gene products. 
Much of this similarity is in the regions of the ras proteins 
that have been implicated in GTP binding and hydrolysis 
(residues 5-21, 28, 57-64, 114-,120, and 143-148; Dever et 
al., 1987; de Vos et al., 1988) and the COOH-terminal 
modifications leading to membrane association (residues 
186-189: Clarke et al., 1988; Hancock et al., 1989; Schafer 
et al., 1989). Interestingly, however, the highly conserved 
Ash and Lys residues at positions 116 and 117 of ms, which 
have been implicated in the guanine specificity of the 
nucleotide-binding site, are replaced by Thr and Gln in 

CDC42 (see also below). The similarities of CDC42 to the 
rho proteins are more extensive and more widely distributed 
through the coding regions. In particular, the CDC42 prod- 
uct is '~53% identical (~58% identical or related) to the hu- 
man andAplysia rho gene products, 52% identical (61% iden- 
tical or related) to the S. cerevisiae RIt01 gene product, and 
37% identical (51% identical or related) to the S. cerevisiae 
RII02 gene product, which is itself 53% identical (66% 
identical or related) to the S. cerevisiae RII01 gene product. 
Although the available data are still limited, it appears that 
the closest homologue to CDC42 may be "G25K," a 25-kD 
GTP-binding protein that has been purified from several 
mammalian tissues (Evans et al., 1986; Waldo et al., 1987; 
Polakis et al., 1989). Of the four peptides for which se- 
quence is available, three are very similar to regions in the 
CDC42 product (overlined in Fig. 5): t>4 is identical in 19/20 
positions to residues 47-66 of CDC42; p2 is identical in 
10/12 (and similar in 1/12) positions to residues 109-120 of 
CDC42; and pl is identical in 14/17 (and similar in 1/17) po- 
sitions to residues 167-183 of CDC42. It is worthy of special 
note that G25K, like CDC42, has Thr-Gln instead of Asn- 
Lys in the putative guanine specificity region (see above and 
Discussion). 
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l~gure 6. Budding patterns of plasmid-containing yeast 
cells. Cells were grown on 2 % galactose as the sole car- 
bon source and stained with Caleofluor to reveal bud 
scars as described in Materials and Methods. (.4 and B) 
Haploid strain DJMD22-3B containing (A) control plas- 
mid YEp51 or (B) plasmid YEp51(42). (C and D) Diploid 
strain DJDI containing (C) plasmid YEp51 or (D) plas- 
mid YEp51(42). Bars, 4 t~m. 

Expression of CDC42 under GALlO-promoter Control 

Inspection of the CDC42 sequence revealed that the Hpa I 
site is at position -67  to -62  relative to the putative initiator 
ATG codon (Fig. 3). This suggested that the lack of com- 
plementation and unusual marker-rescue results obtained 
with the Hpa I-Xba I fragment in plasmid YEp(42)3 (see 
above) might have reflected the presence of only an incom- 
plete promoter in this fragment, a possibility consistent with 
the observation of potential TATA promoter sequences at po- 
sitions -112 to -107 and -96  to -91 (see Fig. 3). To explore 
this possibility, the Hpa I-Xba I fragment from plasmid 
pBR(42)l was inserted into the Sal I site of plasmid YEp51 
so that the 191 codon ORF should be under the control of 
the yeast galactose-inducible GALIO promoter in the result- 
ing shuttle plasmid. This plasmid, YEp51(42), complemented 
the cdc42-1 mutation in strain DJMD22-3B when cells were 
grown on either 2 % glucose or 2 % galactose as the sole car- 
bon source, as judged by the cells' ability to grow at a normal 
rate at 36°C. These results supported our interpretation of 
the results obtained with plasmid YEp(42)3 (see Discussion). 
However, even at 23°C, YEp51(42)-containing cells growing 
on either carbon source displayed abnormalities in their bud- 
ding patterns, as revealed by the staining of bud scars with 

Calcofluor. In contrast to the normal unipolar budding pat- 
tern of haploid cells and bipolar budding pattern of diploid 
cells (Fig. 6 A and C; Sloat et al., 1981), we observed appar- 
ently random budding patterns in ,~75% of YEp51(42)-con- 
taining DJMD22-3B and DJD1 cells grown under derepressing 
conditions (2% galactose) and ,~35% of YEp51(42)-con- 
taining DJMD22-3B cells grown under repressing conditions 
(2 % glucose) (Fig. 6, B and D). (Note that only cells with 
two or more bud scars could be included in these counts; 100 
such cells were counted in each case.) Only ,~10% of the 
haploid or diploid ceils containing YEp51 itself exhibited 
such budding patterns when growing on either galactose or 
glucose. However, similar abnormalities of budding pattern 
were also observed in "~50 % of DJTD2-16D cells containing 
the CDC42 gene on a 3.7-kb Barn HI-Sal I fragment (Fig. 
1 A) inserted into the high-copy number plasmid YEpl03. 

Discussion 

The CDC42 gene product is involved in the morphogenetic 
steps of the yeast cell cycle. To begin exploring CDC42 func- 
tion at the molecular level, we have isolated and sequenced 
this gene. All cdc42-complementing clones that we analyzed 
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contained overlapping DNA segments, suggesting that the 
bona fide CDC42 gene had been isolated. This suggestion 
was confirmed by the findings that the isolated DNA segment 
could direct integration to the CDC42 locus and that deletion 
of this segment yielded a lethal mutation that failed to com- 
plement the cdc42-1 ~ mutation. Subcloning localized CDC42 
to a 1.6-kb segment of DNA, the sequencing of which re- 
vealed several ORFs. The longest of these was identified as 
CDC42 by several lines of evidence, including the results of 
transposon and site-directed mutagenesis, the demonstration 
that a plasmid in which this ORF should be expressed under 
GALIO control could complement a cdc42-1 ~ mutation, and 
the demonstration that the putative CDC42 mRNA was tran- 
scribed from the strand appropriate for this ORE This mRNA 
was somewhat longer than expected from the size of the ORF, 
and it is conceivable that the actual CDC42 transcript is a 
lower abundance species that we did not detect. However, it 
seems more likely that the CDC42 transcript has unusually 
extensive untranslated regions at the 5' end, the 3' end, or 
both. Further work will be necessary to resolve these issues. 

We obtained rather confusing results when we attempted 
to use recombination-mediated marker rescue (Patterson et 
al., 1986) to confirm that the bona fide CDC42 gene had 
been isolated and to localize the cdc42-1 ts mutation. Plas- 
mid YEp(42)3 (Fig. 1 B) failed to complement the cdc424 t~ 
mutation but yielded Ts + recombinant subclones at the sur- 
prisingly high frequency of ~10%. As the insert in YEp(42)3 
spans the entire CDC42 ORE the failure of complementa- 
tion presumably results from the absence of an adequate pro- 
moter in the 64 bp of sequence 5' to the initiator ATG in this 
clone. This hypothesis is supported by the observation that 
the same fragment could complement the cdc424 '~ mutation 
when linked to the GALIO promoter. Interestingly, this com- 
plementation was observed both during growth on galactose 
and during growth on glucose, which should repress tran- 
scription from the GALIO promoter. Perhaps only a small 
amount of CDC42 mRNA is required and repression of the 
particular promoter construction used here (the GALIO pro- 
moter plus 64 bp of CDC42 upstream sequence) is incom- 
plete during growth on glucose. In any event, similar effects 
have been observed by others (Broach, J., personal commu- 
nication). 

The Ts + subclones observed with YEp(42)3 apparently 
resulted from integration of the entire plasmid. It is clear that 
such integration could generate a complete, normal copy of 
the gene, but it is unclear why the event occurred in such high 
frequency. Perhaps the DNA segment contains a hot spot for 
recombination, or the production of some normal CDC42 
product (from a partially functional promoter in YEp(42)3) 
allows the cells to survive long enough at restrictive temper- 
ature that the chances of rescue by plasmid integration are 
increased. Alternatively, there could be selection for such in- 
tegrants even during growth at the nominally "permissive" 
temperature (see Adams et al., 1990). 

In contrast, neither plasmid YEp(42)4 nor plasmid 
YEp(42)5 (Fig. 1 B) yielded Ts + recombinant transfor- 
mants at a frequency detectably above control values, al- 
though the inserts of these plasmids, taken together, span the 
entire CDC42 coding region. A possible explanation for this 
result is that the cdc42-1 allele actually contains two muta- 
tions, such that neither plasmid's insert contains the wild- 
type information corresponding to both mutant sites. This 

hypothesis is consistent with the observation that only the 
one cdc42 's mutant was isolated in a search that yielded 
multiple independent mutants for each of the related genes 
CDC24 and CDC43 (Adams et al., 1990). Sequencing of the 
cdc42-1 allele should resolve this point. 

Our results have provided some additional information 
about CDC42 function. First, the finding that overexpression 
of CDC42 can l~ad to mislocalization of budding sites sug- 
gests that the CDC42 product is involved in the initial selec- 
tion of the budding site as well as in the subsequent emer- 
gence of the bud. Interestingly, the same inference has been 
made about the CDC24 product on the basis of mutants that 
display a similar mislocalization of budding sites (Sloat et 
al., 1981). In addition, deletion of RSR/ (another ms-related 
gene that seems to be involved in bud emergence) produces 
a similar mislocalization of budding sites (Bender and Prin- 
gle, 1989), and overproduction of ABP (actin-binding pro- 
tein) 85 leads to a somewhat different abnormal pattern of 
budding (Drubin et al., 1988). It seems possible that these 
proteins are involved in marking the site at which bud emer- 
gence should occur, and that mislocalization of an over- 
produced or abnormal protein can thus perturb the normal 
budding pattern. However, it also remains possible that the 
mislocalization of budding sites in these situations simply 
reflects a less specific cellular pathology (Hayashibe, 1975; 
Thompson and Wheals, 1980). 

Second, the finding that the predicted CDC42 protein has 
substantial sequence similarity to the ras and rho families of 
proteins provides important, though limited, clues to its 
function at the molecular level. Much of this similarity is in 
the regions that have been implicated in the binding and hy- 
drolysis of GTP. In this regard, it is relevant that the Aplysia 
rho gene product has been shown to bind and hydrolyze GTP 
after expression in E. coli (Anderson and Lacal, 1987), and 
that the G25K protein (which shares with CDC42 an unusual 
feature in the putative GTP-binding site: see Results) binds 
guanine nucleotides avidly (Evans et al., 1986; Waldo et al., 
1987; Polakis et al., 1988). If the CDC42 product indeed 
also has GTP binding and hydrolysis activities (a point to be 
tested as soon as CDC42-specific antibodies are available), 
it is likely also to be involved in signal transduction of some 
sort. However, it is important to note that this biochemical 
motif has apparently been adapted to a wide variety of pur- 
poses in yeast. Confirmed or suspected GTP-binding/hydro- 
lyzing proteins identified to date include the RAS1 and RAS2 
products, implicated in the control of adenylate cyclase and 
hence (via the cAMP-dependent protein kinase) in the over- 
all coordination of cell growth and macromolecular synthe- 
sis (Powers et al., 1984; Tatchell, 1986); the GS//product, 
which may be involved in the Gl-to-S phase transition (Kiku- 
chi et al., 1988); the YFH product (Gallwitz et al., 1983), 
which appears to be localized to the Golgi apparatus (Segev 
et al., 1988) and is implicated in the control of secretion and 
Ca 2+ flux (Segev and Botstein, 1987; Wagner et al., 1987); 
the SEC4 product, which is involved in post-Golgi apparatus 
events of the secretory pathway (Salminen and Novick, 1987; 
Goud et al., 1988); the SCG1/GPA1 product, which appears 
to be involved in the pheromone response pathway (Dietzel 
and Kurjan, 1987; Miyajima et al., 1987); the GPA2 prod- 
uct, which may be involved in regulating cAMP levels (Na- 
kafuku et al., 1988); the CIN4 product, which appears to be 
involved in ensuring normal chromosome transmission dur- 
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ing mitosis (Steams, T., personal communication); the ARF/ 
and ARF2 gene products, which are similar to mammalian 
ADP-ribosylation factor (Sewell and Kahn, 1988); and the 
Rtt01 and RH02 products, whose function(s) are unknown 
but apparently distinct from those of the RAS1 and RAS2 pro- 
ducts (Madaule et al., 1987). There is no reason to think that 
this list is complete. 

Thus, the critical step in elucidating CDC42 function is 
likely to be determining what signals are transduced, and by 
means of what downstream effectors. On these points we 
have as yet few clues. The extensive sequence similarities be- 
tween the CDC42 product and the RHO gene products of 
yeast and animals suggests that there may be common 
aspects of function beyond GTP binding and hydrolysis. 
However, this clue is not too helpful until more is known of 
the function of the other RHO gene products. The similarity 
of cdc42 mutants to cdc24 mutants and the evidence that the 
CDC24 product is a Ca2+-interactive protein (Ohya et al., 
1986a,b; Miyamoto et al., 1987) suggest that signal trans- 
duction by the CDC42 product may also involve Ca 2+, but 
there are no clues yet as to the nature of such possible in- 
volvement. Finally, the observation that the CDC42 product 
has COOH-terminal sequences similar to those at which ms 
and related proteins become modified by hydrophobic pros- 
thetic groups (Clarke et al., 1988; Goodman et al., 1988; 
Molenaar et al., 1988; Hancock et al., 1989; Schafer et al., 
1989) suggests that the CDC42 product also may be modified 
as a mechanism for attachment to the cell membrane. This 
is an attractive notion if, as suggested above, one function 
of the CDC42 product is to help mark the site on the cell sur- 
face at which the new bud should emerge. 
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Note Added in Proof. Since submission of this paper, we have learned that 
the predicted product of  the human racl gene (Didsbury, J., R. F. Weber, 
G. M. Bokoch, T. Evans, and R. Snyderman. 1989. J. Biol. Chem. 
264:16378-16382) is ,,o70% identical to that of  CDC42. In addition, two 
apparently nonidentical versions of "G25K" (see text) have now been 
cloned; their sequences are ,x,80% identical (~,,86% including related 
amino acids) to the CDC42 product (Polakis, P., personal communication; 
Cerione, R., personal communication). 
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