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Tissue remodeling by invadosomes
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Abstract

One of the strategies used by cells to degrade and remodel the extracellular matrix (ECM) is based on invadosomes, actin-based 
force-producing cell–ECM contacts that function in adhesion and migration and are characterized by their capacity to mediate 
pericellular proteolysis of ECM components. Invadosomes found in normal cells are called podosomes, whereas invadosomes of 
invading cancer cells are named invadopodia. Despite their broad involvement in cell migration and in protease-dependent ECM 
remodeling and their detection in living organisms and in fresh tumor tissue specimens, the specific composition and dynamic 
behavior of podosomes and invadopodia and their functional relevance in vivo remain poorly understood. Here, we discuss recent 
findings that underline commonalities and peculiarities of podosome and invadopodia in terms of organization and function 
and propose an updated definition of these cellular protrusions, which are increasingly relevant in patho-physiological tissue 
remodeling.
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Introduction
Tissue remodeling is the (patho)physiological reorganization  
or renewal of existing tissues and consists of changes in extra-
cellular matrix (ECM) composition and architecture and ensu-
ing cellular responses. Many cells degrade and remodel the 
ECM using invadosomes, which are actin-based force-producing  
cell–ECM contacts functioning in adhesion and migration1.  
Characterized by their capacity to mediate pericellular pro-
teolysis of ECM components, the invadosomes formed by  
non-transformed cells are called podosomes2,3, whereas inva-
dosomes of invading cancer cells are named invadopodia4.  
These structures are broadly involved in cell migration and in 
the protease-dependent invasion program of tumor cells and 
have been detected in living organisms and in fresh tumor tissue  
specimens5–7. Tumor molecular subtypes and the microenviron-
ment await more systematic analyses to determine whether the 
capacity to form ECM-degradative invadopodia is a generic 
trait of all invasive metastatic cells and whether the inten-
sity of the invadopodia response varies depending on the  
cancer type.

Podosomes and invadopodia likewise consist of a core of 
branched actin filaments, depending on N-WASP/WASP-mediated  
activation of the Arp2/3 complex, are sensitive to the sub-
strate’s stiffness, and recruit matrix metalloproteinases (MMPs), 
mainly the trans-membrane membrane type I (MT1)-MMP 
and the secreted MMP2 and MMP9, to degrade the ECM1,4,7–9.  
On the other hand, podosomes and invadopodia differ in their 
lifetime (over 1 hour for invadopodia as compared with min-
utes for podosomes) and in the repertoire of upstream activators  
of N-WASP/WASP–Arp2/3 stimulation10, which also suggests  
differences in regulation, molecular composition, and overall  
architecture. It should be noted, however, that podosomes 
of non-cancer cells can be involved in diseases. A typical  
example is the involvement of osteoclast podosomes in  
osteoporosis11. A detailed understanding of podosome- and  
invadopodia-specific mechanisms driving organization and 
function could therefore reveal new targets to better control  
unwanted invadosome-mediated pathologies.

In this review, we will discuss recent findings that underline 
common and specific traits/features of podosome and inva-
dopodia organization and function, highlight the increasingly  
relevant role of invadosomes in tissue remodeling in many dif-
ferent patho-physiological processes, and propose an updated  
definition of these actin-rich protrusions.

Podosomes and invadopodia: the Good and the Bad 
(and the Ugly)
Identified back in 1985 as “cellular feet” at the adherent mem-
brane of virus-transformed fibroblasts12, podosomes have been 
increasingly reported to form in a large variety of cell types such 
as leukocytes, osteoclasts, endothelial cells, and megakaryocytes1.  
In addition, ECM degradation-competent podosome-like struc-
tures have been recently identified in the neuromuscular junc-
tions in vertebrate muscle cells13 and even in the parasite  
Entamoeba histolytica, which uses them to facilitate colonic  

tissue invasion14. Characterized by their round shape, individ-
ual podosomes (~0.5–1 μm Ø) consist of a central core enriched 
in actin and actin-binding proteins surrounded by a ring of 
adhesion receptors and cytoskeletal scaffolding and signaling  
components (Figure 1A). Depending on the cell type, multiple 
individual podosomes are spatially organized in large assemblies 
acting as mechanosensing platforms in dendritic cells, as  
belts in osteoclasts, and as rosettes in endothelial cells2.

Podosome formation and activity are associated with several 
pathophysiological processes in which matrix degradation plays 
an important role. For example, endothelial podosomes are 
involved in angiogenesis by breaching the basement membrane 
and allowing new cell–cell interactions that are key to vascular  
remodeling15–17. In the bone, osteoclast podosomes contribute to 
physiological bone matrix remodeling as well as osteoporosis,  
which is due to excessive osteoclast activity11,18. A podosome-
based specialized structure called the sealing zone is used by 
osteoclasts to adhere on bone and delimit the bone-resorbing  
area19. Targeting podosome formation and spatial organization 
in hyperactive osteoclasts is therefore proposed as a promis-
ing strategy to limit pathological osteolysis. Indeed, targeting  
the formation of the sealing zone via pharmacological inhibi-
tion of Dock5, a guanine nucleotide exchange factor for the 
small GTPase Rac, has been shown to prevent pathological 
bone loss while preserving bone formation in three mouse  
models for the most common osteolytic diseases11. Moreover, 
the use of fullerenol nanoparticles has been reported to  
suppress osteoclast differentiation and inhibit the formation 
of the sealing zone by blocking the formation and patterning  
of podosomes, making these nanoparticles interesting therapeutic 
agents against osteoporosis20. Antigen-presenting cells use 
podosomes for migration and mechanosensing, for breaching 
of the basement membrane, and possibly for aiding pathogen  
capture8,21,22. Podosomes and podosome assemblies are  
sensitive to the topography of the extracellular environment, 
as they become linear-shaped when formed against fibrillar  
collagen23 and can align and almost fuse when following  
substrate grooves24. Moreover, in dendritic cells, podosome 
clusters act as mechanosensing platforms22, and nanoscale 
rearrangements of individual podosome actin architecture as 
well as different ECM-degrading capacities are observed in  
response to changes in substrate stiffness25.

Basement membranes and the bone matrix are two-dimensional 
(2D) surfaces in the body, which justifies the use of classical 
cell culture plates and 2D substratum to investigate invado-
some formation and dynamics. Seemingly, invasive tumor  
cells are exposed to and can breach 2D ECM constructs, such 
as the basement membrane separating the epithelium from the 
stroma of any given epithelial tissue and the endothelial base-
ment membrane during the intravasation/extravasation steps of  
their metastatic journey. While we increasingly understand the 
molecular structure of invadosomes formed on 2D surfaces, 
more complex is the investigation of invadosomes in a  
three-dimensional (3D) environment, since their characteristic 
architecture changes into ECM-degrading globular assemblies  
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Figure 1. Podosome and invadopodia basics. (A) The upper image represents a human monocyte-derived immature dendritic cell 
that was plated for 60 minutes on a glass coverslip, fixed, and stained for actin (magenta) and vinculin (green). A large cluster of dot-
shaped podosomes is visible at the adherent surface. The lower panel schematically depicts the side view of a few individual podosomes, 
highlighting the different actin architectures. (B) In the upper image, MDA-MB-231 cells expressing TKS5GFP were plated for 60 minutes on 
a thin substratum of fluorescently labeled cross-linked gelatin (pseudocolored in green). Fixed cells were stained for GFP (pseudocolored 
in red), and the nucleus was stained with DAPI (pseudocolored in blue). Breast cancer cells form typical punctate gelatinolytic invadopodia 
enriched in the scaffolding protein TKS5. The lower panel schematically depicts a punctate invadopodium with TKS5 enrichment leading to 
the formation of a small F-actin patch lying on top of a region of gelatin degradation. (C) Upper image: MDA-MB-231 cells expressing TKS5GFP 
were plated for 60 minutes on a thick layer of fluorescently labeled fibrillar type I collagen (pseudocolored in green). Cells were stained for 
GFP (pseudocolored in red), and the nucleus was stained with DAPI (pseudocolored in blue). The lower panel schematizes elongated TKS5-, 
F-actin-rich invadopodia forming at contact sites with the collagen fibers. Scale bars, 10 μm. pm, plasma membrane.

at the extremity of cellular protrusions, as observed in den-
dritic cells, macrophages, or invasive cancer cells in 3D collagen  
gels26–28. Unraveling the environment-dependent composi-
tion, dynamic properties, and function of 3D invadosomes in 
relation to cell migration and tissue remodeling is the current  
challenge.

Podosome vs. invadopodia organization: Beauty and 
the Beast
Several studies explored the organization of tumor cell inva-
dopodia in relation with two vs. three environment dimension-
alities. In the classical still-useful model to study invadopodia,  
cancer-derived cell lines or freshly isolated tumor cells from 
patients are plated on a 2D substratum of fluorescently labeled 
gelatin (denatured type I collagen) where degradative activ-
ity is concentrated in 0.5–1 μm diameter, cortactin/F-actin-rich  

dot-like invadopodia29 (Figure 1B). Although these structures 
have been broadly designated as protrusive invadopodia, elec-
tron microscopy analysis has revealed that the thickness of  
the crosslinked gelatin coat is typically 50–100 nm30,31, thus 
leaving limited space for protrusive activity (as a reminder, 
the plasma membrane is typically ~10 nm thick and the lamel-
lipodial actin meshwork is several hundred nm wide). Possi-
bly more relevant evidence for protrusive invadopodia came 
from the observation of breast or colon carcinoma cells plated 
on a layer of Matrigel, which polymerizes to form a hydrogel of  
composition resembling the basement membrane, deposited 
on the surface of a porous polycarbonate filter32. However, 
in this experimental construct, it was arduous to distinguish  
mature ECM-degrading invadopodia from protruding F-actin/
cortactin-based lamellipodial structures filling the empty space 
in the filter pores. In addition, because Matrigel lacks native 
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covalent crosslinks, the implication of MMPs—and inva-
dopodia—in the penetration of tumor cells through Matrigel  
could be questionable33,34.

Using a thick (4–5 μm thick), cell-derived matrix construct con-
sisting of a densely packed fibrillar type I collagen matrix,  
scientists reported numerous puncta-like invadopodia at the adher-
ent surface of MDA-MB-231 breast cancer cells35,36. However, 
when exposed to a sparser fibrous network of acid-extracted 
native type I collagen, cancer cells including MDA-MB-231 
cells formed elongated invadopodia, up to several microns in 
length, in close apposition to and fitting the shape of the matrix  
fibers23,37,38 (Figure 1C). Whether these elongated proteo-
lytically active invadopodia are formed by the coalescence 
of smaller individual structures assembling in different sites 
along the fibers is presently unknown. When visualized in can-
cer cells invading within a 3D fibrillary collagen gel, elongated 
invadopodia formed as rings (or ring segments), which circled 
the leading cell protrusion extending in front of the nucleus 
and assembled in intimate contact with constricting matrix  
pores28,38–40. Collagen cleavage, based on MT1-MMP activity, 
in conjunction with the production of outward forces 
using the energy of actin polymerization at the level of the  
invadopodia38,41, have been shown to drive invadopodia expan-
sion in this system and, thus, to push the matrix fibers aside 
to facilitate nuclear and cell penetration38. Therefore, while,  
by definition, all invadopodia types degrade the matrix, their 
organization, activity, and dynamics differ depending on 
the composition, density, and mechanical properties of the  
matrix, at least in vitro36,42,43.

A common theme to both podosomes and invadopodia is that 
these structures are designed to maintain intimate and prolonged  
contacts between surface-exposed MT1-MMP accumulated in 
the invadosome plasma membrane and the underlying matrix 
substrates to ensure optimal exploration and penetration of 
the pericellular tissues. Invadosomes are built upon a network 
of branched actin filaments depending on the activity of the  
Arp2/3 complex, which initiates branched actin filament 
growth from the sides of pre-existing mother filaments. A 
high degree of organization of this network is necessary to  
optimize the relationship between actin assembly and local 
production of pushing forces44. Along this line, several recent 
reports based on super-resolution microscopy highlighted 
a complex organization of a two-component actin network  
in the protrusive actin-core of individual podosomes2,25,45  
(Figure 2A–C). As a result, these auto-assemblies function as 
micron-sized protrusive machineries46–48. In addition, inter-
connectivity of neighboring podosomes through a radiat-
ing network of actin filament bundles provides a higher-order  
organization, which ensures exploration of the pericellular  
matrix at a mesoscale level22,25. Protrusive forces in the pN 
range have been measured at the level of podosomes in  
macrophages based on the deformation of a compliant sheet of 
polyvinyl formal resin (see 2 and references herein). Interest-
ingly, direct measurement of forces in the integrin receptors 

accumulating in the adhesion ring surrounding the podosome  
actin core using DNA-based FRET-FLIM probes revealed 
forces also in the pN range49. All together, these findings sug-
gest that podosome protrusion forces may be counterbalanced  
by local traction forces at the podosome ring2.

By comparison to the podosome’s exquisite organization50,51,  
recent ultrastructure analysis by platinum replica electron  
microscopy revealed a rather rudimentary invadopodia 
architecture, consisting of a ~200–300 nm array of Arp2/3 
branched actin filaments with their (+)-ends facing the plasma  
membrane/collagen fiber contact zone38 (Figure 2). Despite 
a simple actin meshwork organization, invadopodia can effi-
ciently push collagen fibers away using energy from Arp2/3  
complex-dependent actin polymerization38. Additionally, it was 
recently reported that seemingly rudimentary punctate inva-
dopodia forming on the 2D gelatin matrix construct exert pN  
forces towards the substratum41. In elongated collagenolytic 
invadopodia, pushing forces seem to be assisted by the curva-
ture of the actin meshwork and contacting matrix fiber, increas-
ing frictional forces between individual actin filaments in the 
meshwork. Additionally, enzymatic cleavage of the matrix  
fibers by MT1-MMP increased matrix compliance and facili-
tated fiber displacement38. Interestingly, the collagen type I 
receptor discoidin domain receptor 1 (DDR1) has been reported 
to accumulate at the surface of cells derived from breast, lung, 
and liver cancer at contact sites with the surrounding collagen  
fibers52,53. Moreover, DDR1 was required for the formation of  
linear matrix-degradative invadopodia by these cell lines, sug-
gesting a role for this collagen receptor in the binding and/
or recognition of the collagen fibers leading to invadopodia  
formation52,53. However, contrasting with these reports, forced 
expression of the DDR1 receptor was found to inhibit inva-
dopodia formation by mesenchymal (DDR1-negative) and 
highly invasive MDA-MB-231 breast cancer cells, while silenc-
ing of DDR1 in breast epithelial MCF10DCIS cells promoted  
collagenolytic invadopodia38. Of note, MT1-MMP, which can 
also interact with the collagen fibers through its extracellu-
lar hemopexin domain, was found to be required for the forma-
tion of invadopodia by breast tumor cells38,52,53. Therefore, more 
work will be required to decipher the roles played by collagen 
receptors including MT-MMP, DDRs, and integrins in ECM  
remodeling by cancer cells.

Invadosomes in real life
Although invadopodia have been functionally linked to proc-
esses involving ECM remodeling based on numerous studies 
using tumor cells cultured in vitro and tumor cell implantation  
models, data documenting the existence and activity of inva-
dopodia structures in human tumor specimens using classical, 
typically low-resolution imaging approaches such as immuno-
histochemistry on paraffin-embedded or frozen tissue sections 
have proven elusive. Yet the expression levels of MT1-MMP  
and several invadopodial components, including the key inva-
dopodia scaffolding protein, Tks5, have been linked with poor 
clinical outcome in various cancers1,54. Along this line, in breast 
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Figure 2. Correlative light and electron microscopy reveals the ultrastructural organization of invadopodia and podosomes.  
(A, B) Dendritic cells were seeded on glass coverslips, unroofed by sonication, and quickly fixed leaving ventral plasma membranes (VPMs) 
exposing the cytosolic side of the membrane including podosomes. After critical point drying, the VPMs were imaged by scanning electron 
microscopy (SEM) (gray). The core structure of a podosome is circled by a dashed line in panel B. Arrowheads depict inter-podosome  
F-actin bundles. (C) Fixed VPMs were stained for vinculin (green) and zyxin (purple), imaged by stochastic optical reconstruction microscopy 
and subsequently by SEM (gray). (D) Platinum replica electron microscopy survey view of the cytoplasmic surface of the adherent plasma 
membrane in unroofed MDA-MB-231 cells plated for 60 minutes on a thin layer of collagen I (image is inverted). (E) Zoomed-in region 
corresponding to the boxed region in panel D. (F) High-magnification view of an invadopodium in association with a curved collagen fiber. 
For (F), use view glasses for 3D viewing of anaglyphs (left eye, red). Arrows point to invadopodia appearing as bow-shaped electron-dense 
proteinaceous material in association with the plasma membrane above a collagen fiber. Arrowheads depict collagen fibers underneath the 
VPM. Scale bars: 2 μm (panels A, B, D, and E) and 1 μm (panels C and F).

cancer, elevated MT1-MMP expression is required for the  
transition from non-disseminated in situ tumors to invasive  
carcinomatous lesions, requiring transmigration of carcinoma 
cells across the basement membrane, and is associated with 
higher metastatic risk54–56. In addition, genuine invadopodia struc-
tures have been observed in freshly explanted primary human  

tumor cells7. Collectively, these data imply a threatening role 
for invadopodia and their sword arm, MT1-MMP, during  
cancer dissemination and metastasis57. The difficulty to pro-
vide direct evidence of invadopodia occurrence in human 
tumors is probably related to their small size and transient  
nature and the lack of dedicated markers to unambiguously 
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identify invadopodia. In this respect, the recent immunohis-
tochemical detection of the exclusive podosome/invadopodia 
marker, TKS5, in patient tumor specimens represents a signifi-
cant promising step6,58. Given the pivotal role of invadopodia in  
cancer cell dissemination, drugs able to counteract their func-
tion could be highly valuable for the prevention of cancer 
metastasis. Several reviews already detail the failure of small  
molecule pan-MMP inhibitors (for instance, see 59), leading to  
the conclusion that inhibitors with better selectivity and new 
strategies including targeted delivery are in need. Among the 
new MMP inhibitors, function-blocking antibodies directed 
against MT1-MMP have been developed and are characterized 
in preclinical studies60,61. Proof-of-concept unbiased screening 
approaches pioneered by the Courtneidge lab also successfully  
identified small molecules targeting invadopodia formation  
and function, including promising CDK5 and TAO3 kinase  
inhibitors62,63.

In the past few years, intravital microscopy of tumor cells 
expressing fluorescently tagged invadopodia markers offered an  
alternative powerful approach, and evidence for the existence 
of invadopodia in various genetically defined mouse cancer 
models has been accumulating. Intravital imaging of ortho-
topic mammary tumor xenografts expressing cytosolic GFP  
or GFP-labeled cytoskeleton and invadopodial components, 
cortactin, or coronin-1C revealed mostly protrusive globular  
structures forming at the invasive front of the cells, some of 
them in close proximity with interstitial type I collagen bundles 
detected by second harmonic generation64–68. In some of these 
studies, injection of an activatable fluorescent MMP biosensor  
(MMPSense) in the mouse vasculature revealed an association 
of cortactin-enriched protrusions with MMP activity and ascer-
tain that these structures were proteolytically active invadopo-
dia associated with tumor-disseminating cells65. In addition to  
providing compelling evidence that invadopodia contribute 
to the stromal dissemination of tumor cells, high-resolution 
intravital imaging using a chick embryo chorioallantoic mem-
brane model also demonstrated that cancer cells exploit inva-
dopodia to breach the endothelium during extravasation69. Very  
recently, tumor cell dissemination has been imaged, with 
actin- and cortactin-rich invasive protrusions found to be asso-
ciated with degradation of the ECM and the visceral muscle 
layer in the native context of the Drosophila midgut70, once 
again highlighting the importance of simple model organisms to  
investigate cancer invasion.

Compared to invadopodia, podosomes in vivo are less well 
documented and imaging of their formation and dynamics  
in living mice by intravital microscopy is still lacking. How-
ever, several pioneering studies have provided convincing 
evidence of podosome formation in vivo. For example, the 
development of an ex vivo endothelium observation model  
enabled visualization of podosome rosettes and their base-
ment membrane degradative capacity in native aortic vessel 
segments previously exposed to biologically active TGFβ and 
harvested from mice after intraventricular cardiac injection  

of fixative17. The presence of podosomes in mice aortas was 
also determined in vascular smooth muscle cells lacking micro-
RNA-143/145, in which circular structures composed of cortac-
tin and Tks5 were visualized by immunoelectron microscopy71. 
More recently, a combination of fluorescence, electron, and  
three‐dimensional microscopy was used to image the contacts 
between megakaryocytes and endothelial cells in mouse bone 
marrow sections, revealing that megakaryocytes use in vivo 
podosome‐like structures that collectively allow the penetra-
tion into the endothelium of bone marrow sinusoids72. Finally, 
elegant work in living Caenorhabditis elegans larvae showed 
the formation of invadosomes in the anchor cell and their role  
in basement membrane remodeling during vulval development5,73.

To better understand invadosome structure and organization 
in a native tissue, one would ideally want an imaging tech-
nique that allows you to obtain macroscopic views of tissues  
and organs and at the same time to conveniently zoom into these 
subcellular structures at very high resolution directly in (liv-
ing) organisms. With the fast pace at which the microscopy  
field is moving in combination with new dedicated animal  
models74, we expect exciting discoveries in this direction in  
the near future.

A revised definition of invadosomes: the 
Transformers of cell protrusion
The term invadosomes collectively indicates two groups of 
cell protrusions, podosomes and invadopodia, that share many  
similarities but also exhibit specific traits. Considering the 
most recent findings in the field, we here attempt to pro-
vide an updated set of criteria that could help define these 
structures. We propose minimal requirements (i.e. positivity 
for cortactin and F-actin) and recently identified properties  
(i.e. mesoscale organization for podosomes22 or location under-
neath the nucleus for invadopodia28,31) as new criteria that 
should help classify a protrusion as either a podosome or an  
invadopodium. Considering the plasticity of invadosome struc-
tures, which include dot-like invasive protrusions as well as 
plasma membrane–matrix fiber contact sites with linear fea-
tures, the presence of membrane protrusions could be consid-
ered as an optional criterion to classify invadosomes. However, 
the detailed architecture at the individual invadosome and at the  
cluster level is still lacking, and properties such as dynamic 
behavior, mechanosensitivity, and behavior in a 3D context 
surely need more investigation. Moreover, invadosomes are 
not restricted to cell migration and matrix remodeling. In fact,  
cellular protrusions containing typical invadosome compo-
nents have also been identified in myoblast fusion75 and immune  
synapse formation76 as well as phagocytosis events77, high-
lighting the great plasticity of this system. We therefore expect 
that novel insight into the function and architecture of invado-
somes and their involvement in specific cellular processes will  
further sharpen the definition criteria proposed here.

The role of invadosomes in tissue remodeling is becoming 
increasingly clear, but open questions remain. In the osteoclasts,  
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for example, podosomes mediate degradation of the organic 
part of the bone matrix, leading to the release of molecules 
such as growth factors and other chemical signals that can 
affect the activity of surrounding osteoblasts. For invadopodia,  
however, the impact of their ECM degradation on cells sur-
rounding the tumor, such as stromal cells or immune cells, 
remains to be established. In addition, efforts should be made 
to link the initial mechanobiology findings on podosomes and 
invadopodia to real pathophysiological situations in tissues, 
such as understanding how invadosomes respond to local 
ECM stiffening as found in fibrotic tissues or at interfaces with  
regenerative biomaterials.
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