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Identity crisis in alchemical space drives the
entropic colloidal glass transition
Erin G. Teich1, Greg van Anders 1,2,3 & Sharon C. Glotzer1,2,3,4,5

A universally accepted explanation for why liquids sometimes vitrify rather than crystallize

remains hotly pursued, despite the ubiquity of glass in our everyday lives, the utilization of the

glass transition in innumerable modern technologies, and nearly a century of theoretical and

experimental investigation. Among the most compelling hypothesized mechanisms under-

lying glass formation is the development in the fluid phase of local structures that somehow

prevent crystallization. Here, we explore that mechanism in the case of hard particle glasses

by examining the glass transition in an extended alchemical (here, shape) space; that is, a

space where particle shape is treated as a thermodynamic variable. We investigate simple

systems of hard polyhedra, with no interactions aside from volume exclusion, and show via

Monte Carlo simulation that glass formation in these systems arises from a multiplicity of

competing local motifs, each of which is prevalent in—and predictable from—nearby ordered

structures in alchemical space.
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F luids, upon rapid cooling or compression, may bypass
crystallization and instead remain disordered, displaying
relaxation times that grow by orders of magnitude over

small density or temperature windows. This fall out of equili-
brium is widely known throughout the scientific community as
the glass transition, and leveraged in many modern technologies
including rewritable data storage devices1 and fiber optic net-
works2. Despite this widespread use and a general agreement in
the research community on the phenomenological behavior of
fluids as they are super-cooled or super-compressed, the under-
lying physical mechanism of the glass transition remains in
contention. New, competing ideas—including revived versions of
old ideas—continue to emerge3,4. In particular, the identification
of local structure in various glass-forming systems and the
establishment of its relationship to crystallization failure is an
ongoing endeavor5,6. What these local structures are, why they
form, and how exactly they prevent long-range ordering are
central associated questions.

Prior works have considered individual systems, and argued
that certain local structures arise in specific systems because they
are preferred on a local length scale, but are prevented from
growing and converting the liquid to a crystal because the
structures are incommensurate with the embedding space5,7–9,
arrange themselves non-periodically10–14, or are numerous in
type and random in arrangement15,16. These works, however, do
not consider the system under investigation in the context of
other closely-related systems. Another pool of studies17–24 views
vitrification more explicitly as the structural frustration of
emerging crystalline order. In that context, local bond-
orientational ordering and multiple medium-range crystalline
orderings may compete and cause crystallization failure. Recent
developments indicate that this competition results in a higher
structural difference between the liquid phase and any possible
crystal phase, and manifests in a larger interfacial penalty between
those phases23,24.

Our work draws inspiration from these latter studies: we sys-
tematically investigate structural competition between different
types of crystalline ordering in a full two-dimensional landscape
of related systems, and provide a link, for multiple glass-formers
in a unified manner, between vitrification and the existence of
stable crystal polymorphs nearby in alchemical space. Specifically,
we show that glass-forming fluids of hard polyhedral shapes
contain local structures that are favored in crystals formed
entropically from particles of slightly altered shape; that is, from
neighboring shapes in ‘shape space’25,26. Rather than arrange into
a crystal, particles self-organize due to directional entropic
forces27,28 into two or more local motifs that are accessible and
thermodynamically preferred in crystallizing systems comprised
of particles that are nearby in shape space. These motifs exist in
each glass-forming fluid at ratios that prevent crystallization into
any one crystal structure. This local structural competition creates
an ‘identity crisis’ in the fluid and promotes vitrification.

Results
The self-assembly landscape. Figure 1a shows results of hard
particle Monte Carlo (HPMC) simulations of model glass and
crystal-formers comprised of hard polyhedra contained in the
spheric triangle invariant 323 family25, a set of convex polyhedra
formed by truncating the vertices and edges of a tetrahedron by
sets of planes at varying radial distances from the polyhedron
center. The two-dimensional 323 family of polyhedra allows us to
investigate shape perturbations in a tractable manner, since the
more general space of all possible particle shapes is infinite-
dimensional. We use a convention employed previously30 and
define truncation parameters αa and αc such that the corners of

the shape space are formed by (αa, αc)= (1, 1), denoting a cube,
(αa, αc)= (0, 0), denoting an octahedron, and (αa, αc)= (0, 1) and
(1, 0), both denoting a tetrahedron. This family is identical under
reflection across the line αa= αc. It was discovered previously29

that systems in certain regions of this shape space assemble into a
rich variety of colloidal crystals. Particles within this family with
large tetrahedrally-coordinated facets and smaller facets due to
edge or vertex truncation self-assemble into a dodecagonal qua-
sicrystal (dqc)27,29,31. With increasing truncation, eventually a
region of shape space is reached where cubic diamond or a lower-
symmetry diamond derivative is stabilized27,29. Close to the
diagonal of the shape family, where particles possess octahedral
symmetry, body-centered cubic and face-centered cubic struc-
tures assemble, with the exception of a region of shape space for
which the complex high-pressure lithium structure (cI16-Li) is
often observed27,29,30,32. More complicated γ-brass (cI52-
Cu5Zn8), β-Mn (cP20-Mn), and BC8 silicon (cI16-Si) structures
are also observed to assemble from shapes in select, narrow
regions of this shape space29. Systems comprised of particles in
other regions of shape space remain disordered at densities ran-
ging from ϕ= 0.50 to 0.6529. We independently reproduced these
findings for {0 ≤ αa ≤ 0.3, 0 ≤ αc ≤ 1} at a shape space grid reso-
lution of Δα= 0.1, finding the assembly of the γ-brass structure at
finer resolution at (αa, αc)= (0.25, 0.5). Supplementary Fig. 9
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Fig. 1 Shape space and motif analysis methods. a The spheric triangle
invariant 323 family, with the portion of the shape space explored in this
study outlined. The remaining region is colored a light gray; for details on
self-assembly behavior in this region, see Damasceno et al.27 and Klotsa
et al.29 Sample particle shapes are overlaid above corresponding regions of
shape space, and regions are colored according to the assembled structure
of the corresponding particle shape at densities between ϕ= 0.48 and ϕ=
0.64. At (αa, αc)= (0, 0.2), the system assembles into a compressed
derivative of diamond with lower symmetry, but that region is colored
identically to the other (cubic) diamond-formers to emphasize the
similarity of these structures. At (αa, αc)= (0.3, 0.3), assembly into bcc
occurs at ϕ= 0.64, while assembly into fcc occurs at lower densities; we
color this region by the structure it assembles at the lowest density. For a
broad swath of the highlighted landscape, colored gray, assembly fails to
occur at any investigated density. b Characterization of local pairwise
motifs. θ denotes the minimal angle associated with the rotation (about bn)
that orients a particle identically to its nearest neighbor. γ denotes the
minimal angle associated with the projection of r onto the set of unit
vectors pointing to some feature of the non-truncated version of the
particle shape. In this example, vectors point to centers of the faces of the
non-truncated particle shape, and γf is the angle associated with the
projection onto bf
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shows the lowest packing fraction at which crystallization was
observed for every crystallizing state point. Crystallization times
at the lowest packing fraction for self-assembly are also shown.

Our focus here is on two systems, at (αa, αc)= (0, 0.5) and (αa,
αc)= (0.2, 0.5), that are flanked by crystal-formers in shape space.
These systems fail to crystallize despite excessively long simula-
tion runs, and in fact display all of the usual characteristic
dynamics of glass formers33,34, including systems of hard
tetrahedra, octahedra, and triangular cupolae35, as we will
describe in the next section. We hypothesize that multiple locally
ordered motifs arising in these glass-formers are present and
dominant in crystals formed by nearby shapes, and that these
motifs exist simultaneously in the glass-formers at ratios that
promote vitrification by preventing crystallization into any one
crystal at all investigated densities. We assert that these motifs are
accessible to the glass-former at intermediate densities because
they are easily sampled by shapes nearby in shape space.

Dynamical signatures of glass formation. The glass-forming
behavior of the systems (αa, αc)= (0, 0.5) and (αa, αc)= (0.2, 0.5)
is summarized in Fig. 2. We report plateaus in the mean-squared
displacement 〈Δr2(t)〉 and the real part of the self-intermediate
scattering function Fs(k,t), which indicate caging in our systems,
and peaks in the non-Gaussian parameter α(t)36,37 and the self-
part of the four-point susceptibility χSS4 ðtÞ38,39, which indicate
dynamical heterogeneity associated with relaxation events. (These
dynamical signatures are explicitly defined and detailed further in

the Supplementary Methods.) Thus, we find that our systems
display canonical behavior associated with glass formation. One
notable difference between our system and other glass-forming
models simulated via molecular dynamics appears in the non-
Gaussian parameter: for systems simulated via molecular
dynamics, α goes to zero as t goes to zero because the system is
Gaussian at short times. As expected for a Monte Carlo simula-
tion, however, we find that α does not go to zero at short times,
and instead increases as t decreases in the short time regime. This
behavior is due to the discrete nature of particle moves during
Monte Carlo sampling. As t goes to zero our probability dis-
tribution of particle positions can be thought of as that of a
random walk in which just one step is attempted, and a back-of-
the-envelope calculation of α in an associated toy model gives
values that are comparable to those we see at short times in our
systems. See the Supplementary Discussion for more detail.

Local structure in glass-forming fluids. Figure 3 displays the
local structural motifs we observe for the glass-forming systems at
(αa, αc)= (a) (0, 0.5) and (b) (0.2, 0.5) at a variety of densities, as
well as motifs observed in crystals nearby in shape space at ϕ=
0.62 and ϕ= 0.6. (Supplementary Fig. 10 shows snapshots of
these systems and others considered in this paper.) We define
motifs as pairwise configurations of each particle and its nearest
neighbor, and classify them by their connection type (face, edge
or vertex) and relative particle misorientation θ as detailed in the
Methods section and shown in Fig. 1b. Our analysis reveals that
every competing motif in the investigated glass-formers is char-
acteristic of a nearby ordered structure. These characteristic
motifs compete in each disordered fluid at stoichiometries that
impede crystallization into any one particular crystal structure.

Panels show probabilities of observing certain pairwise
configurations, Pobs(c, θ), and negative logs of the distributions
normalized with respect to an ‘ideal gas’ of non-interacting
particles of the same symmetry group, −logP(c, θ). The brown
curves indicate Prand(c, θ), the connection type and misorienta-
tion distribution for the ideal gas, and other curves are colored
according to their location in shape space. Motifs that are
characteristic of nearby crystal structures and exist in significant
number in each glass-forming fluid are shown in insets in Fig. 3a
and the top row of panels in Fig. 3b, while motifs that are
characteristic of nearby crystal structures and do not exist in
significant number in the glass-forming fluid at (αa, αc)= (0.2,
0.5) are shown in insets in the bottom row of panels in Fig. 3b.
Ranges of θ that characterize motifs are shown as small black
bars, with symbols between them that represent the motif. The
symbols are colored according to the crystals in which each motif
is dominant. Circles indicate vertex-connection, squares indicate
edge-connection, and triangles indicate face-connection. Hetero-
geneous connections are possible, where one member of the pair
has one connection type, and the other has another connection
type.

Figure 3a shows the glass-former at the location (αa, αc)= (0,
0.5) in shape space, sandwiched between shapes that form the
diamond structure and shapes that form a dodecagonal
quasicrystal (dqc). We find that the glass-former is increasingly
dominated by face-connected particles as density increases.
Vertex connection is heavily suppressed, even at lower densities
around ϕ= 0.5, and edge connection is increasingly suppressed
with increasing density. Statistics associated with all connection
types are shown in Supplementary Fig. 11; here we focus on the
case of face connection. The function (−logP(f, θ)) for the
disordered system shows two distinct basins, around θ= 90° and
θ= 70°, and the depth of both basins increases with density. The
nearby dodecagonal quasicrystal shows a corresponding basin
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Fig. 2 Dynamical signatures of glass formation in two example systems.
Panels show the mean-squared displacement 〈Δr2(t)〉, the real part of the
self-intermediate scattering function Fs(k, t), the non-Gaussian parameter α
(t), and the self-part of the four-point susceptibility χSS4 ðtÞ, measured at a
variety of densities for two disordered state points at (αa, αc)= (a) (0.2,
0.5) and (b) (0, 0.5). Signatures in all four order parameters indicate that
these systems are glass-formers. The increase in α(t) as t goes to zero is
due to the discrete nature of Monte Carlo sampling; see the Supplementary
Discussion for more detail. Error bars are calculated in a manner detailed in
the Supplementary Methods
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around θ= 70°, while the nearby diamond structure shows a
basin at θ= 90°. By inspection, the basin around θ= 70°
corresponds to an ‘aligned’ motif (drawn in red) consisting of
two particles face-to-face and rotated such that their truncated
vertices are aligned; a perfectly-constructed pair with this
configuration has a misorientation θ ~ 70.53°. The basin at θ=
90°, by contrast, corresponds to a ‘twisted’ motif (drawn in pink)
consisting of two particles face-to-face and twisted such that the
edge midpoints of one particle align with the truncated vertices of
the other. These motifs coexist in the glass-forming fluid, and
each motif is dominant in a nearby crystal: the aligned motif is
abundant in the nearby dodecagonal quasicrystal and absent in
the nearby diamond structure, while the twisted motif is
abundant in the nearby diamond structure and absent in the

nearby quasicrystal. We will show that these motifs compete in
the glass-forming fluid by existing at ratios that prevent
crystallization into either structure.

Figure 3b shows results for the second example glass-forming
shape, located at (αa, αc)= (0.2, 0.5) and surrounded in shape space
by shapes that self-assemble into a dodecagonal quasicrystal, the
diamond crystal, a bcc crystal, an fcc crystal, and a γ-brass crystal
structure. This competition is more complicated, due to multiple
nearby crystal structures and the fact that some nearby crystal
structures are characterized by multiple pairwise motifs. Each
crystal structure, however, does have particular pairwise configura-
tions that are more probable for that structure than any other
structure and more probable than in the ideal gas; we will take these
as the motifs that are characteristic of each crystal structure.
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Fig. 3 Competition of structural motifs in two example glass-formers. Competing pairwise motifs dominate in ordered structures self-assembled from
shapes nearby in shape space. Panels show probabilities of observing certain pairwise configurations, Pobs(c, θ), and the negative log of the normalized
distributions, −logP(c, θ), for disordered systems at the indicated densities and nearby crystals at ϕ= 0.62 (or ϕ= 0.6 for γ-brass). Error bars are
calculated in a manner detailed in the Motif identification section of the Methods. a Competition between face-connected aligned and twisted motifs at (αa,
αc)= (0, 0.5). Motifs are prevalent in nearby diamond and dodecagonal quasicrystal (dqc) structures. b Competition between face-connected aligned and
twisted motifs and a face-edge connected motif at (αa, αc)= (0.2, 0.5). Motifs are prevalent in nearby diamond, dqc, fcc, and γ-brass structures
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We find that vertex-connection is heavily suppressed in the
glass-forming system at all investigated densities. This connection
type is characteristic of the nearby bcc crystal; more specifically,
the bcc crystal is characterized by the pairwise motif (drawn in
blue) consisting of two particles with a face-vertex connection
and a misorientation θ= 0°. Regarding edge-connection, the
disordered system has a local basin in −logP(e, θ) around 58° that
persists at all densities, although the number of edge-connections
in the disordered system decreases as density increases. This basin
is characteristic of the nearby fcc crystal, and corresponds by
inspection to the pairwise motif drawn in green, consisting of an
edge-face connection in which the edge of one particle bisects the
face of its nearest neighbor. A perfectly-constructed pair with this
configuration has misorientation θ ~ 54.74°. (The fcc structure
also shows basins in −logP(e, θ) around θ= 0° and θ= 90°. By
inspection, these basins correspond to the pairwise configurations
drawn in dark green and light green. They do not appear with any
significance in the disordered fluid at any density, however.)
Regarding face-connection, the disordered system shows a basin
in −logP(f, θ) around 58°, which becomes less significant as
density increases, and basins around 70° and 90°, which become
more significant as density increases. The basin around 58°
corresponds to the other half of the aforementioned face-edge
connected motif that is characteristic of fcc and drawn in green.

The basin around 70° corresponds to the face-connected aligned
pairwise configuration, drawn in red, that is characteristic of the
nearby dodecagonal quasicrystal. The basin around 90° corre-
sponds to the face-connected twisted pairwise configuration,
drawn in pink, that is characteristic of the nearby diamond
structure. Thus, motifs that are characteristic of nearby crystal
structures are shown to coexist in the disordered fluid at all
investigated densities.

Structural competition and identity crisis. We next demonstrate
that the motifs found in the glass-forming fluid at (αa, αc)= (0,
0.5) coexist at ratios that hinder assembly into any crystal
structure. We first consider the structural difference between the
glass-forming fluid at (αa, αc)= (0, 0.5) and the nearby (pre-
cursor) crystal-forming fluids at (αa, αc)= (0, 0.4) and (αa, αc)=
(0, 0.6). Figure 4a shows the fraction of particles in the face-
connected twisted motif (shown as pink triangles) and face-
connected aligned motif (shown as red triangles) as a function of
density for the glass-forming fluid at (αa, αc)= (0, 0.5) and the
nearby (pre-cursor) crystal-forming fluids at (αa, αc)= (0, 0.4)
and (αa, αc)= (0, 0.6). The fluid at (αa, αc)= (0, 0.4) coexists with
the diamond structure at ϕ= 0.54, and assembles solely the
diamond structure at 0.56 ≤ ϕ ≤ 0.62. The fluid at (αa, αc)=
(0, 0.6) assembles into the dodecagonal quasicrystal at ϕ= 0.6;
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Panels show twisted motif fraction, or the probability of observing the twisted motif, for (pre-cursor) fluids during doping experiments at different locations
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shown here is a trajectory at the same state point that did not
assemble into the quasicrystal on the time scale of our simulation,
but for which we collected ample data in the fluid regime. We
believe that, at long enough times, the system shown here would
assemble into the quasicrystal, since assembly was observed in a
system that differed from this one only by its random initial
conditions, the assembled quasicrystal was found to be stable at
densities as low as ϕ= 0.56 according to melting studies detailed
later in this paper and in the Supplementary Discussion, and the
assembled quasicrystal has a motif stoichiometry that is very
similar to the fluid one shown here. Supplementary Fig. 12
compares motif stoichiometry and system pressure for the fluid
shown here and the assembled quasicrystal at this state point.

At densities relevant to crystallization, the glass-forming fluid
contains fewer twisted motifs (associated with the diamond
structure) than the nearby fluid that assembles into diamond, and
fewer aligned motifs (associated with the dodecagonal quasicrys-
tal) than the nearby fluid that assembles into the quasicrystal.
Evidently, the fraction of particles forming twisted motifs in the
pre-cursor diamond-forming fluid (~0.34–0.42) for 0.54 ≤ ϕ ≤
0.62 is high enough to drive crystallization into diamond, and the
fraction of particles forming aligned motifs in the pre-cursor
quasicrystal-forming fluid (~0.86) at ϕ= 0.6 is high enough to
drive self-assembly into the dodecagonal quasicrystal. By contrast,
the glass-forming fluid exhibits fractions of particles forming the
twisted motif in the range (~0.20–0.27) and fractions of particles
forming the aligned motif in the range (~0.51–0.74) at all
investigated densities, preventing either crystal from forming.
(Supplementary Fig. 2 in the Supplementary Discussion contains
plots of every motif in these fluids as a function of packing
fraction, as well as motif fractions for the assembled structures.)

We verified that the twisted motif fraction shown in the pre-
cursor fluid of the diamond-former was necessary for crystal-
lization into diamond via a set of ‘doping simulations’ in which
we artificially inserted the face-connected aligned motif (asso-
ciated with the quasicrystal) into the diamond-forming fluid at
(αa, αc)= (0, 0.4), and the face-connected twisted motif (of the
diamond crystal) into disordered fluids at (0, 0.5) and (0, 0.55).
For these simulations, we rigidly connected a fraction ηd of
particles in each dense fluid into pairs to form the relevant dimer
motifs, and ran simulations at densities ϕ= 0.54 and ϕ= 0.56 for
ηd ranging from 0.05 to 1.0. Via this mechanism, we were able to
either artificially enhance or suppress the fraction of particles
forming twisted pairwise motifs, and observe consequent
assembly or non-assembly behavior. Our results are summarized
in Fig. 4b, which shows twisted motif fractions as a function of
packing fraction for (pre-cursor) fluids of doped and undoped
systems. Symbols are colored pink if the system self-assembled
into diamond on the time scale of our simulation at that state
point. Pink symbols only appear at twisted motif fractions above
the threshold established by the diamond-forming undoped
system at (αa, αc)= (0, 0.4), indicated by circles connected by a
black line, for all investigated locations in shape space and doping
schemes. At the point in shape space (αa, αc)= (0, 0.4),
introduction of the aligned motif of the quasicrystal caused
assembly failure in the would-be diamond-former when ηd ≥ 0.25.
For these crystallization-thwarting doping schemes, the fraction
of particles in the twisted motif is observed to be below the
threshold shown by the diamond-forming undoped system. At
(αa, αc)= (0, 0.5) and (αa, αc)= (0, 0.55), introduction of the
twisted motif of diamond to the disordered fluids caused
crystallization into diamond at ηd ≥ 0.25 and ηd ≥ 0.75, respec-
tively. For these crystallization-inducing doping schemes, the
fraction of particles in the twisted motif is observed to be above
the threshold established by the diamond-forming undoped
system at (αa, αc)= (0, 0.4). Previous studies have additionally

shown that systems composed entirely of aligned motifs made of
non-truncated tetrahedra40 and tetrahedra with a slightly
modified vertex truncation41 assemble the dodecagonal quasi-
crystal at long times under various simulation strategies. This
provides some evidence that the aligned motif is capable of
promoting self-assembly into the dodecagonal quasicrystal. Our
results demonstrate clearly that the competition between the high
fractions of face-connected twisted and aligned motifs in the
glass-forming fluid at (αa, αc)= (0, 0.5) is responsible for its
failure to crystallize, since this competition can be artificially
tuned to promote self-assembly in systems that may otherwise
vitrify, or suppress self-assembly in systems that may otherwise
crystallize. Supplementary Fig. 13 shows a phase diagram
summarizing the results of all doping simulations, Supplementary
Fig. 14 displays example trajectories of doped systems at (αa, αc,
ϕ)= (0, 0.5, 0.56), and Supplementary Fig. 15 displays example
trajectories of doped systems at (αa, αc, ϕ)= (0, 0.4, 0.56).

We also attempted to dope systems near (αa, αc)= (0, 0.5) with
the aligned motif, to coax them into forming the dodecagonal
quasicrystal, and to dope systems at (αa, αc)= (0.2, 0.5) with
motifs dominant in nearby bcc, fcc, and diamond structures, to
coax them into forming those crystals. However, we were
unsuccessful in those attempts, indicating perhaps that appro-
priate local structure is a necessary but not sufficient condition for
crystallization, at least on the time and size scales of our
simulations.

Supplementary Fig. 3 in the Supplementary Discussion shows
the structural difference between the glass-forming fluid at (αa,
αc)= (0.2, 0.5) and the nearby pre-cursor crystal-forming fluids at
(αa, αc)= (0.1, 0.5), (0.2, 0.4), (0.25, 0.5), and (0.3, 0.5). It portrays
a similar phenomenon to that of Fig. 4a: the glass-former is
structurally distinct from each nearby crystal-former, containing
fewer motifs associated with any crystal structure than the nearby
fluid that assembles that structure at densities relevant to
crystallization. Supplementary Figs. 4 and 5 in the Supplementary
Discussion show motif fraction in pre-cursor or disordered fluids
across the entire shape landscape at two example densities (ϕ=
0.54 and 0.6 respectively), demonstrating the general trend that
motifs tend to be more abundant in regions of shape space in
which fluids self-assemble into the crystals associated with those
motifs. Glass-forming fluids lie approximately between these
regions, and thus contain significant motif fractions correspond-
ing to multiple crystals. This is the origin of the ‘identity crisis’.

Crystal stability tests. Stability tests for candidate crystal struc-
tures in regions near the glass-formers at (αa, αc) = (0, 0.5) and
(0.2, 0.5) provide further proof that a local structural identity
crisis in the dense fluid is responsible for vitrification. We sys-
tematically changed the shape of particles comprising crystal
structures near these glass-formers in shape space, transforming
the particle shape incrementally into the glass-forming shape, and
measured melting density and pressure as a function of particle
shape. Procedural details are contained in the Supplementary
Methods. Our results show that at each investigated glass-forming
location in shape space, select crystals remain stable in density
regimes for which we observed no crystallization from the fluid.
This strongly suggests that these glass-forming fluids are ‘super-
cooled,’ or more accurately, super-compressed. Supplementary
Figs. 6 and 7 in the Supplementary Discussion summarize our
results, and show plots of melting density as a function of particle
shape for several candidate crystal structures. These melting lines
are in the spirit of other phase diagrams calculated as functions of
various system control parameters24,42. In those cases, it was
observed that good glass-formers appear near eutectic points in
these phase diagrams, when the stable crystal structure undergoes
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a cross-over. We find evidence of eutectic points near our glass-
forming state points, although at each glass-forming location in
shape space, there is a crystal structure that is more stable than
the others investigated and whose stability easily extends into the
fluid density regime. The glass-former at (αa, αc)= (0, 0.5), in
particular, appears to be at a location in shape space for which the
nearby diamond crystal is actually more stable than in the region
for which diamond self-assembles. Thus, we argue that a close
examination of the fluid phase itself, and especially its structural
make-up, is necessary for a complete understanding of crystal-
lization failure in these systems.

Alchemical Monte Carlo. We provide additional evidence that an
identity crisis in alchemical space promotes glass formation in
hard particle fluids by allowing disordered systems to explore
their surrounding shape space through alchemical Monte Carlo
(Alch-MC) sampling26. In this technique, particle shape (defined
in this case by the truncation parameters αa and αc) is treated as a
thermodynamic variable, and allowed to fluctuate in a generalized
thermodynamic ensemble at constant (zero) conjugate alchemical
potential. We sampled disordered systems at (αa, αc)= (0, 0.5)
and (0.2, 0.5) via Alch-MC at a range of densities between ϕ=
0.52 and ϕ= 0.64. At each density, we ran simulations in which
we allowed only the vertex truncation parameter αc, only the edge
truncation parameter αa, or both to fluctuate. We constrained
systems to only explore the area inside a square of side length

Δα= 0.2 centered at their initial position in shape space by
imposing appropriate limits on each α parameter during sam-
pling. In each simulation, all particle shapes were identical and
sampled simultaneously. Figure 5 shows results for alchemical
sampling in both example glass-forming systems. All simulations
shown are at ϕ= 0.62, except the case of edge truncation sam-
pling at (αa, αc)= (0.2, 0.5), which is shown at ϕ= 0.60. Instead
of forming a glass, each disordered system crystallizes into a
‘nearby’ ordered structure by slightly altering its particle shape
and accordingly adopting a larger fraction of the associated
crystalline pairwise motif. Thus we see that, given the thermo-
dynamic choice, these hard particle fluids escape schizophrenic
regions of shape space, and assemble into nearby crystalline
structures typically dominated by one motif. Results for Alch-MC
simulations at all investigated densities are included in Supple-
mentary Figs. 16–21.

An additional shape space. Finally, we show that our identity
crisis hypothesis is independent of particle symmetry and adja-
cent crystal structure by investigating another glass-forming
system in a different shape space, defined by the spheric triangle
invariant 423 family25,29. This glass-former consists of hard
particles with octahedral symmetry, located in a shape space
region surrounded by shapes that form either bcc or a high-
pressure lithium phase that is likely metastable to bcc29. We
observe two competing motifs in this glass-former, each
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Fig. 5 Alchemical Monte Carlo simulations of would-be glass-formers. Would-be glass-formers escape their identity crisis and crystallize when allowed to
explore their surrounding shape space via alchemical Monte Carlo simulation. Squares indicate simulations at the glass-forming state point (αa, αc)= (0,
0.5), while circles correspond to simulations at (αa, αc)= (0.2, 0.5). Empty symbols overlaid above the shape space indicate system position at the start of
Alch-MC sampling, and letters indicate system position after 20–30 million MC sweeps of vertex truncation (v), edge truncation (e), or both vertex and
edge truncation (ve) sampling. System snapshots, particle shapes, pie charts of pairwise motif fractions, and bond-order diagrams31 are shown for initial
and final frames of each Alch-MC simulation. Pie chart wedges are colored according to the motifs identified in Fig. 3. Wedges colored gray represent
(connection type, θ) regimes that were not identified with any crystal structure. Pie chart wedges colored identically represent motifs characteristic of the
same crystal structure that differ only by connection type. In those cases, the motif with face connection is always drawn second, proceeding in a counter-
clockwise fashion. The hexagonal bond-order diagram resulting from edge Alch-MC sampling at (αa, αc)= (0, 0.5) is a consequence of wurtzite-like
structural motifs due to the presence of stacking faults in the system. Crystalline structures resulting from edge and vertex-edge Alch-MC sampling at (αa,
αc)= (0.2, 0.5) contain multiple grains and stacking faults; associated bond-order diagrams show the local environment of particles in just a single grain. In
all cases shown, disordered dense fluids avoid vitrification and instead form crystals dominated by a single pairwise motif
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dominant in the nearby bcc or metastable high-pressure lithium
structures. We allowed the glass-former to explore its immediate
surroundings in shape space through Alch-MC sampling, and
found that it consequently escaped its identity crisis by adopting a
nearby particle shape that forms bcc. More detail is provided in
the Supplementary Discussion, and our results are summarized in
Supplementary Fig. 8.

Discussion
Our results show that the concept of alchemical (here, shape)
space is a useful lens through which to understand the vitrifica-
tion of hard particle fluids. Crystallization fails in these systems
due to the presence of multiple local structures, each of which is
preferred in crystals formed by particles nearby in shape space.
These structures compete by existing at ratios in the glass-formers
that impede crystallization into any one crystal. Thus the entropic
colloidal glass transition is caused by an identity crisis in shape
space in which the glass-formers are unable to settle on any one
particular set of local motifs consistent with a single crystal
structure. In relation to other studies of local structure in glassy
liquids, our findings most closely align with the results of Tanaka
et al.18,24,43, who posit that multiple types of ordering compete
and suppress crystallization via the literal suppression of crys-
talline pre-cursors in super-cooled liquids. ref. 24 is especially
relevant here: in that work, coauthors found that glass-forming
ability is positively correlated with increased competition between
multiple types of crystalline ordering, found near eutectic points
when either the size ratio of a binary hard disk system or the
strength of tetrahedrality in a modified Stillinger-Weber44 model
system is varied. Our results expand on these ideas in the context
of hard-particle glass-formers: we find glass formation via mul-
tiple types of competing crystalline order on a very local level,
each prevalent in nearby ordered structures in a two-dimensional
alchemical landscape. Slightly modified particles have corre-
spondingly modified preferences for assuming various local
structural motifs, and thus serve as indicators of the competing
preferences of the system under investigation.

The alchemical framework considered in this work may also be
useful for understanding glass-formers in different contexts.
Many previous studies have manipulated degrees of freedom in
glass-forming systems to relieve or increase frustration. Stoi-
chiometry in binary Lennard-Jones systems45, polydispersity in
two20,24 and three46 dimensions, salt concentration in a water-salt
mixture47, bias towards five-fold local ordering in two19 and
three48 dimensions, bond tetrahedrality24,42, and even the cur-
vature of three-dimensional space49 have been tuned in pursuit of
turning a glass-former into a crystal-former or vice-versa. In
those cases, results typically show that local structures in fru-
strated glass-formers are related to local structures in one or more
corresponding non-frustrated crystals. Considering these degrees
of freedom as alchemical parameters, and their ‘tuning’ as con-
trolled exploration of alchemical space, may provide a useful
unifying perspective.

Methods
Software. We used the hard particle Monte Carlo (HPMC)50 simulation extension
of the open-source simulation toolkit HOOMD-blue51,52 for both fixed-shape and
Alch-MC simulations. In all simulations, trial translations and orientations of
particles of fixed shape were attempted, and moves were rejected if they resulted in
particle overlaps. Alch-MC required additional trial shape change moves, as dis-
cussed below. The computational workflow and data management for this project
was facilitated by the signac data management framework53,54. We also used the
open-source analysis package freud55 to calculate fractions of particles in various
crystalline environments as detailed in the Supplementary Methods.

Assembly simulations. To explore the self-assembly behavior of particles in the
spheric triangle invariant 323 family, we sampled one-component systems, in

equilibrium, composed of particle shapes that satisfy {0 ≤ αa ≤ 0.3, 0 ≤ αc ≤ 1}. We
used a grid of resolution Δα= 0.1 in both αa and αc. For each particle shape, we
sampled equilibrium behavior in the isochoric ensemble over a range of densities
between ϕ= 0.48 and ϕ= 0.64. Simulations of 4096 particles were run for about
100 million MC sweeps or until self-assembly was observed. Detailed simulation
protocols are provided in the Supplementary Methods. Self-assembled phases were
identified by eye and quantified by the bond-order diagram31, radial distribution
function, and diffraction pattern.

Motif identification. We identified the motif composed of particle i and its nearest
neighbor, particle j, via two parameters. The first is associated with the ‘connection
type’ (cij, hereafter c) between i and j. i is ‘face-connected’ (c= f) to j if particle i's
face is the closest feature to the connection vector rij (from the center of i, ri, to the
center of j, rj), i is ‘edge-connected’ (c= e) to j if i's (truncated) edge is closest, or i
is ‘vertex-connected’ (c= v) to j if i's (truncated) vertex is closest to the connection
vector. To calculate the connection type, we considered first the non-truncated
tetrahedron itet located at ri and oriented identically to i. We identified the four unit
vectors fbf ig that point from ri to the faces of itet, the six unit vectors fbeig that point
from ri to the edges of itet, and the four unit vectors fbvig that point from ri to the
vertices of itet. We then calculated cosγf � maxðbrij �bf iÞ, cosγe � maxðbrij �beiÞ, and
cosγv � maxðbrij � bviÞ. Motifs were categorized as face-connected if γf=min(γf, γe,
γv), or edge- or vertex-connected if γe or γv are the minimum angles, respectively.

Motifs were further distinguished by their relative misorientation θij (hereafter
θ), the angle of rotation required to orient j identically to i. In calculating θ, we took
particle symmetry into account: each θ is actually the minimum of the set of
equivalent angles f~θg, found by permuting through all possible pairs of equivalent
particle orientations according to the particles’ rotation group. This group is the
chiral tetrahedral point group 23 for all particles studied, with the exception of
those on the diagonal of the shape space, in which case it is the chiral octahedral
point group 432. Due to particle symmetry, θ= 90° is the maximum possible
relative misorientation for all pairwise configurations. See Fig. 1b for examples of γf
and θ.

We categorized pairwise motifs by combining the connection type c with the
relative misorientation θ via a joint discrete probability distribution Pobs(c, θk), as
shown in Fig. 3:

Pobsðc; θkÞ ¼
Nobsðc; θkÞP

c

Pnbins
k¼1 Nobsðc; θkÞ

ð1Þ

Nobs(c, θk) is the number of particles observed with connection type c and
misorientation θ in a bin centered at θk with width Δθ= 0.9°. There are nbins such
bins for each connection type.

To determine statistically significant trends in this distribution, we normalized
by the equivalent joint discrete probability distribution Prand(c, θk) for an ‘ideal gas’
of non-interacting particles of the same symmetry group. The connection type is
unrelated to the misorientation for non-interacting particles, so these probabilities
can be considered separately: Prand(c, θk)= Prand(c)Prand(θk). We computed
Prand(θk) for both chiral tetrahedral and chiral octahedral point groups by
generating 10 million random pairs of orientations and computing the minimum
rotation angle θ between them with respect to the associated underlying rotation
group, as detailed earlier. We note that analytical tools developed by the
polycrystalline materials community56–58 can be brought to bear on this problem,
since Prand(θ) for any underlying particle symmetry group maps to the random
grain boundary misorientation angle distribution for that same underlying (crystal
grain) symmetry group. For our purposes, however, it was sufficient to numerically
calculate Prand(θ). We computed Prand(c) for the chiral tetrahedral point group by
generating 2.5 million pairs of particles of appropriate symmetry with random
orientations and a random unit displacement vector between them. We then
computed connection types for these pairs in the manner detailed above. Prand(c)
for the chiral octahedral point group was not ultimately necessary for our analysis,
but could be found in a similar manner.

We also computed the negative log of the joint probability distribution,
normalized with respect to an ideal gas:

�log Pðc; θkÞ ¼ �log
Pobsðc; θkÞ
Prandðc; θkÞ

ð2Þ

When −logP(c, θk) < 0, the combination of connection type c and
misorientation θk is more probable than in the ideal gas. Different motifs were then
identified according to θ ranges that corresponded to local minima, or basins, in
−logP(c, θk). Motifs were defined by θmin ≤ θ < θmax in all cases.

The discrete θk is labeled as the continuous θ in Fig. 3 for simplicity. Error bars in
Fig. 3 were calculated as follows: histograms over θ for each connection type c were
accumulated for 10 frames (separated by 1 million MC sweeps), then Pobs(c, θk) was
computed. Ensemble averages were taken over these values of Pobs(c, θk). These
averages have an associated standard deviation that is shown as vertical error bars
in plots of Pobs(c, θk), and that error was propagated via a first-order Taylor series
expansion of −logP(c, θk), shown as vertical error bars in plots of −logP(c, θk).
Random distributions do not have associated error.
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Motifs in ordered systems were calculated at ϕ= 0.62, with the exception of the
γ-brass crystal, for which motifs were calculated at ϕ= 0.6. To gather statistics on
motifs in relevant ordered systems at ϕ= 0.62, we began with already well-
equilibrated, self-assembled system snapshots of N= 4096 particles, and sampled
them in the isochoric ensemble for 100 million more MC sweeps. For several state
points, we began with snapshots at lower packing fractions than ϕ= 0.62, because
they represented cleaner samples of the ordered structures of interest that
assembled on the time scales of our simulations. We compressed these systems to
ϕ= 0.62 before acquiring statistics. In the case of γ-brass, motif statistics were
simply collected for the last 40 million MC sweeps of the self-assembling trajectory,
throughout which the crystal was fully formed.

Precursor fluid identification. For several analyses, we investigated motifs in
fluids we determined were ‘pre-cursors’ to eventual self-assembled crystalline
phases. We identified pre-cursor fluids as all frames of self-assembling trajectories
prior to the nucleation incubation time59, defined in our simulations as the first
frame after which approximately all crystalline particle fractions measured over the
trajectory were greater than 0.1. We measured the fraction of crystalline particles in
each frame using an environment matching scheme tailored to identify local per-
particle bond environments associated with the relevant assembled crystal struc-
ture. This scheme is detailed further in the Supplementary Methods. If the crys-
talline fraction never surpassed 0.1, the system did not crystallize, and we treated
the entire trajectory as the non-crystallized fluid.

To construct Fig. 4, we ran three or four replicate simulations at each density
for the (αa, αc)= (0, 0.4) undoped system, to collect more statistics in the pre-
cursor fluid regime. Motif fractions were ensemble-averaged over all pre-cursor
fluid frames and are shown with error bars indicating the associated standard
deviation of the mean. Frames in all trajectories were written at a frequency of once
per 1 million MC sweeps.

Doping simulations. We performed ‘doping’ simulations by artificially introdu-
cing select pairwise motifs into our systems and monitoring consequent assembly
or non-assembly. We used isochoric Monte Carlo sampling and treated pairwise
motifs as rigid bodies. Simulations were composed of 4,096 particles and run for
about 100 million MC sweeps or until the system self-assembled. Overlap checks
treated each rigid body as a union of convex polyhedra, and thus trial moves of
pairwise motifs were rejected if either member of the pair overlapped with any
other particle or pair. We employed a compression and equilibration scheme
similar to that used in the hard particle MC simulations described previously; for
more detail see the Supplementary Methods.

Alchemical Monte Carlo simulations. We utilized the Alchemical Monte Carlo
(Alch-MC) sampling technique detailed in earlier work26,60–62 and implemented in
a branch of our in-house HPMC software package50. We initialized and com-
pressed systems of 1000 particles to desired volume fractions in an identical
manner to that described above for traditional isochoric MC sampling. We then
equilibrated each system for 10 million MC sweeps at constant volume and con-
stant particle shape. We finally ran Alch-MC simulations of each system for 20–30
million MC sweeps, allowing the fluctuation of either all particles’ vertex truncation
parameter αc, all particles’ edge truncation parameter αa, or both in an (NVTμ)
ensemble at constant (zero) conjugate alchemical potential μ. Alchemical shape
moves were attempted with a 25% probability after every MC sweep. In simulations
in which both αa and αc were sampled, each truncation parameter had a 50%
probability of being sampled during a shape move.

Data availability
All data generated and analyzed in this study are available from the corresponding
author upon request.
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