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A B S T R A C T

Background: We developed and validated an artificial intelligence (AI)-assisted prediction of preeclampsia
applied to a nationwide health insurance dataset in Indonesia.
Methods: The BPJS Kesehatan dataset have been preprocessed using a nested case-control design into pre-
eclampsia/eclampsia (n = 3318) and normotensive pregnant women (n = 19,883) from all women with one
pregnancy. The dataset provided 95 features consisting of demographic variables and medical histories
started from 24 months to event and ended by delivery as the event. Six algorithms were compared by area
under the receiver operating characteristics curve (AUROC) with a subgroup analysis by time to the event.
We compared our model to similar prediction models from systematically reviewed studies. In addition, we
conducted a text mining analysis based on natural language processing techniques to interpret our modeling
results.
Findings: The best model consisted of 17 predictors extracted by a random forest algorithm. Nine»12 months
to the event was the period that had the best AUROC in external validation by either geographical (0.88, 95%
confidence interval (CI) 0.88�0.89) or temporal split (0.86, 95% CI 0.85�0.86). We compared this model to
prediction models in seven studies from 869 records in PUBMED, EMBASE, and SCOPUS. This model outper-
formed the previous models in terms of the precision, sensitivity, and specificity in all validation sets.
Interpretation: Our low-cost model improved preliminary prediction to decide pregnant women that will be
predicted by the models with high specificity and advanced predictors.
Funding: This work was supported by grant no. MOST108-2221-E-038-018 from the Ministry of Science and
Technology of Taiwan.
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1. Introduction

Predicting preeclampsia may prevent neonatal morbidity because
this disorder can lead to neonatal prematurity [1,2]. Admission to
neonatal intensive care units (ICUs) was not reduced (odds ratio [OR]
0.93, 95% confidence interval (CI) 0.55�1.59), although preterm/early
preeclampsia was prevented by aspirin administration at 11�13
weeks’ gestation [3]. This is because term/late preeclamptic
women are more common than preterm/early ones and only 85%
of those were detected with a false positive rate of 10% at 35�37
weeks in high-resource settings [4]. A nationwide health insur-
ance dataset of the BPJS Kesehatan in Indonesia can provide big
data to develop artificial intelligence (AI)-assisted predictions that
may reduce false positives. However, the predictive performance
of predicting preeclampsia developed based on this health insur-
ance dataset is still unclear.

Preeclampsia is one of the pregnancy-induced hypertension (PIH)
and placenta dysfunction-related disorders [5,6]. Preeclampsia affects
4.6% (95% uncertainty range 2.7�8.2) of pregnant women [7], and
may also impair fetal growth, which leads to low birth weights as a
predisposing factor to neonatal deaths [8,9]. Although many condi-
tions in pregnant women contribute to premature and low-birth-
weight infants [10], preeclampsia is the major contributor, because
early delivery is the only cure for this disease. Yet, the decision to
deliver early may be based on a false positive that leads to inefficient
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Research in context

Evidence before this study

Preeclampsia is a subtype of pregnancy-induced hypertension
(PIH) that is a common cause of maternal mortality. The etiol-
ogy and pathogenesis are not well understood, but it was evi-
denced that the only cure is delivery; thus, false positives of
preeclampsia predictions might lead to unnecessary early
deliveries. This contributes to premature and low-birth-weight
babies, which in turn, increases inefficient utilization of neona-
tal intensive care units (ICUs). There are four problems with
preeclampsia prediction models from previous studies: (1) no
robust prediction of all subtypes of preeclampsia; (2) biased
predictive performances; (3) low precision or positive predic-
tive values; and (4) a need for a high-resource setting to apply
the prediction model. Most models achieved greater than 90%
sensitivity and specificity only for early-onset but not all sub-
types of preeclampsia. Meanwhile, late-onset preeclampsia is
more common than early-onset cases; thus, admission to neo-
natal ICUs was not significantly reduced. A previous study
showed promising predictive performance of a prediction
model for late-onset preeclampsia. Yet, this did not apply
recent standards that have been developed for predictive
modeling, which were designed to avoid risks of bias. Ulti-
mately, low precision of prediction models is common in pre-
eclampsia predictions because of class imbalances in which
preeclampsia outcomes were very low compared to normoten-
sive controls (mostly 1:9). In low-precision prediction models,
a predicted preeclampsia case is likely to be a false positive,
and this leads to unnecessary early deliveries. Although there
are highly precise prediction models limited to early-onset pre-
eclampsia, these require expensive, inaccessible biophysical
and biochemical markers such as the pulsatility index of the
uterine artery by ultrasound measurement, soluble fms-like
tyrosine kinase-1 (sFlt-1), and/or placental growth factor
(PlGF). We need a prediction model with low false positive rate
and low-cost predictors with high sensitivity at the same speci-
ficity compared to the others with low-cost predictors. This
model will be a preliminary model to decide utility of predic-
tion models with advanced predictors. Therefore, we can
reduce both maternal mortality and neonatal morbidity as well
as the prediction cost of preeclampsia at community level.

Added value of this study

The prediction model proposed in this study was robust for pre-
eclampsia in both internal and external validation sets. This
model was developed based on the Prediction Model Risk of
Bias Assessment Tool (PROBAST) which contains recent guide-
lines for prediction model development to avoid risks of bias.
We compared the precision, including sensitivity and specific-
ity, to similar prediction models from previous studies. These
were systematically reviewed among 879 records from
PUBMED, EMBASE, and SCOPUS within the last 5 years (since
2015). Our model applied a machine learning algorithm that
uses demographic variables and diagnoses on previous
visits which are conceivably applicable in low-resource set-
tings. To develop and validate this model, we utilized big data
from a nationwide health insurance dataset in Indonesia
(n = 2,641,096) with preeclampsia/eclampsia (n = 3318) vs.
non-PIH nested control (n = 19,883) outcomes. Our model out-
performed those from systematically reviewed studies in terms
of both internal and external validation sets. For external vali-
dation, our precision levels were 0.59 (95% confidence interval
(CI) 0.58�0.60; by geographical splitting) and 0.72 (95% CI

0.72�0.72; by temporal splitting) compared to the best previ-
ous model 0.17 (95% CI 0.17�0.17) at sensitivity »95%. Mean-
while, the specificities were 0.47 (95% CI 0.45�0.49; by
geographical splitting) and 0.44 (95% CI 0.43�0.45; by temporal
splitting) compared to the best previous model of 0.47 (95% CI
0.40�0.55). The areas under the receiver operating characteris-
tics curve of our model were 0.88 (95% CI 0.88�0.89) and 0.86
(95% CI 0.85�0.86) for the geographical and temporal splits,
respectively. Subjects predicted as preeclampsia/eclampsia was
»80% in both external validation sets, which imply potential
reduction of »20% cost for prediction by highly-specific models
with advanced predictors. We also applied natural language
processing techniques to assist interpretation of our model,
which is considered one of the most important artificial intelli-
gence applications.

Implications of all the available evidence

Since our model showed an acceptable predictive performance
using information from a health insurance dataset that came
from multiple healthcare facilities, we encourage health insur-
ance companies to facilitate this model deployment in order to
be used by inter-healthcare facilities in privacy-aware informa-
tion systems. We expect this model to have an impact on
improving efficient neonatal ICU utilization and in turn reduce
expenses of insurance companies. Our prediction model also
supported several recent findings on preeclampsia pathogene-
sis. The best predictive performance of our model used predic-
tors during 9�<12 months to the event. This supports recent
findings from bioinformatics studies which revealed that pre-
eclampsia pathogenesis possibly starts before pregnancy rather
than during the first trimester. Approximately one-third of text
profiling results from diagnoses on previous visits were bacte-
rial infection-related conditions, as inferred by natural language
processing techniques. This also corresponds to recent findings
from microbiology and microbiome studies that provided evi-
dence of the role of bacterial infections or specific microbial
communities in several organs of women with preeclampsia.
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utilization of neonatal ICUs for preventable premature babies.
Although neonatal ICU admission was not reduced by babies from
preeclamptic women given aspirin at 11�13 weeks’ gestation [3], the
length of stay in neonatal ICU was reduced by 20.3 days (95% CI
7.0�38.6) [11]. However, this was because of decreased birth rates at
<32 weeks' gestation (OR 0.42; 95% CI, 0.19�0.93), or prevention of
early preeclampsia. Meanwhile, the number of babies that were
admitted to neonatal ICU was larger from term/late (n = 14/102,
13.72%) preeclamptic women compared to those from preterm/late
ones (n = 7/102, 6.86%). By reducing length of stay without reducing
neonatal ICU admission, the cost reduced mostly at individual but
not at community level. Therefore, reducing false positives from pre-
eclampsia predictions may improve the efficiency of utilization of
these scarce facilities.

Predicting preeclampsia is important because the effective pre-
vention is only applied for preterm preeclampsia (risk ratio [RR] 0.92,
95% CI 0.45�0.87) in which aspirin is given at �16 weeks’ gestation
[12]. Ninety predictors and 52 prediction models were compared by
126 systematic reviews, and 63.49% of them included advanced bio-
markers, genomics, and/or ultrasound measures [13]. Nevertheless,
few of those tests had both sensitivity and specificity above 90% in
the external validation. Although there was an externally validated
prediction model with a sensitivity of 93% (95% CI 76%�99%; at a
specificity of 90%), this was true only for early but not all preeclamp-
sia (sensitivity 49%, 95% CI 43%�56%) [14]. This model also used
advanced biomarkers, while another model only achieved a



Table 1
Diagnosis codes for nested case-control sampling.

ICD10 codes Description

O Pregnancy, childbirth, and puerperium
O10�16 Oedema, proteinuria, and hypertensive disorders in pregnancy,

childbirth, and puerperium
O14�15 Preeclampsia and eclampsia

O80�82 Encounter for delivery
Z33�37 Pregnant state, encounter for supervision of normal pregnancy,

encounter for antenatal screening of mother, and outcome of
delivery
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sensitivity of 47.6% (95% CI 44.0�51.1%; at a specificity of 89.4%) using
maternal characteristics and medical histories [15]. A prediction model
with high precision and sensitivity but low-cost predictors is needed for
preeclampsia. Themodel should have high sensitivity at the same or bet-
ter specificity compared to the others with low-cost predictors. The
model is intended to decide which patients will be predicted by other
highly-specific models with advanced predictors. The preliminary pre-
diction model will improve efficiency of neonatal ICU utilization and
reduce the prediction cost at community level without sacrificing either
maternal or neonatal patient safety.

The poor performances of preeclampsia prediction may be caused
by the complexity of this disease at the transcriptomic level [16].
Machine learning can potentially deal with this problem [17]; how-
ever, it needs big data to achieve good predictive performances. A
recent machine learning prediction study demonstrated a promising
predictive performance in internal validation by a stochastic gradi-
ent-boosting algorithm for late preeclampsia (c-statistics 0.924; with
a sensitivity of 0.60 and a specificity of 0.99) [18]. That study utilized
electronic medical records consisting of 24 clinical and biochemical
predictors, but there were only 474 events of preeclampsia. It lacked
events per variable (EPVs) which may cause overfitting to several
machine learning algorithms [19]. However, there are no previous
studies that developed and externally validated prediction models
for preeclampsia that utilized big data with sufficient EPVs for
machine learning algorithms.

The Nationwide Health Insurance Dataset of BPJS Kesehatan
(NHID-BPJSKes) in Indonesia can provide big data for developing
machine learning prediction models. Health insurance datasets have
been utilized for association studies involving PIH in Taiwan [20�23]
and a predictive study for postpartum women in the UK [24].
Although only demographic data and diagnoses are provided by the
NHID-BPJSKes, machine learning prediction models can be developed
using this dataset since it provides sufficient EPVs. This is because a
systematic review showed that Indonesia as one of the countries
with high incidences of preeclampsia based on two studies (8.6%;
n = 43,464) [7]. Although there is no effective prevention for late pre-
eclampsia, machine learning trained on big data may provide a pre-
dictive model with better precision. By reducing false positives of
pregnancy termination because of preeclampsia, it may eventually
improve utilization of ICUs. In addition, this predictive model can be
used to efficiently construct prospective cohorts of preeclampsia for
further development of machine learning predictions, especially in
poor-resource settings. This study attempted to develop and validate
an AI-assisted prediction of preeclampsia by machine learning
applied to the NHID-BPJSKes in Indonesia.

2. Materials and methods

This study developed a prognostic prediction model utilizing pub-
licly-accessed dataset; thus, our study was non-interventional and
non-observational. We applied guidelines extended from Transpar-
ent Reporting of a Multivariable Prediction Model for Individual Prog-
nosis or Diagnosis (TRIPOD), which is widely accepted for diagnostic/
prognostic studies. The guidelines were extended by several TRIPOD
authors specifically for multivariable prediction models instead of a
single predictor to minimize risks of bias and optimism for prediction
model development [25]. The extended guidelines were called as Pre-
diction Model Risk of Bias Assessment Tool (PROBAST). We applied
the PROBAST in conjunction with the Guidelines for Developing and
Reporting Machine Learning Predictive Models in Biomedical
Research [26].

2.1. Data source

This study utilized NHID-BPJSKes which is a cross-sectional data-
set representing real-world data of insurance-based healthcare in
Indonesia on 2015 and 2016, but, we preprocessed this dataset in
order to build a tidy dataset for a nested case-control design. Until
2018, the health insurance covered 200,259,147 (75.8%) individuals
in Indonesia [27]. This reflected coverage of this insurance on the
pregnant women in this study.

We utilized the initial version of the original dataset that had no
accession number but published with the dataset code book for each
version [27]. This book described details on cross-sectional sampling
procedures of the original dataset. Briefly, all individuals covered by
this insurance were sampled randomly stratified by 66,072 combina-
tions of primary care (22,024 facilities) and family category (3 clas-
ses). The family category consisted of family of which members: (1)
never using the health insurance; (2) using it in primary care only,
and (3) using it in both primary care and hospital. The dataset only
included the strata combination that consisted at least one family. It
also included maximum 10 families; thus, if the combination con-
sisted >10 families, then these were undersampled into 10 families.
In the end, the sampling procedures resulted 586,969 families and
1,697,452 individuals.

Before we reconstructed the NHID-BPJSKes dataset for this study,
it had been sampled from overall data in the insurance database by
the owner which was the social security administrator for health or
badan penyelenggara jaminan sosial (BPJS) kesehatan in Indonesia.
None of the authors were parts of the BPJS Kesehatan and the sample
dataset has been also deidentified before it was made publicly
accessed by request; thus, there was neither issue of patient privacy
or need of informed consent for this study. Permission to the dataset
for this study has been granted by the owner (dataset request
approval no.: 12047/I.2/0919). The datasets for model development
and validation in this study are available for public access by request
to the corresponding author and by approval of the BPJS kesehatan in
Indonesia.

There were approximately 2.6 million instances from 34 provin-
ces of Indonesia. These consisted of four tables of claims data, which
describe membership, primary care visits by capitation, primary care
visits by case-based group (CBG) payments, and hospital visits by
CBG payments. Diagnoses in this dataset were coded according to the
International Classification of Diseases 10th Revision (ICD10).

2.2. Study design

We applied a nested case-control design for this study. Inclusion
criteria were pregnant women with and those without preeclampsia/
eclampsia. All women with pregnancy records were included without
considering whether the subjects were first-time mothers or not.
Exclusion criteria were all subtypes of PIH except preeclampsia/
eclampsia. Cases were defined as women with preeclampsia/eclamp-
sia and one pregnancy but without other PIH diagnoses, while con-
trols were defined as women with one pregnancy but without PIH
diagnoses including preeclampsia/eclampsia.

To approach these definitions, we applied data preprocessing by
ICD10 codes. Case groups consisted of all visits from subjects that had
codes of both O14�15 and Z33�37, while controls consisted of those
from subjects having codes of Z33�37 only (Table 1). Neither cases
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nor controls included visits from subjects that had other codes within
O10�16. The pregnancy period was defined between the earliest and
latest dates of visits coded by Z33�37 or O. This period was applied
for feature extraction. We also removed all records that possibly had
more than one episode of pregnancy within a 2-year period in the
dataset. This was achieved by removing subjects with differences of
known earliest and latest delivery codes (O80�82) that were greater
than zero. In the end, the age range of control group was matched
with the case group (12�55 years old).

2.3. Feature extraction, representation, and selection

Features consisted of demographic variables and diagnoses on pre-
vious visits. We conducted a time-to-event analysis to extract diagno-
sis predictors. The event was delivery of which the time was
considered as comparable time of outcome between case and control.
Demographic variables were age (years), marital status (married/sin-
gle/divorced or widowed/undefined), family role (wife/child/primary
member/additional member), membership strata (first/second/third),
and membership type (government-paid labor/company-paid labor/
self-paid labor/non-labor). Diagnoses were derived from encounters
coded by A to N (Table S1 in Supplementary materials). To capture spe-
cific codes to several causes of disease and organ-related diseases, 15
features were also added. All of the diagnostic features were accounted
for in each period of either 1 year before the event or during gestation.
In addition, the time to the event (months) and distinct diagnoses
compared to all available three-digit codes were included. We also
included diagnoses within 2 years before the event along with an addi-
tional feature of censored time to the event (months) for those with
event times in 2015. All continuous variables were normalized.

In total, there were 95 candidate features included in the predic-
tive model. To avoid irrelevant and redundant features, we applied
several feature selection techniques in a multivariate logistic regres-
sion model (MvLRM). These could be forward, backward, or stepwise
feature selection. We applied 0.05 as the significance level for retain-
ing the candidate feature in the model. Each of these methods might
or might not be preceded by feature representation as either polyno-
mial terms or principal components. Forward, backward, and step-
wise selection were not used at the same time. We compared the
MvLRM performances using any of these combinations of feature
selection and/or representation with those with neither feature
selection or representation. Instead of using one feature selection
technique, comparison of the multiple combinations allowed us to
have larger search space for model optimization. However, we lim-
ited this search space within feasible size by applying only 2-degree
polynomial terms. The goal for the feature selection was to reach the
predefined number of candidate features that fit a sufficient EPV for
machine learning development [19,28]. We would define this num-
ber after finishing the subject selection (see Section 2.2). We applied
the number as starting number of features included in backward
selection that would stop at two remaining features. Contrarily, we
started the forward and stepwise selection from two features and
stopped at the predefined number. We chose at least two features
because we applied conditional MvLRM to force time to the event
being retained in the feature selection. This feature should be in the
model anyway because we would conduct subgroup analysis using
this feature in the best model (see Section 2.7). In addition, we also
limit maximum principal components as much as the predefined
number of candidate features. By this predefined number, we esti-
mated the sample size having sufficient power for developing a pre-
dictive model, including the machine learning ones.

2.4. Model development

We compared six state-of-the-art machine learning algorithms
using SAS Enterprise Miner 14.3 (SAS Institute, Cary, NC, US) to
develop prognostic prediction model. These included the machine
learning-optimized logistic regression (LR), decision tree (DT), artifi-
cial neural network (ANN), random forest (RF), support vector
machine (SVM), and the ensemble (Ens.) algorithm that combined
other algorithms. We conducted parameter tuning of the algorithms
by comparing 726 configurations (Table S2 in Supplementary materi-
als). Each algorithm included the best feature set from a previous
selection. The best parameter tuning of each of the models was used
for the final comparison. We also applied a critical appraisal to the
best model based on the domain knowledge.

2.5. Model evaluation

We evaluated all models using both calibration and discrimina-
tion tests. Calibration was assessed by a linear regression of the pre-
dicted and true probabilities, while discrimination was assessed by
the area under curve of the receiver operating characteristics curve
(AUROC). In the end, we also compared the positive predictive value
or information retrieval precision (Prec.) for the false positive rate
(FPR or 1-specificity) of 10%.

2.6. Model validation

We split up the tidy dataset into training and test sets for internal
and external validation, respectively. Data partitioning for external
validation was further split geographically and temporally. In the
geographical split for external validation (GEV), one city in each prov-
ince was randomly sampled. The city list was used to filter the data-
set into the test set, while the rest was split for the training and
another validation set. Geographical randomization from each prov-
ince of Indonesia is important to avoid racial/ethnic disparities asso-
ciated between preeclampsia and its risk factors [29]. In the temporal
split for external validation (TEV), 25% of the days in each month
were randomly selected. All visits from subjects with delivery time
on those selected days were split for the validation set; thus, the sub-
jects were completely external to those in the training set and inter-
nal validation set. Temporal randomization was intended to avoid a
seasonality effect on preeclampsia [30]. Women who delivered dur-
ing winter (non-tropical regions) or rainy season (tropical regions)
have higher prevalence of preeclampsia/eclampsia. Both geographi-
cal and temporal randomization are different to simple randomiza-
tion which may leave subjects in the training set, that lived in the
same cities or were delivered at the same time periods with those in
the test sets. Using geographical and temporal randomization, the
test sets would have subjects with unobserved features in the train-
ing set, that were related to the city and time period. Meanwhile,
since preeclampsia was associated with racial/ethnicity and seasonal-
ity [29,30], no randomization for city and time period selection might
cause biases in the predictive performance. We also conducted 10-
time bootstrapping to iterate the external validation. Therefore, we
could estimate the predictive performance of our model for future
dataset.

Before feature selection, a tidy dataset with balanced cases and
controls was constructed for internal and external validations and
analyzed for missing data. We conducted oversampling of cases by
stratified random sampling. All candidate features and outcomes
were used as stratification variables. Chi-square and t-tests were con-
ducted on the dataset before and after oversampling to ensure that
there was no significant effect of oversampling of the case group. Sta-
tistical tests were also conducted on the dataset before and after
removing missing data.

We conducted 10-fold cross-validation when developing the
models. The training set and internal validation (IV) set were ran-
domly assigned into 10 groups by stratified random sampling. The
stratification variable for this randomization was the target outcome.
The models were trained/fitted by aggregating nine groups and were
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internally validated by the remaining group each time. This process
was repeated 10 times until all groups were used as the validation
set.

We applied 10-fold cross-validation starting from feature selec-
tion. However, to efficiently search for the best parameter tuning for
each algorithm, we applied test split validation with a 9:1 ratio for
both the training and validation sets. In the final comparison among
all algorithms, we also applied 10-fold cross validations. External val-
idations were applied to feature selection, parameter tuning, and
final comparison, but these datasets had no role in parameter updat-
ing in each model.
2.7. Subgroup and text mining analyses

A subgroup analysis was conducted using the time-to-event. This
determines the period before the event that has the highest discrimi-
nation ability according to the AUROC. To do so, we split all external
validation sets after prediction. Datasets were split by the time-to-
event into four groups which were 2 days to <6 months, 6»<9
months, 9»<12 months, and 12�24 months. The groupings were
intended to imply known prediction periods and pathogenesis para-
digms from previous studies within the range of available data. These
were second- or third-trimester predictions [4], first-trimester pre-
diction/pathogenesis [14], near-pregnancy pathogenesis (related to
endometrial maturation) [31], and genetic paradigms of pathogenesis
(related to vascular susceptibility) [32].

In addition, we also conducted a text mining analysis using SAS
Enterprise Miner 14.3 (SAS Institute). It was based on natural lan-
guage processing techniques on the internal validation set to inter-
pret the best model. We extracted all ICD10 codes in any visits that
had non-zero values in each diagnosis predictor and that had codes
classified to the predictor. The visits were limited to those that had
true predictions by the best model. Text profiling of ICD10 codes was
conducted for each diagnosis predictor in the case group.
2.8. Comparison to previous studies

We also compared the best period for prediction of our model
with those from previous studies. The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines for the
comparison purpose was applied. We searched both research and
review articles (systematic review/meta-analysis) in PUBMED,
EMBASE, and SCOPUS within the last 5 years (since 2015) that devel-
oped and/or validated clinical prediction models. The models had to
match our eligibility criteria as defined by PICOTS: [28] (1) popula-
tion: women or pregnant women without specializing the popula-
tion; (2) index: multivariable, prognostic clinical prediction model
using demographic and/or clinical predictors in a poor-resource set-
ting; (3) comparator: the best model in this study; (4) outcome: pre-
eclampsia without differentiating early- or late-onset and with or
without fetal growth restriction; (5) timing: before or during preg-
nancy until 2 days before onset or delivery; and (6) setting: survey,
primary care, or hospital. The studies had to report the point and
interval estimates of predictive performance, sample sizes in either
case or control, and model validation methods. These were parts of
quality assessment we followed from Prediction Model Risk of Bias
Assessment Tool (PROBAST) [25], and the Guidelines for Developing
and Reporting Machine Learning Predictive Models in Biomedical
Research [26]. All authors independently assessed the criteria in
order as described. If there was a non-matching criterion, then we
did not assess the next criterion. If there was a disagreement among
authors, this was resolved through discussion. The data of eligible
articles were extracted by HS, and the extracted data were reviewed
by YWW and ECYS.
2.9. Decision curve analysis

To determine cut off values, we applied decision curve analysis
that showed FPR, negative predictive value (NPV), positive predictive
value (PPV), proportion of predicted positives, and true positive rate
(TPR) or sensitivity. We identified cut off value with either sensitivity
»0.95 and specificity »0.90 to compare the predictive performances
with those of prediction models from previous studies. The cut off
values were chosen based on the internal validation set to apply on
the other sets. The final model used only cut off value at sensitivity
»0.95 to achieve a sufficient preliminary prediction model that will
be combined with other highly-specific models. Inverse of the pro-
portion of predicted positives might imply potential reduction of fur-
ther prediction by the models with advanced predictors.

2.10. Statistical analysis

We used SAS Enterprise Guide 7.1 (SAS Institute) to conduct all
statistical analyses. Evaluation metrics were expressed as point and
interval estimates with the 95% confidence interval (CI). The results
from 10-fold cross-validation and 10-time bootstrapped external val-
idation were used to calculate the interval estimate. We used the
interval estimates to compare evaluation metrics of the models. The
best model was determined by the AUROC and PPV or IR’s precision
from both external validations. In addition, significance of the
selected candidate features was expressed as adjusted p-value. To
describe the continuous features, we applied mean and standard
deviation as the center and dispersion metrics, respectively, while
frequency and the proportion was applied for the categorical fea-
tures.

3. Results

3.1. Characteristics of the dataset

Datasets were constructed for internal and external validations
(n = 23,201; Fig. 1). From these datasets, the proportion of visits by
women who would be delivered in primary care and hospital (ratio
of IV, GEV, and TEV) were 43.82% (9035:717:414) and 56.17%
(11,940:605:490), respectively. Missing data were minor in both
cases (0.33%, n = 11/3329) and controls (1.44%, n = 290/20,173). The
numbers of missing data were the number of either cases or controls
that had missing value on any of the features only. The outcome,
either case or control, was complete in this study. Differences in pre-
dictor and outcome candidates were described before and after
removing missing data or balancing data (Tables S3 and S4 in Supple-
mentary materials).

Censored diagnoses on previous visits in the training set were also
minor in both cases (n = 878, 28.75%) or and controls (n = 5856,
32.67%). This is important because censored diagnoses can be viewed
as negatives, while these may actually be positives but not recorded
due to data availability. In real world data, this situation can occur
with a new member to the health insurance program. We added the
censored time-to-event to tell the algorithms how many months a
subject had censored diagnoses on previous visits. Nonetheless, this
candidate feature was not chosen in the selection process.

3.2. Selected feature candidates

To achieve sufficient EPV for model development in all machine
learning algorithms, we selected up to 17 features as the predefined
number of candidates. Several feature candidates were selected from
the MvLRM using forward selection of both original features and
principal components (Table 2). We also forced the principal compo-
nent analysis to obtain 17 components. In addition to the original set
of 95 feature candidates, the principal components made a feature



Fig. 1. Dataset constructed for model development. The original dataset was constructed with a nested case-control design. Controls were sampled within the same age range of
case groups (12�55 years old). NHID-BPJSKes, nationwide health insurance dataset of BPJS Kesehatan; PIH, pregnancy-induced hypertension; IV, internal validation; GEV, geograph-
ical split for external validation; TEV, temporal split for external validation.
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set with 112 feature candidates. With this number of candidates, the
EPV for the training set was 27.3. This number was sufficient for pre-
liminary feature selection by the MvLRM in order to avoid optimism
according to the standard, which was 20»50 EPV for logistic regres-
sions.

3.3. Model comparison

Six machine learning models were compared (Table 3). The best
model used the random forest algorithm consisting of 500 trees. This
model was consistently superior in terms of both internal and exter-
nal validations by geographical and temporal splits, compared to the
other machine learning models, including the ensemble model,
which did not outperform the random forest model. Three algorithms
were combined in the ensemble model: the logistic regression, deci-
sion tree, and artificial neural network. This configuration had the
best predictive performance among other configurations of ensemble
models.

Calibration slope of the model with random forest algorithm was
significantly different to 1 as demonstrated by the estimates (Table
3). This was also shown by the models with other algorithms. The
receiver operating characteristics (ROC) curves and the area under
curve (AUROCs) are also shown for the random forest model (Fig. 2).
The ROC curve and AUROC for the training set were similar to
internal validation set, but not external validation sets. For a specific-
ity of »90%, the detection rates were 0.58 (95% CI 0.57�0.59), 0.44
(95% CI 0.43�0.46), and 0.37 (95% CI 0.36�0.38) for IV, GEV, and TEV,
respectively. For the same specificity, the precisions were 0.86 (95%
CI 0.85�0.86), 0.82 (95% CI 0.81�0.83), and 0.78 (95% CI 0.78�0.79)
for IV, GEV, and TEV, respectively.

3.4. Subgroup analysis by the time-to-event of the best model

Instances in each external validation set were subgrouped by
period of the time-to-event. The AUROCs were re-computed in each
subgroup (Fig. 3). The period of 9�<12 months to the event was the
period which showed the highest AUROC both for GEV (0.89, 95% CI
0.88�0.89) and TEV (0.86, 95% CI 0.85�0.86). The wide discrepancy
of AUROCs between internal and external validation were contrib-
uted by instances subgrouped by the period of 12�24 months, 6�<9
months, and 2 days�<6 months, but not 9�<12 months. These indi-
cated that the features from this period might be more important
than those from other periods.

3.5. Text mining analysis of the best model

A text mining analysis was conducted for all instances that were
true-predicted by the random forest model in the internal validation



Table 2
Feature candidates selected by the multivariate logistic regression model with forward selection from original candidates and principal components.

# Feature Cases (n = 3054) Controls (n = 17,921) p value

1 Time-to-event (months) § SD * 4.56 § 5.19 4.16 § 4.43 0.08
Demographic variables

2 Age (years) § SD 32 § 12 30 § 12 <0.0001
3 Family role, n (%)

. Wifey 1895 (62.05) 10,953 (61.12) �

. Primary member 849 (27.80) 4381 (24.45) 0.06

. Child 214 (7.01) 2161 (12.05) 0.01

. Additional member 96 (3.14) 426 (2.38) <0.0001
4 Member stratum, n (%)

. First 459 (15.03) 2494 (13.92) <0.0001

. Second 1306 (42.76) 8114 (45.28) 0.45

. Third y 1289 (42.21) 7313 (40.80) �
5 Member type, n (%)

. Company-paid labor 1517 (49.67) 8720 (48.66) <0.0001

. Government-paid labor 769 (25.18) 4997 (27.88) <0.0001

. Self-paid labor y 747 (24.46) 4173 (23.29) �

. Non-labor 21 (0.69) 31 (0.17) <0.0001
Diagnoses within the last 2 years to the event (partially censored)

6 A codes - Certain infectious and parasitic diseases, visits § SD; n (%) z 2.72 § 1.79; 248 (8.12) 1.54 § 1.06; 1412 (7.88) 0.02
7 E codes - Endocrine, nutritional and metabolic diseases, visits § SD; n (%) z 5.00 § 5.41; 187 (6.12) 2.65 § 2.33; 310 (1.73) <0.0001
8 I codes - Diseases of the circulatory system, visits § SD; n (%) z 4.05 § 3.75; 570 (18.66) 2.63 § 2.33; 609 (3.40) <0.0001
9 Immune-related codes, visits § SD; n (%) z 2.97 § 2.15; 308 (10.09) 1.77 § 1.39; 1142 (6.37) <0.0001
10 Eye-related codes, visits § SD; n (%) z 2.81 § 1.62; 57 (1.87) 1.78 § 1.10; 444 (2.48) <0.0001

Diagnoses within the last year to the event
11 N codes - Diseases of the genitourinary system, visits § SD; n (%) z 3.94 § 3.37; 172 (5.63) 1.95 § 1.99; 856 (4.78) <0.0001
12 Eye-related codes, visits § SD; n (%) z 2.28 § 1.37; 248 (8.12) 1.71 § 0.99; 1412 (7.88) <0.0001

Diagnoses within the pregnancy period to the event
13 Breast-related codes, visits § SD; n (%) z 5.85 § 2.58; 13 (0.43) 1.00 § 0.00; 6 (0.03) <0.0001
14 Digestive system-related codes, visits § SD; n (%) z 2.48 § 2.35; 186 (6.09) 1.85 § 1.60; 768 (4.29) <0.0001
15 Skin and subcutaneous-related codes, visits § SD; n (%) z 1.81 § 0.71; 36 (1.18) 1.52 § 1.14; 287 (1.60) <0.0001

Principal components
16 Principal components 8 (see Table 4 for the profile) 2.72 § 1.79; 248 (8.12) 1.54 § 1.06; 1412 (7.88) <0.0001
17 Principal components 10 (see Table 4 for the profile) �0.09 § 0.03 0.09 § 0.01 <0.0001

* Forced into the multivariate logistic regression model.
y Comparator.
z Non-zero visits.
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set. Text profiles are shown for all diagnosis predictors (Table 4). Sev-
eral codes in the text profiles were classified to one or more diagnosis
predictors in the case group. Therefore, we could identify specific
diagnoses in the true-predicted instances to interpret the best model
in this study.
Table 3
Calibration and discrimination tests of six machine learning models b

Validation Algorithm Calibration
Slope (95% CI) I

Internal LR 1.08 (1.08, 1.09) �
DT 0.99 (0.99, 1.00) 0
ANN 0.64 (0.63, 0.64) 0
RF 1.54 (1.54, 1.54) �
SVM 2.68 (2.66, 2.70) �
Ens. 1.21 (1.21, 1.22) �

External, geographical split LR 1.80 (1.76, 1.83) �
DT 0.69 (0.67, 0.71) 0
ANN 0.75 (0.73, 0.77) 0
RF 1.47 (1.45, 1.50) �
SVM 3.12 (3.02, 3.21) �
Ens. 1.52 (1.49, 1.55) �

External, temporal split LR 0.74 (0.72, 0.76) 0
DT 0.92 (0.90, 0.93) 0
ANN 0.30 (0.29, 0.31) 0
RF 1.09 (1.08, 1.11) 0
SVM 2.25 (2.20, 2.30) �
Ens. 0.74 (0.72, 0.76) 0

AUROC, area under the receiver operating characteristic curve; LR
tree; ANN, artificial neural network; RF, random forest; SVM, suppor
* For a specificity of »90%.
3.6. Comparison to previous studies

We found 879 records from PUBMED, EMBASE, and SCOPUS for
‘preeclampsia prediction model’ within the last 5 years, and seven
studies were eligible for comparison to our random forest model in
y both internal and external validations.

Discrimination tests
ntercept (95% CI) AUROC (95% CI) Prec. (95% CI) *

0.04 (�0.04, �0.03) 0.70 (0.69, 0.70) 0.78 (0.78, 0.78)
.01 (0.01, 0.01) 0.66 (0.66, 0.67) 0.73 (0.72, 0.74)
.14 (0.14, 0.15) 0.65 (0.64, 0.67) 0.74 (0.73, 0.75)
0.27 (�0.27, �0.26) 0.86 (0.85, 0.86) 0.86 (0.85, 0.86)
0.89 (�0.90, �0.88) 0.68 (0.67, 0.68) 0.78 (0.76, 0.79)
0.13 (�0.13, �0.12) 0.70 (0.70, 0.71) 0.78 (0.77, 0.78)
0.34 (�0.35, �0.32) 0.74 (0.73, 0.76) 0.68 (0.67, 0.70)
.15 (0.14, 0.16) 0.60 (0.59, 0.61) 0.80 (0.79, 0.81)
.08 (0.07, 0.09) 0.67 (0.64, 0.70) 0.55 (0.52, 0.58)
0.19 (�0.21, �0.18) 0.76 (0.76, 0.77) 0.82 (0.81, 0.83)
1.07 (�1.12, �1.02) 0.62 (0.61, 0.62) 0.54 (0.52, 0.57)
0.28 (�0.30, �0.26) 0.72 (0.71, 0.73) 0.70 (0.68, 0.72)
.16 (0.15, 0.17) 0.62 (0.62, 0.63) 0.77 (0.76, 0.77)
.08 (0.08, 0.09) 0.63 (0.62, 0.63) 0.69 (0.68, 0.70)
.34 (0.33, 0.35) 0.58 (0.58, 0.59) 0.71 (0.70, 0.72)
.02 (0.02, 0.03) 0.70 (0.70, 0.70) 0.78 (0.78, 0.79)
0.65 (�0.67, �0.62) 0.63 (0.63, 0.63) 0.72 (0.71, 0.73)
.15 (0.14, 0.16) 0.61 (0.61, 0.62) 0.74 (0.73, 0.74)

, machine learning-optimized logistic regression; DT, decision
t vector machine; Ens., ensemble algorithm.



Fig. 2. Receiver operating characteristics (ROC) curves for the random forest model. Four panels show the ROC curves with AUROCs and 95% CIs using these datasets: (a) training
set; (b) internal validation set; (c) external validation set by geographical split; and (d) external validation set by temporal split. The dashed line is a reference line. AUROC, area
under the receiver operating characteristics curve.
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the subgroup of 9�12 months to the event (Supplementary materi-
als). Compared to most previous models, our model in this subgroup
had the best predictive performances in the AUROC competing with
those from MacDonald-Wallis (2015), including the predictive per-
formance using GEV and TEV (Table 5) [33]. The precision and sensi-
tivity of our model were also the highest ones among those with a
specificity of »90% [15,34,35]. For a sensitivity of »95%, our model
had higher precision and competing specificity compared to that of
MacDonald-Wallis (2015) [33]. For comparison purpose, we applied
0.34 and 0.54 as cut off values for the model at sensitivity (»0.95)
and specificity (»0.90), respectively. The cut off values were deter-
mined based on internal validation (Fig. S2�S7 in Supplementary
materials). However, we recommend cut off value of 0.34 to get
highly-sensitive performance using our model as the preliminary
prediction model to decide which patient will be predicted by other
models with high specificity. We also recommend to apply prediction
model from MacDonald-Wallis (2015) [33], which had NPV 1.00 (95%
CI 0.99�1.00), to confirm predicted negatives by our model. Using
cut off value of 0.34, the proportions of predicted positives were 77%
(95% CI 75�78%) in GEV and 78% (95% CI 77�78%) in TEV. This imply
potential reduction of »20% cost needed for prediction models with
advanced predictors.

4. Discussion

Our model included predictors mostly from the medical history. It
was the most frequent predictor used in preeclampsia prediction
models [38]. Some of our predictors were also used in clinical predic-
tion models from previous studies. Age, chronic hypertension (I10,
I159), and diabetes mellitus (E118, E119) were used in the NICE and
ACOG guidelines with or without modification [37]. In addition, a
previous meta-analysis also showed associations between some of
these predictors and preeclampsia [39]. These were a maternal age of
>40 years (OR 1.50, 95% CI 1.20�2.00; I2=95%; df=15) and chronic
hypertension (ICD10 I10, I159; OR 5.10, 95% CI 4.00�6.50; I2=98%;
df=20). The random forest and text profiling algorithms included
these diseases that were available in our training set.

Nevertheless, there was no systemic lupus erythematosus (SLE),
antiphospholipid syndrome or other thrombophilia, or chronic kid-
ney disease in our training set, while previous models included those



Fig. 3. Area under receiver operating characteristics curve (AUROC) of subgroups by the time-to-event from the random forest model. Four panels show the AUROCs using these
datasets: (a) training set; (b) internal validation set; (c) external validation set by geographical split; and (d) external validation set by temporal split. The error bar and 95% confi-
dence interval are shown. To improve readability, the y-axis scale was begun from 0�45; all of the data are completely shown. The dashed line shows the minimum AUROC among
those using training and IV sets. AUROC, area under the receiver operating characteristics curve.
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diseases along with age, chronic hypertension, and diabetes mellitus
[15,33�36]. Although there was no SLE, erosive arthritis was avail-
able in our training set and was found in the text profiling results for
immune-related codes. Erosive arthritis can be determined by the
anti-citrullinated peptide and anti-carbamylated protein antibodies
that were predictive among four other predictors in a predictive
model for SLE (AUROC 0.81, 95% CI 0.80�0.81).

In the same diagnosis predictor including chronic hypertension,
congestive heart failure (I500) was also shown in the text profile of I
codes (diseases of the circulatory system). This disease shared the
same prognostic factor with preeclampsia, which is serum homocys-
teine. This factor was predictive for early-onset preeclampsia (AUROC
0.87; OR 1.54, 95% CI 1.30�1.84) [40]. Meanwhile, the serum homo-
cysteine level was elevated in patients with congestive heart failure
compared to controls (p<0.01) [41]. Preeclampsia was also associated
with future congestive heart failure (RR 3.62, 95% CI 2.25�5.85;
I2=83%; df=6) [42]; however, this may be related to common genetic
backgrounds between the diseases [32].

Beyond diabetes mellitus, other endocrine, nutritional, and meta-
bolic diseases were also included as diagnosis predictors in our
model. Thyrotoxicosis or hyperthyroidism (E059) was associated
with preeclampsia in a nationwide population-based study (OR 1.21,
95% CI 1.14�1.29) [43]. A meta-analysis also showed significant
mean differences of total cholesterol (ICD10 E780; 20.20 mg/dL, 95%
CI 8.70�31.70; I2=99%; df=45) and triglycerides (ICD10 E785;
80.29 mg/dL, 95% CI 51.45�109.13; I2=99%; df=43) in women with
preeclampsia compared to those of controls, especially in the third
trimester.

Interestingly, there was an atopic pattern in the text profile of
immune-related and skin-related codes, which consisted of allergic
rhinitis (J304), asthma (J459), and atopic dermatitis (L208, L209).
Women with atopic dermatitis had higher risks of severe preeclamp-
sia (OR 1.27, 95% CI 1.01�1.58), and eclampsia (OR 2.08, 95% CI
1.09�3.98) [44]. Women with preeclampsia had higher incidences of
having a child with allergic rhinitis (incidence rate ratio [IRR] 1.29,
95% CI 1.11�1.50), asthma (IRR 1.17, 95% CI 1.11�1.25), and atopic
dermatitis (IRR 1.15, 95% CI 1.01�1.32) at �14 days old. Women with
asthma had a higher risk of having a child with asthma if either the
mother developed preeclampsia (adjusted hazard ratio [aHR] 4.73,
95% CI 2.20�10.70) or not (aHR 2.18, 95% CI 1.46�3.26) compared to
neither asthma nor preeclampsia [45]. This genetic tendency could
appear in both mother and offspring, so it is not easy to identify the
cause or effect between preeclampsia and maternal atopy. In addi-
tion, asthma might be correlated with Brucella abortus infection



Table 4
Text profile for ICD10 codes of diagnosis predictors in the true-predicted case group by the random forest model.

Time-to-event Diagnosis predictor ICD10 codes and description

Diagnoses within the last 2
years to the event
(partially censored)

A codes - Certain infectious and para-
sitic diseases

A010 (Typhoid fever)
A09 (Infectious gastroenteritis and colitis, unspecified)
A182 (Tuberculous peripheral lymphadenopathy)
A231 (Brucellosis due to Brucella abortus)
A78 (Q fever)
A91 (Dengue haemorrhagic fever)

E codes - Endocrine, nutritional, and
metabolic diseases

E059 (Thyrotoxicosis, unspecified)
E118 (Type 2 diabetes mellitus with unspecified complications)
E119 (Type 2 diabetes mellitus without complications)
E780 (Pure hypercholesterolemia)
E785 (Hyperlipidaemia, unspecified)
E86 (Volume depletion)

I codes - Diseases of the circulatory
system

I10 (Essential [primary] hypertension)
I159 (Secondary hypertension, unspecified)
I500 (Congestive heart failure)

Immune-related codes J304 (Allergic rhinitis, unspecified)
J329 (Chronic sinusitis, unspecified)
J459 (Asthma, unspecified)
L208 (Other atopic dermatitis)
L209 (Atopic dermatitis, unspecified)
M154 (Erosive [osteo]arthrosis)

Eye-related codes H000 (Hordeolum and other deep inflammation of eyelid)
H055 (Retained [old] foreign body following penetrating wound of orbit)
H109 (Conjunctivitis, unspecified)
H521 (Myopia)
H527 (Disorder of refraction, unspecified)

Diagnoses within the last
year to the event

Diseases of the genitourinary system N300 (Acute cystitis)
N309 (Cystitis, unspecified)
N601 (Diffuse cystic mastopathy)
N608 (Other benign mammary dysplasias)
N609 (Benign mammary dysplasia, unspecified)
N61 (Inflammatory disorders of breast)

Eye-related codes H000 (Hordeolum and other deep inflammation of eyelid)
H055 (Retained [old] foreign body following penetrating wound of orbit)
H109 (Conjunctivitis, unspecified)
H521 (Myopia)
H527 (Disorder of refraction, unspecified)

Diagnoses within the preg-
nancy period to the
event

Breast-related codes N61 (Inflammatory disorders of breast)
Digestive system-related codes A09 (Infectious gastroenteritis and colitis, unspecified)

K029 (Dental caries, unspecified)
K040 (Pulpitis)
K045 (Chronic apical periodontitis)
K047 (Periapical abscess without sinus)
K053 (Chronic periodontitis)
K30 (Excessive attrition of teeth)

Skin and subcutaneous-related codes L209 (Atopic dermatitis, unspecified)
Principal components Principal components 8 H000 (Hordeolum and other deep inflammation of eyelid)

H109 (Conjunctivitis, unspecified)
H521 (Myopia)
H527 (Disorder of refraction, unspecified)
H608 (Other otitis externa)
H609 (Otitis externa, unspecified)
H811 (Benign paroxysmal vertigo)
H814 (Vertigo of central origin)

Principal components 10 D509 (Iron deficiency anemia, unspecified)
D648 (Other specified anaemias)
D649 (Anemia, unspecified)
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(A231), since the numbers of B. abortus in the lungs were higher in
asthma-induced murine models compared to the controls (p<0.001)
[46].

There were other specific infections included in the A codes (cer-
tain infectious and parasitic diseases). The immune response specifi-
cally mediated by Salmonella typhi (A010) harboured more-diverse
microbial communities in the gut of individuals with a multiphasic
response compared to those with a late response [47]. This may be
related to preeclampsia because there was also a significant shift in
the gut microbial communities in women with this disease [48].
Tuberculous peripheral lymphadenopathy (A182) symptoms were
frequent in human immunodeficiency virus (HIV) infection that
shared dysregulation of the complement system with preeclampsia
[49,50]. Infections by Coxiella burnetii or Q fever (A78) were associ-
ated with adverse maternal outcomes related to preeclampsia, such
as intrauterine growth retardation and preterm delivery [51]. Dengue



Table 5
Predictive performances of the random forest model in the subgroup of 9�12 months to the event with cut off value at either similar sensitivity
or specificity based on internal validation compared to those from previous studies.

Algorithm Validation AUROC (95% CI) Prec. (95% CI) Sens. (95% CI) Spec. (95% CI)

Interval validation
At sensitivity ~0.95
RF 9�<12 mo.; cut off value of 0.34 10-fold CV 0.90 (0.88, 0.91) 0.71 (0.68, 0.73) 0.98 (0.97, 0.99) 0.52 (0.49, 0.55)
MacDonald-Wallis et al. (2015)[33] Bootstrapping 0.88 (0.86, 0.90) 0.04 (0.03, 0.04) 0.95 * 0.37 (0.31, 0.42)
At specificity ~0.90
RF 9�<12 mo.; cut off value of 0.54 10-fold CV 0.90 (0.88, 0.91) 0.88 (0.87, 0.90) 0.70 (0.67, 0.73) 0.89 (0.87, 0.91)
Guy et al. (2017)[34] No IV 0.80 (0.75, 0.85) 0.09 (0.07, 0.12) 0.41 (0.29, 0.54) 0.90 *
Viguiliouk et al. (2017)[36] No IV 0.76 (0.72, 0.81) NA NA NA
Wright et al. (2015)[15] 5-fold CV 0.76 y 0.08 y 0.40 (0.39, 0.42) 0.89 y

Rocha et al. (2017)[35] No IV 0.75 (0.72, 0.79) 0.18 y 0.44 y 0.90 *,y

External validation
At sensitivity ~0.95
RF 9�<12 mo.; cut off value of 0.34 Bootstrapped GEV 0.88 (0.88, 0.89) 0.59 (0.58, 0.60) 1.00 (1.00, 1.00) 0.47 (0.45, 0.49)
MacDonald-Wallis et al. (2015)[33] Bootstrapping 0.88 (0.84, 0.93) 0.05 (0.04, 0.06) 0.95 * 0.47 (0.40, 0.55)
RF 9�<12 mo.; cut off value of 0.34 Bootstrapped TEV 0.86 (0.85, 0.86) 0.72 (0.72, 0.72) 0.90 (0.90, 0.90) 0.44 (0.43, 0.45)
ACOG (2017)[37] Bootstrapping 0.57 (0.54, 0.61) 0.17 y 0.87 y 0.27 y

At specificity ~0.90
RF 9�<12 mo.; cut off value of 0.54 Bootstrapped GEV 0.88 (0.88, 0.89) 0.82 (0.80, 0.85) 0.52 (0.52, 0.52) 0.91 (0.90, 0.93)
RF 9�<12 mo.; cut off value of 0.54 Bootstrapped TEV 0.86 (0.85, 0.86) 0.89 (0.89, 0.89) 0.70 (0.70, 0.70) 0.86 (0.86, 0.86)
NICE (2015)[15] Bootstrapping 0.76 y 0.07 y 0.39 (0.33, 0.37) 0.89 y

NICE (2017)[37] Bootstrapping 0.61 (0.58, 0.65) 0.09 y 0.38 y 0.85 y

AUROC, area under the receiver operating characteristic curve; Prec., precision; Sens., sensitivity; Spec., specificity; RF, random forest; NA, not
available; NICE, National Institute for Health and Care Excellence; ACOG, American College of Obstetrics and Gynaecology.
* Fixed specificity.
y Interval estimate was not reported.
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haemorrhagic fever (A91) may make pregnant women more suscep-
tible to endothelial dysfunction and volume depletion (E86) in pre-
eclampsia [52,53]. In addition, both intranasal bacteria and dysbiosis
of microbiomes play putative roles in chronic sinusitis (J329) in
immune-related codes [54]. Meanwhile, the means of hematogenous
spread, including from the respiratory tract, were shown to be
involved in great obstetrical syndromes like preeclampsia [55]. How-
ever, associations of these diseases with preeclampsia are still poorly
understood.

Conversely, preeclampsia and infectious diseases of the urinary
tract as well as periodontal diseases are well studied. Maternal infec-
tions associated with preeclampsia were included as a diagnosis pre-
dictor by the N codes (diseases of the genitourinary system within
the last year to the event). Urinary tract infections, including cystitis
(N300, N309), were associated with preeclampsia (OR 1.57, 95% CI
1.45�1.70; I2=79%; df=16) [56]. Preeclampsia was also associated
with periodontal diseases (ICD10 K040, K045, K047, K053; OR 1.76,
95% CI 1.43�2.18; I2=80%; df=5) [56]. Several microbes were identi-
fied on placental tissue samples from women with preeclampsia
(n = 7; who underwent an elective caesarian delivery) by a polymer-
ase chain reaction (PCR), 16S ribosomal (r)RNA gene, and next-gener-
ation sequencing, while all samples from the controls were negative
(n = 48; p = 0.006). Generic levels of microbiomes were associated
with periodontal disease, including Variovorax, Prevotella, Porphyro-
monas, and Dialister [57].

In a previous study, Bacillus cereus was also found in >90% of
microbial communities from all women with late-onset preeclampsia
(n = 4), but not in those from all women with early-onset preeclamp-
sia (n = 3). 16S rRNA genes were negative in all venous blood, urine,
and amniotic fluid samples, except in one woman whose amniotic
fluid had B. cereus. This bacterium is an opportunistic pathogen
among gastrointestinal infections (A09), and is widely recognized as
a challenging problem in the food industry [58]. Outbreaks of B.
cereus gastroenteritis were reported [59�61]. Interestingly, the num-
bers of patients with B. cereus bloodstream infections were higher in
summer, and the source was urinary catheters [62]. Meanwhile,
women with a month of conception during the summer (OR 1.22,
95% credible interval [CrI] 0.89�1.65) also had higher incidences of
preeclampsia, but those who delivered during winter (OR 3.33, 95%
CrI 0.31�35.48) had higher incidences of eclampsia in both the
northern and southern hemispheres [63].

Inflammatory disorders of the breast (N61) was found as text profil-
ing result of either N codes (diseases of the genitourinary system within
1 last year to the event) or breast related codes (within the pregnancy
period to the event). However, most studies investigated breast neo-
plasms (N601, N608, and N609) as effects of preeclampsia instead of
focusing on the inflammation alone. The incidences were lower in
women with preeclampsia compared to non-preeclampsia if these
were adjusted by the sex of the fetus (RR 0.85, 95% CI 0.77�0.95;
I2=49%; df=5) [64]. Inflammatory disorders of the breast might be related
to neoplasms in that study, since there are strong linkages between toll-
like receptor (TLR)-mediated regulation of inflammation during breast
cancer [65]. In context of this study, the inflammatory disorders of the
breast (N61) before pregnancy might be more related to preeclampsia
compared to those during pregnancy. This was implied by the finding
that the period of 9»<12 months to the event was the period which
showed the best predictive performance.

Preeclampsia is also associated with other digestive system-
related codes, such as dental caries (K029) and excessive attrition of
the teeth (K30). Pregnant women with dental caries had a higher
prevalence of preeclampsia compared to normotensive controls
(adjusted odds ratio [aOR] 1.76, 95% CI 1.43�2.18) [66]. However,
excessive attrition of the teeth might not be directly associated with
preeclampsia, but with age, because attrition of the teeth was greater
in the age group of 51�60 years compared to those in either the age
group of 20�30 years or other younger age groups (p<0.003) [67].

Surprisingly, eye-related codes were included in several diagnosis
predictors in our model. Codes included those for disorders of refrac-
tion, especially myopia. These disorders are likely associated with
age. A meta-regression of age and the year of birth with the preva-
lence of myopia demonstrated a U-shaped relationship (p<0.05)
with an increasing prevalence from the age of 30 years [68]. The
prevalence of hypermetropia increased from the age group of 41»50
(aOR 2.7, 95% CI 1.3�5.7; p = 0.007) to 61�70 years (aOR 5.8, 95% CI
2.7�12.7; p<0.001) [69]. Age was also correlated with astigmatisms
of �1.00 D, in terms of both corneal (OR 1.007, 95% CI 1.001�1.013;
p = 0.02) and refractive astigmatism (OR 1.043, 95% CI 1.036�1.051;
p<0.0001) [70]. This diagnosis predictor was a part of the principal
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components that also included age, as shown by text profiling results.
In addition, other eye-related codes had unclear associations with
preeclampsia. But, these diseases are common in clinical practice and
might involve bacterial or viral infections, such as hordeolum and
other deep inflammation of the eyelid (H000) [71], a retained foreign
body following a penetrating wound of the eye orbit (H055) [72],
conjunctivitis (H109) [73], otitis externa (H608 and H609) [74], and
vertigo (H811 and H814) [75,76].

Another principal component included D codes (neoplasms or dis-
eases of the blood and blood-forming organs and certain disorders
involving the immune mechanism). The text profiling results showed
codes for anemia (D509, D648, and D649). Severe anemia was associ-
ated with preeclampsia/eclampsia in both nulliparous (aOR 3.74, 95%
CI 2.90�4.81) and multiparous (aOR 3.45, 95% CI 2.79�4.25) women
[77]. The effect of anemia in our model may have been adjusted by
other conditions, since it was also a part of the principal components.
A qualitative assessment from a systematic review described
increases in anemia and eclampsia during periods of greater rainfall,
which included studies suggesting that the seasonality of those dis-
eases was associated with malaria [78].

The random forest outperformed other machine learning algo-
rithms in this study. This algorithm was also the best model with
superior predictive performance in several studies that developed
clinical predictive models for such conditions as end-stage renal dis-
ease [79], incident delirium [80], H3K27M mutations in brainstem
gliomas [81], prostate cancer [82], in-hospital mortality [83], chemo-
radiotherapy outcomes [84] and acute kidney injuries [85]. Features
included demographic characteristics, comorbidities, medical histo-
ries, clinical predictors, laboratory findings, medical imaging, treat-
ments, and biomarkers. Two studies also utilized routine registry
data that were preprocessed by a nested case-control design [80,83].

Although machine learning algorithms did not show higher AUROC
compared to logistic regression for clinical prediction models, particu-
larly those with low risk of bias [86], the previous systematic review
was limited. It did not compare the algorithms using the same data-
sets. Modern machine learning algorithms, including random forest,
are data hungry; thus, the algorithms need a dataset with higher EPV
than those for logistic regression [19]. Problem of low EPV causes over-
fitting in turn causing the predictive performance far poorer using
external validation set compared to those using either training or
internal validation set [28]. Meanwhile, the systematic review demon-
strated that the most common cause of high risk of bias is the external
validation method. The comparison of predictive performance was
confounded by factors other than the model algorithm, such as sample
size and number of predictors. These factors were our reasons to uti-
lize a dataset with larger EPV and to apply external validation method
rigorously based on the PROBAST guidelines.

Calibration slopes of all models in this study were significantly
different to 1 based on the 95% confidence interval although the
AUROCs of models with several algorithms were considerably mod-
erate to high, including the random forest algorithm. These may hap-
pen in a prediction model using nonlinear machine learning
algorithm. [87]. We can expect a model with both well-calibrated
and high AUROC if the model uses a linear function. Logistic regres-
sion predicts the outcome probability as a function where predictors
come into the model linearly [88]. Depend on sample size, a predic-
tion model that assumes linearity between predictors and outcome
may have a poor predictive performance [86]. If a training set lacks of
number of event outcome for one predictor adjusted by the others,
linearity will be unlikely found between the predictor and the out-
come although the association may be linear in larger sample size.
Meanwhile, nonlinearity was found in many associations between
several predictors and preeclampsia outcome [89�93]. Preeclampsia
prediction using a nonlinear machine learning algorithmmay outper-
form that using the linear algorithm depend on other factors. These
made random forest outperformed the other algorithms. The factors
were the dominance of predictors derived from those with binomial
probability (the medical histories) [94], and high-dimensional train-
ing set with large sample size [95].

All of the selected candidate features for the random forest model
were continuous variables, except three features which were cate-
gorical in origin from the NHID-BPJSKES. Continuous variables were
the proportion of days with a visit to total days since recorded in the
database. Instances with missing values of features were simply
removed because of their minority. There was no significant differ-
ence in any selected candidate features before and after removing
missing data. Categorization of continuous variables can lead to opti-
mism as it uses cut offs based on the same dataset, but handling miss-
ing data by exclusion is still acceptable if it does not significantly
change the distributions of predictors and outcomes [28].

The random forest algorithm in the best model did not apply
built-in feature selection for the 17 features. These were taken from
preliminary filtering of 95 candidates and 17 principal components
by the MvLRM with forward selection. Principal components 8 and
10 were selected over 1 and 2. This was because those were not only
compared to the other principal components but also the original
candidates; thus, selection would not follow the way the principal
components were ranked and selected. Using this workflow, we
achieved �20 EPVs for the MvLRM and 180 EPVs for the random for-
est. These algorithms need 20�50 and 50�200 EPVs, respectively,
utilizing three datasets [19].

In our dataset, candidate features like blood pressure and protein-
uria were not available. However, unlike diagnostic prediction model,
the use of candidate features that are parts of outcome definition
should be avoided, i.e. blood pressure and proteinuria that are parts of
preeclampsia definition. This situation is called as outcome leakage in
either prognostic prediction modeling or machine learning prediction
[26,28]. Nonetheless, we validate our best model by comparing the
predictive performance in external validation with those of the tradi-
tional clinical scoring models for prognostic prediction of pregnancy
outcome resulting preeclampsia. The models were those from NICE
and ACOG in external validation of previous studies (Table 5) [15,37].

We applied cross-validation and geographical/temporal splitting
for internal and external validation, respectively. Cross-validation
was applied from feature selection to model selection with parameter
updating. This technique was recommended by PROBAST guidelines
as an unbiased method rather than using a non-repeated random
splitting [28]. Our external validation sets included >100 instances in
the case group, as recommended by the same guidelines. We applied
geographical and temporal randomization instead of simple random-
ization to split the dataset for external validation. Simple randomiza-
tion was not recommended because the training and external
validation sets that only differed by chance would probably have sim-
ilar predictive performances [96]. By geographical and temporal split-
ting, our external validations were similar to those from independent
validation studies because the variance of features in our training set,
that were related to the city and time period, were unobserved in our
external validation sets. Therefore, this study applied standards for
feature extraction, feature selection, model validation, and others
that were designed to avoid bias and overfitting in development of
either prognostic factors or the prediction model [25,28,96,97].

Our random forest model had the best predictive performance for
the period of 9�<12 months to the event compared to 2 days�<6
months, 6�<9 months, and 12�24 months to the event. The first tri-
mester was the most frequent period in which most studies developed
a preeclampsia prediction model (n = 42/70, 61.43%) [38]. This is
approximately equivalent to <9 months to the event. Only one of the
studies developed the model before conception, and two studies used
only non-time-varying maternal characteristics (i.e., ethnicity or social
class). This was probably due to a common belief about preeclampsia
that the pathogenesis begins from 11 to 13 weeks’ gestation [98]. In
the two-stage model of preeclampsia pathogenesis, this disease is



H. Sufriyana et al. / EBioMedicine 54 (2020) 102710 13
initiated by placental dysfunction, followed by endothelial dysfunc-
tion; yet, various theories have attempted to explain the cause of pla-
cental dysfunction. However, pregnant women with preeclampsia and
endothelial dysfunction have been reported without placental disease
[99]. Impaired endometrial maturations before and during early preg-
nancy was also demonstrated in preeclamptic women [31,100,101].
Only the late secretory phase of the menstruation cycle was impaired,
and this phase is the only one enabling a successful pregnancy. This
evidence suggests that an event may impair the endometrium in the
last menstruation period before pregnancy.

Our best model outperformed prognostic prediction models that
only used demographic and/or clinical predictors from previous stud-
ies. The models included preeclampsia risk scoring from the NICE and
ACOG. In particular, the precision or positive predictive value of our
model was distinguished compared to those of previous models. This
is because many preeclampsia prediction models were developed
with an imbalanced dataset in which preeclampsia group was minor
compared to the control group. Imbalanced outcomes impair the pre-
cision of prediction models, which can be handled by oversampling
[102]. The most widely used oversampling method, which is called
the synthetic minority over-sampling technique (SMOTE), can also
improve the sensitivity in the minor-positives training set, although
slightly reducing the accuracy and specificity [103]. However, SMOTE
may cause problems in the distribution of the dataset [104]. We
applied naïve random oversampling that randomly sampled the
minority outcome with replacement. A machine learning predictive
model using a dataset with this oversampling technique had a fairly
better improvement in the AUROCs of many machine learning algo-
rithms compared to those with an imbalanced dataset [105]. We also
provide evidence that this technique did not affect the distribution of
predictors and outcome in this study.

However, several limitations of our prediction model should be
considered. The training set in this study consisted of patients with
medical histories that might be recorded by several healthcare facili-
ties. The predictive performance might be poor in a healthcare facility
at a certain visit if the patient had medical histories that were
recorded mostly in databases of other healthcare facilities. The model
deployment will need an information system that can be used by
inter-healthcare facilities. Transforming this model into a risk calcu-
lator in clinical practice need further validation. Since we have no
explicit information in our dataset to identify the healthcare facilities
where the visits took place, we could not construct another external
validation set that approached prediction with medical histories
from a patient retrieved from single database of a healthcare facility.
Nearly one-third of instances in our training set were also back-cen-
sored; thus, medical histories were not observed by our model, par-
ticularly during 12�24 months to the event.

Other predictors, such as body mass index and gestational age at
diagnosis or at delivery, were not available in the original dataset we
utilized for model development in this study. This model also could
not differentiate early- vs. late-onset and preterm vs. term pre-
eclampsia with or without intrauterine growth restrictions. However,
the development of prediction model in this study was not intended
to predict either subtypes of preeclampsia or the adverse events. The
model was intended to be preliminary prediction model to determine
pregnant women that will be predicted by the other models with
high specificity and advanced predictors. Our model had a high sensi-
tivity and low-cost predictors. The model also had a better precision
compared to the other model with low-cost predictor. This model
may reduce false positives of preeclampsia. At same specificity, the
sensitivity of our model was also higher than those from previous
models with low-cost predictors. Our preliminary prediction model
may reduce »20% of the cost at community level to use the highly-
specific prediction model with advanced predictors. This could be
achieved if the advanced prediction is only applied to the predicted
positives by our model. We also recommend to confirm the predicted
negatives by our model using the low-cost prediction model from
MacDonald-Wallis (2015) [33]. Conceivably, only by combined pre-
diction, the low-cost prediction will improve neonatal morbidity and
ICU utilization without sacrificing the mother safety.

Indeed, Indonesian people had rich human genetic diversity
[106,107]. The genetic variation may affect characteristics of many
diseases; yet, the geographic variation may be different from the var-
iants affecting the diseases [108]. Nevertheless, the Indonesian geno-
mic variation only covered those of Asian and Austronesian
[107,109]. The generalizability of this model may be limited to Indo-
nesia or other regions that share similar race/ethnicity and climate
conditions. More external validations are still needed to consider this
model being valid in other populations. This was not feasible for this
study because we did not have access to health insurance dataset in
other countries, that have similar data structure and the same classi-
fication system of diseases.

In addition, because gestational period information was not avail-
able, we could not determine whether 9»<12 months to the event
was equivalent to the near or far periods before pregnancy. Selected
features may be bystanders rather than causal or risk factors for pre-
eclampsia; thus, this model should be interpreted carefully. Further
investigation at the molecular level should be conducted to confirm
this association.

In conclusion, the best model in this study had robust performan-
ces on all validation sets, including external validations. This may
describe the generalizability of a prediction model to unobserved sam-
ples. Our model also outperformed previous models, especially in pre-
cision, which used maternal characteristics and medical histories
without biophysical or biochemical markers. This may reduce false
positives for the decision for an early delivery, especially in poor-
resource settings. But, a future study is needed to investigate the
impact of our prediction model for reducing the false positives. In addi-
tion, it applied the random forest algorithm on features that were best
to predict preeclampsia/eclampsia within 9�<12 months to the event
and corresponded to findings of previous studies. This may give more
insights into the preeclampsia pathogenesis; however, future investi-
gations are needed to confirm these insights. Because medical histories
used by our model were recorded from multiple healthcare facilities,
we also recommend health insurance companies, particularly in Indo-
nesia, facilitate this model deployment in privacy-aware information
systems used by inter-healthcare facilities. Using our prediction model
that showed acceptable performances, expense efficiency of insurance
management may be improved in addition to preventing inefficient
use of neonatal ICUs as expected.
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