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Abstract: (1) Background: Complex genetic relationships, including gene-gene (G × G; epistasis),
gene(n), and gene-environment (G × E) interactions, explain a substantial portion of the heritability
in multiple sclerosis (MS). Machine learning and data mining methods are promising approaches for
uncovering higher order genetic relationships, but their use in MS have been limited. (2) Methods:
Association rule mining (ARM), a combinatorial rule-based machine learning algorithm, was applied
to genetic data for non-Latinx MS cases (n = 207) and controls (n = 179). The objective was to identify
patterns (rules) amongst the known MS risk variants, including HLA-DRB1*15:01 presence, HLA-
A*02:01 absence, and 194 of the 200 common autosomal variants. Probabilistic measures (confidence
and support) were used to mine rules. (3) Results: 114 rules met minimum requirements of 80%
confidence and 5% support. The top ranking rule by confidence consisted of HLA-DRB1*15:01,
SLC30A7-rs56678847 and AC093277.1-rs6880809; carriers of these variants had a significantly greater
risk for MS (odds ratio = 20.2, 95% CI: 8.5, 37.5; p = 4 × 10−9). Several variants were shared across
rules, the most common was INTS8-rs78727559, which was in 32.5% of rules. (4) Conclusions: In
summary, we demonstrate evidence that specific combinations of MS risk variants disproportionately
confer elevated risk by applying a robust analytical framework to a modestly sized study population.

Keywords: genetic interactions; multiple sclerosis; association rule mining; epistasis

1. Introduction

Multiple sclerosis (MS) is a neurodegenerative autoimmune disease of the central
nervous system, and primarily affects those with European ancestry. In non-Latinx whites,
the heritability of MS is estimated to be 50% (95% confidence interval [CI]: 39–61%) [1].
Additively, genetic variants explain 44.8% of the heritability for MS (h2 = 22.4%) [2,3];
thus, complex genetic (gene-gene [G × G], gene(n)), gene-environment (G × E), and gene-
epigenome interactions, as well as intergenerational epigenetic inheritance, explain the
majority of MS’ heritability (>55%) [4]. There is a modest but growing collection of G × G
and G × E studies based on hypotheses derived from functional studies and/or biological
knowledge that have uncovered novel risk loci and/or genetic mechanisms that begin
to add context to the missing heritability in MS [5–11]. The principal impediments to
elucidating these complex relationships is a paucity of comprehensive epidemiologic and
multi-omic MS datasets, and the methodological and statistical challenges of detecting
higher order relationships in big data [12,13].

The primary MS risk loci are the presence of HLA-DRB1*15:01 and the absence of
HLA-A*02:01, which are amongst the 238 MS risk variants identified through genome-
wide association studies (GWAS) [2,3]. These incompletely penetrant risk loci encompass
32 variants within the major histocompatibility complex (MHC), one X chromosome variant,
five low-frequency non-MHC variants, and 200 higher-frequency non-MHC variants, and
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they individually confer modest risk (relative risks [RR] > 1.05 and <1.4), with the exception
of HLA-DRB1*15:01 presence and HLA-A*02:01 absence (RR ≥ 1.5). MS disproportionately
affects women, however, there are no sex-difference in the genetic risk for MS (with
the exception of the one X chromosome variant) [14]. Bioinformatic analyses emphasize
dysregulation in diverse cellular processes in adaptive and innate immunity as the principal
genetic drivers of MS risk [2,15,16]. Unfortunately, specific genetic hubs have not been
identified, nor have higher order genetic relationships that contribute to the liability for
MS, which impedes efforts to uncover specific etiologic mechanisms.

Over the last decade, G × G approaches have become computationally efficient while
efforts aimed at discerning gene(n) relationships have lagged [12,13]. Several approaches
rely on exhaustive two-way interaction testing following by corrections for multiple testing.
This becomes infeasible for higher-order interactions due to increased computational
complexity and diminished statistical power [12,13]. For example, if we were to conduct
an exhaustive investigation of interactions amongst the 200 higher-frequency non-MHC
MS risk variants, there would be 19,900 two-way, 1.3 × 106 three-way, and 6.5 × 107 four-
way interactions to test. Many of the available approaches for investigating higher order
interactions include a data reduction stage that reduces the search space prior investigating
interactions; several of these methods have been reviewed in detailed by Niel et al. [12].
Furthermore, parametric investigations of interactions also require articulating the scale
on which to investigate interactions (additive or multiplicative), as interactions are scale
dependent [17].

Machine learning and data mining methods are promising approaches for uncovering
higher order genetic relationships and identify genetic hubs since they are data-driven non-
parametric approaches capable of navigating complex data [12,18]. However, applications
of these methods in MS have been limited to investigations of G × G interactions amongst
a limited set of variants or genetic heterogeneity within candidate loci [18–21]. Exhaustive
searches for G × G and gene(n) interactions amongst the most comprehensive list of
MS risk variants have not been explored, much less expansive genome-wide interaction
investigations. Here, we apply association rule mining (ARM), a data mining approach that
identifies frequent patterns which are used to generate association rules, to genetic data for
HLA-DRB1*15:01, HLA-A*02:01, and the higher-frequency non-MHC risk variants in an
exploratory effort to identify higher order relationships that contribute to MS susceptibility
and add resolution to MS’ missing heritability in non-Latinx whites.

2. Materials and Methods
2.1. Association Rule Mining

ARM is a rule-based machine learning method that relies on the a priori algorithm
for efficient mining of association rules within large datasets [22–24]. It was originally
developed for market basket analyses of patterns in retail transactions, but it has been
applied to diverse relational datasets, including applications for discerning multimorbidity
patterns in administrative claims data and characterizing complex genetic relationships in
simulated data [25,26]. ARM requires a binary incidence matrix from which to generate
itemsets: groupings of items irrespective of their order. Frequent itemsets are defined by
support, which is the prevalence of the itemset in the dataset. As an itemset grows in
length, support is non-increasing where P(A ∩ B ∩ C) ≤ P(A ∩ B) ≤ P(A) since {A} ⊆
{A, B} ⊆ {A, B, C}. Additionally, {A, B, C} cannot be a frequent itemset unless A, B, and
C are frequent, as well as all other supersets since {A, B, C} is a subset of {A, B}, {A, C},
and {B, C}. These principles allow for computational efficiency by limiting the number of
itemsets to be considered based on a minimum support threshold. If {A} does not meet
the minimum support, then all subsets (i.e., {A, B}, {A, C}, {A, B, C}, {A, B, C, D}) will
also not meet the threshold, and therefore do not need to be considered.

Association rules are then constructed for these frequent itemsets (e.g., rule {A} → {B}
for itemset {A, B}). Confidence measures the strength of an association for a rule; for ex-
ample, for itemset {HLA-DRB1*:15:01 presence, MS} if there is a rule {HLA-DRB1*:15:01
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presence} → {MS}, then the item {HLA-DRB1*:15:01 presence} provides information about
the item {MS}. Confidence is P(B|A) = P(A∩B)

P(A)
, which is the probability of MS given a

person has ≥1 HLA-DRB1*15:01 alleles. Unlike support, confidence is not a function of
the rule’s length. For example, the rule {HLA-DRB1*:15:01 presence, HLA-A*02:1 absence}
→ {MS} will likely have lower support but higher confidence than the component items.
However, adding noise to a rule will likely decrease support and confidence.

Lift is another informative measure [27], which is P(B|A)
P(B) = P(A∩B)

P(A)P(B) , and seeks to
determine whether the left hand side (LHS) of the rule (HLA-DRB1*15:01 presence), is inde-
pendent of the right hand side (RHS) of the rule (MS). If all individuals in the dataset have
≥1 HLA-DRB1*15:01 alleles (regardless of how many have MS), then P(B|A)

P(B) = P(A∩B)
P(A)P(B) =

P(A∩B)
P(B) = P(B)

P(B) = 1. Since P(A ∩ B) = P(A)P(B), these items are then independent events
and this rule is not informative; this holds even if P(A) 6= 1 and P(B) 6= 1. Therefore, lift
can help identify rules with limited useful information.

2.2. Study Population and Genetic Data

The study population consisted of 386 unrelated non-Latinx whites (207 MS cases,
179 unaffected controls) who participated in the Accelerated Cure Project for MS. Briefly,
participants were recruited from communities of 10 MS specialty clinics across the United
States and eligibility criteria have been described [28]. A MS diagnosis was confirmed
by a neurologist using standard diagnostic criteria at enrollment [29,30]. All participants
gave informed consent and contributed biological samples from which DNA was extracted.
DNA samples were genotyped using the Illumina MEGAEx BeadChip and imputed us-
ing the Michigan Imputation Server and the Haplotype Reference Consortium reference
panel of ~65,000 European haplotypes. Genetic variants with an imputation quality score
(r2) ≥ 0.8 were retained [31]. Multidimensional scaling (MDS) components were generated
for a subset of independent SNPs to determine genetic outliers and cryptic relatives who
were removed from the data—this too has been described [31].

Genetic data for HLA-DRB1*15:01 (rs3135388A), HLA-A*02:01 (rs2975033T), and
180 higher-frequency non-MHC variants were available, as were data for an additional
14 proxy variants (10 variants in linkage disequilibrium [R2: 0.89–1] and 4 variants reported
as the discovery variants in the GWAS of MS risk [2]). Thus, a total of 194 non-MHC risk
variants were investigated, which included 150 (77.3%) genic variants across 146 genes
(Supplementary Table S1). Seven non-MHC variants had ≤1.3% missing observations
which were further imputed using random forests single imputation (R package missForest).
We constructed a binary incidence matrix capturing presence of a risk allele (dominant
model) for all 196 risk variants; this was due to the fact that these variants were associated
with MS under an additive model (therefore, having ≥1 allele conferred risk) [2] and to
reduce the number of items considered (e.g., having 0, 1, or 2 HLA-DRB1*15:01 alleles
would be parametrized as three items).

2.3. Statistical Analyses

Rules of length 2, 3, 4, and 5 with confidence ≥80% and support ≥5% were mined
using ARM (R package arules). Lift was not informative in this analysis for two reasons:
1. Lift = con f idence

P(RHS) and since there is only one outcome where (RHS) = MS, lift will be directly
proportional to confidence; and 2. Lift can determine independence between the LHS and
RHS of a rule, but since the P(MS) = 0.54 in this dataset and the confidence threshold is
≥80%, then lift for all rules will be ≥1.48, which implies the RHS (MS) and the LHS are not
independent. Thus, lift will not provide additional insights for discerning strong rules from
weak rules. Furthermore, we investigated itemsets that considered presence of a risk allele
for a given variant; this is because the objective of this exploratory analysis was to identify
higher order patterns conferring MS risk. We did not consider relationships including
no copies of a risk allele for a given variant; while it would be interesting to investigate,
it would significantly increase the number of possible itemsets to be considered.
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Once association rules with confidence ≥80% and support ≥5% were identified, we
characterized their relationships with MS using logistic regression models, to generate
odds ratios (ORs) adjusting for the first three MDS dimensions to account for population
substructure (STATA v13.1, StataCorp, College Station, TX, USA; command logit). Boot-
strapping based on 5000 resamples was used to generate bias-corrected standard errors and
95% confidence intervals (CI), and normal-based p-values to minimize the potential impact
of sampling variability (option vce(bootstrap, 5000)). A Bonferroni correction adjusted for
multiple testing (pcorrected = 0.05/114 rules = 4.4 × 10−4).

Given the agnostic and non-parametric nature of ARM, contextualizing the mined ge-
netic patterns will importantly guide interpretations. Here we explored a few approaches.
First, for the top ranking MS-associated rule, we parametrically characterized the relation-
ships amongst its component variants for the presence additive (STATA command ic) and
multiplicative interactions (STATA command logit). Second, in an effort to understand
how rules were interconnected, network graphs were used to identify genetic variants that
were items across the top 15 rules ranked by confidence. Additionally, lastly, to determine
if there was any biological evidence that might provide context for observing specific
subsets of rules, we explored protein-protein interactions amongst the component items
using STRING v11.0, limiting interactions to those with medium confidence scores from
high-throughput experiments and curated knowledge databases [32].

3. Results

The study population (n = 386) included 207 MS cases and 179 unrelated controls.
The mean age at sample collection was 46.8 years (standard deviation [SD] = 11.0) and
46.8 years (SD = 15.7) for MS cases and controls, respectively. On average, cases reported
their first MS symptom near the age 34.0 years (SD = 9.9). The female to male ratio was 3:1
in cases and 2:1 in controls. The presence of HLA-DRB1*15:01 was significantly associated
with MS risk (OR = 1.89; 95% CI: 1.23, 2.91; p = 0.0038), as was the absence of HLA-A*02:01
(OR = 1.62; 95% CI: 1.07, 2.44; p = 0.023). Thus, the study population appears representative
of other MS case–control studies of non-Latinx whites.

One hundred and fourteen association rules had confidence ≥0.80 and support ≥0.05
(Supplementary Table S2). All rules had a length of four: comprised of three risk variants
on the LHS and MS on the RHS. Support ranged from 0.052 to 0.104, confidence ranged
from 0.80 to 0.95, and lift ranged from 1.49 to 1.78. These ranges imply that moderately
common genetic combinations (support) that were much more common in MS cases than
controls (confidence) were identified, and that these genetic combinations were associated
with having MS (lift). The top 7 MS rules by confidence are shown in Table 1. The rule with
the highest confidence (0.95) was {HLA-DRB1*15:01, SLC30A7-rs56678847, AC093277.1-
rs6880809} → {MS} ; this risk variant pattern existed in 21 of 386 study participants, of
whom 95% were MS cases (n = 20) and only one was a control. By the nature of defining
confidence ≥0.80, all rules would be exceptionally more common in MS cases compared to
controls (Table 1; Supplementary Table S2). This is evident by their strong associations with
MS (OR > 6.8 for the top 7 rules and >3.5 for all rules; p < 0.03). One of the rules tied for
4th rank (confidence = 0.88) included GRB2 and STAT3 risk variants (OR = 7.15; p = 0.0014;
Table 1), which was reassuring since GRB2 regulates STAT3 [33].

Four rules were significant after accounting for multiple testing and HLA-DRB1*15:01
was an item in each (Table 2). The most significant rule was also the top ranking rule by
confidence: {HLA-DRB1*15:01, SLC30A7-rs56678847, AC093277.1-rs6880809} → {MS},
and individuals with this genetic pattern had 20.2-fold increased odds of MS (95% CI: 8.5,
37.5; p = 4 × 10−9). Of these three risk variants, only the presence of HLA-DRB1*15:01
was significantly associated with MS in this data set, while the other two variants had
associations in the expected direction (Supplementary Table S3A). This rule captured an
additive interaction, evident by the stratified ORs for combinations of these risk variants
and as statistically measured by an attributable proportion (Supplementary Table S3B).
Ninety-four percent of the MS risk conferred by this three-way rule was due to the presence
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of an additive interaction (p < 5 × 10−5). On the multiplicative scale, there was also
evidence for an interaction in the full parameterized model (three-way interaction term
OR = 26.81; p = 0.02; Supplementary Table S3C).

Table 1. Top seven rules by confidence.

Genetic Rule Support Confidence Odds Ratio
(95% CI) p Value 1

Frequency
in Controls

(n = 179)

Frequency
in MS Cases

(n = 207)
Genes

HLA-DRB1*15:0
rs56678847
rs6880809

0.052 0.95 20.24 (8.48, 37.46) 4.4 × 10−9 0.6% 9.7%
HLA-DRB1
SLC30A7

AC093277.1

HLA-DRB1*15:01
rs56678847
rs12434551

0.065 0.89 8.50 (3.20, 31.65) 4.1 × 10−4 1.7% 12.1%
HLA-DRB1
SLC30A7
ZFP36L1

rs6681429
rs6837324
rs9900529

0.062 0.89 7.71 (2.64, 28.12) 9.6 × 10−4 1.7% 11.6%
FAM69A

TXK
GRB2

HLA-DRB1*15:01
rs56678847
rs10951042

0.060 0.88 7.64 (2.85, 28.05) 6.9 × 10−4 1.7% 11.1%
HLA-DRB1
SLC30A7

LOC105375130

rs35486093
rs1026916
rs9900529

0.060 0.88 7.15 (2.60, 26.95) 0.0014 1.7% 11.1%
BCL10
STAT3
GRB2

rs56678847
rs17051321
rs140522

0.060 0.88 7.61 (2.62, 28.49) 0.0014 1.7% 11.1%
SLC30A7

TNIP3
ODF3B

rs56678847
rs2705616
rs17051321

0.054 0.88 6.88 (2.38, 27.08) 0.0026 1.7% 10.1%
SLC30A7

AFF1
TNIP3

1 Bolded p values met the Bonferroni-corrected significance threshold.

Table 2. Top four rules by logistic regression bootstrapped p-value.

Genetic Rule Support Confidence Odds Ratio
(95% CI) p Value 1

Frequency
in Controls

(n = 179)

Frequency
in MS Cases

(n = 207)
Genes

HLA-DRB1*15:01
rs56678847
rs6880809

0.052 0.95 20.24 (8.48, 37.46) 4.4 × 10−9 0.6% 9.7%
HLA-DRB1
SLC30A7

AC093277.1

HLA-DRB1*15:01
rs11125803
rs13327021

0.096 0.86 6.76 (3.13, 20.88) 1.1 × 10−4 3.4% 17.9%
HLA-DRB1

ADCY3
-

HLA-DRB1*15:01
rs13327021
rs735542

0.104 0.82 4.85 (2.36, 11.97) 1.7 × 10−4 5.0% 19.3%
HLA-DRB1

-
LOC105375752

HLA-DRB1*15:01
rs56678847
rs12434551

0.065 0.89 8.50 (3.20, 31.65) 4.1 × 10−4 1.7% 12.1%
HLA-DRB1
SLC30A7
ZFP36L1

1 Bolded p values met the Bonferroni-corrected significance threshold.

The 114 rules were comprised of 112 unique risk variants, of which 99 were genic
variants spanning 87 genes. In fact, 95.3% of the 342 possible genetic items were genic
(Supplementary Table S2). Ten risk variants were items in ≥7 rules (Table 3). The risk
variants that were the most frequent items were INTS8-rs78727559 (37 rules), TNIP3-
rs17051321 (36 rules), HLA-DRB1*15:01 (25 rules), SLC30A7-rs56678847 (25 rules), and
BCL10-rs3548693 (24 rules), suggesting these variants are probable genetic hubs in higher
order genetic relationships contributing to MS risk. There were also common dyads
amongst these rules, for example, 75.7% of rules including INTS8-rs78727559 also included
TNIP3-rs17051321, and 80% of rules containing HLA-DRB1*15:01 also included SLC30A7-
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rs56678847 (Supplementary Table S2). Interestingly, only one rule included both MHC
alleles: {HLA-DRB1*15:01, HLA-A*02:01 absence, SLC30A7-rs56678847} → {MS} , with
support = 0.073 and confidence = 0.8 (OR = 3.99; 95% CI: 1.81, 11.97; p = 0.0044).

Table 3. The 10 most frequent risk variants in the 114 rules.

SNP Chr Base Pair (hg19) Gene Count (%) Count in Top 15 Rules Ranked by Confidence (%)

rs78727559 8 95,851,818 INTS8 37 (32.5%) 1 (6.7%)
rs17051321 4 122,119,449 TNIP3 36 (31.6%) 5 (33.3%)

HLA-DRB1*15:01 6 32,489,683 HLA-DRB1 25 (21.9%) 5 (33.3%)
rs56678847 1 101,422,963 SLC30A7 25 (21.9%) 6 (40.0%)
rs35486093 1 85,729,820 BCL10 24 (21.1%) 4 (26.7%)
rs1026916 17 40,529,835 STAT3 12 (10.5%) 3 (2.0%)
rs11852059 14 52,306,091 GNG2 11 (9.6%) 1 (6.7%)

rs735542 8 128,175,696 LOC105375752 11 (9.6%) 1 (6.7%)
rs58166386 19 16,559,421 EPS15L1 7 (6.1%) 1 (6.7%)
rs9900529 17 73,335,776 GRB2 7 (6.1%) 2 (13.3%)

Amongst the top 15 rules ranked by confidence, the most common items were
SLC30A7-rs56678847 (6 rules), HLA-DRB1*15:01 (5 rules), TNIP3-rs17051321 (5 rules), and
BCL10-rs3548693 (4 rules); surprisingly, the most frequent item across all rules (INTS8-
rs78727559) was not as common amongst the top 15 rules. The overlap in the top 15 rules
is visualized in a network graph shown in Figure 1.
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We explored protein-protein interaction networks for GRB2 since it is a MS risk locus
with substantial experimental evidence at the protein level. The objective was to explore
if there was any biological evidence to complement a subset of the mined rules. GRB2-
rs9900529 was an item in 7 rules, along with 8 other genic variants in BCL10, FAM69A,
GRAP2, LPP, RUNX3, STAT3, TEAD2, and TXK (Supplementary Table S2). Protein-protein
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interactions amongst the 9 encoded proteins are shown in Figure 2, demonstrating that there
are biological interconnections amongst the proteins encoded by the genes represented in
these mined patterns.
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4. Discussion

The majority of MS’ heritable component has yet to be discovered. While large-scale
and collaborative GWAS and targeted functional studies will importantly continue to
uncover risk loci, these variants will additively explain only a portion of MS’ heritability
(h2 = 22.4%) [2–4]. Complex genetic/epigenetic relationships (i.e., G × E and gene(n)
interactions), including those amongst the GWAS-identified MS risk loci, will explain
the majority of MS’ heritability. A handful of studies with limited scope have begun to
disentangle these complex features in MS’ heritability, but none have explored higher
order relationships amongst MHC and non-MHC risk variants [5–11]. Here, we present
an application of a combinatorial, data mining algorithm as a computationally efficient
method for delineating higher order relationships contributing to MS’ liability. Using ARM
and genetic data for 196 risk variants (2 MHC and 194 non-MHC variants) in 386 subjects,
we successfully mined 114 genetic patterns. These patterns were three-way combinations
of MS risk loci, and the mined patterns were common in the study population (frequency:
5.2% to 12.7%) but substantially more so in MS cases than controls (ORs ≥ 3.6; p < 0.03).

After imposing a multiple testing correction, there were four genetic patterns that were
significantly associated with MS risk (ORs: 4.9 to 20.2; p: 4.1 × 10−4 to 4.4 × 10−9). HLA-
DRB1*15:01 was a shared attribute across these genetic rules and SLC30A7-rs56678847 was
common in two of the four. In fact, HLA-DRB1*15:01 and SLC30A7-rs56678847 existed in
21.9% of all 114 rules, and jointly occurred in 17.5% of rules. It was not unexpected that
HLA-DRB1*15:01 was a common feature since it is the predominant MS risk factor. What was
interesting was that the absence of HLA-A*02:01 was only in one of these HLA-DRB1*15:01
rules, and that SLC30A7 was a part of 80% of them, suggesting a possible genetic dyad hub.
The rule with the strongest association (OR = 20.2; p = 4.4× 10−9), which captured interactions
on both the additive and multiplicative scales, included this dyad and rs6880809 located in
AC093277.1, a long non-coding RNA associated with several autoimmune diseases but whose
function is unknown (https://www.genecards.org/cgi-bin/carddisp.pl?gene=ENSG0000028
3286 (accessed on 28 January 2021)). In a post hoc analysis, the HLA-DRB1*15:01-SLC30A7

https://www.genecards.org/cgi-bin/carddisp.pl?gene=ENSG00000283286
https://www.genecards.org/cgi-bin/carddisp.pl?gene=ENSG00000283286
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dyad occurred in 9.8% of the study population and had support = 0.075, confidence = 0.76,
and OR = 3.21 (95% CI: 1.47, 7.00; p = 0.0034). SLC30A7 encodes the ubiquitously expressed
zinc transporter 7 (ZNT7), which facilitates zinc transport into the Golgi apparatus and
regulates cellular zinc homeostasis [34]. Zinc has been implicated in the pathogenesis of
MS, including polarization of macrophages [35–37]. However, most relevant to the HLA-
DRB1*15:01-SLC30A7 dyad is evidence that zinc facilitates MHC Class II dimerization which
impacts antigen binding and presentation [38] and that Slc30a7 is differentially regulated in
CD4+ T cells in a MS mouse model [39].

INTS8-rs78727559 was the most common risk variant across the 114 rules (32.5%),
followed by TNIP3-rs17051321 (31.6%), and jointly occurred in 24.6% of all rules. In a
post hoc analysis, this dyad was present in 7.5% of the study population and had support
= 0.06, confidence = 0.79, and OR = 3.62 (95% CI = 1.42, 9.22; p = 0.007). As a dyad, or
dyads in 28 of 114 mined triads, this is an interesting but less obvious pairing that merits
further investigation. INTS8 is highly expressed in the brain, plays a significant rule in
neuronal and brain development, and mutations are associated with rare recessive neu-
rodevelopmental syndromes [40]. Additionally, intS8 knockdown suppresses intermediate
neural progenitor dedifferentiation in Drosophila [41]. TNIP3 is a TNFAIP3 interacting
protein that is highly expressed in lymph nodes, thymus, and expressed at lower levels
in the brain and other tissues. TNIP3 binds to TNFAIP3 to inhibit NF-κB activation, but
TNIP3 can also inhibit NF-κB in response to lipopolysaccharides (LPS; potent stimulators
of innate immunity) [42]. This latter fact may relate to LPS-induced and NF-κB-controlled
microglial neuroinflammation in MS mouse models [43,44]; though we are speculating.
Thus, the dyad of INTS8 and TNIP3 might reflect a nexus between neuroinflammation and
diminished neuronal repair.

Several of the other genetic rules merit closer examination, i.e., those with GRB2 and
STAT3, given GRB2 regulates STAT3 [33]. An exploratory analysis of MS risk loci within
rules including GRB2 suggests that these rules might reflect both statistical and biological
relationships—however, functional analyses are warranted (Figure 2). Thus, ARM repre-
sents a powerful and efficient algorithm capable of extracting meaningful relationships
that might illustrate novel or key genetic mechanisms underlying MS susceptibility. By
using specific thresholds for support and confidence, we conserved power; for example,
an exhaustive search of two to four-way interactions would have resulted in 6.7 × 107

interactions to be tested. Other strengths of this exploratory investigation are the opportu-
nity to generate complex genetic hypotheses in MS, utilizing a representative non-Latinx
white MS case–control study population, and the inclusion of parametric bootstrapped
models to characterize mined combinatorial relationships. The primary limitation is the
sample size and therefore we were restricted to mining common rules (support ≥ 0.05);
thus, it is possible undetected rare genetic patterns with stronger associations may exist.
A second limitation is the absence of an independent dataset to confirm that observed
associations; however, bootstrapping was used to minimize the potential impact of sam-
pling variability. Additionally, lastly, while we investigated MS-associated risk loci, in
the absence of fine-mapping analyses, it is not known if these variants are the causal MS
variants. The MS risk variants in Tables 2 and 3 are either intronic or intergenic and in
linkage disequilibrium with >300 variants (intronic, intergenic, and 3′/5′ UTR variants;
Supplementary Table S4). Since the causal variants are currently not known, and that many
of these variants are expression quantitative trait loci (eQTL) (Supplementary Table S4;
detailed eQTL analyses were reported by the International MS Genetics Consortium [2]),
our efforts to biologically interpret the enriched genetic patterns is challenging but merits
closer bioinformatic scrutiny.

Future research should confirm the associations for these genetic patterns in an in-
dependent study population (i.e., testing if having ≥1 risk alleles at HLA-DRB1*15:01,
SLC30A7-rs56678847, and AC093277.1-rs6880809 is associated with MS risk with a similar
magnitude and confidence). There are opportunities to expand on the current findings,
including analyses of a binary incidence matrix that captures risk allele counts per variant,
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mining rules for a specific variant using more liberal confidence and support thresholds
(i.e., requiring a specific risk variant to be present on the LHS), and extending analyses
to GWAS investigations. To the best of our knowledge, ARM has not been used in the
context of a GWAS, however scalable ARM algorithms capable of analyzing GWAS data
are currently in development [45], as well as frameworks that combine ARM with other
deep learning or machine learning algorithms to interrogate GWAS data [46,47].

5. Conclusions

ARM discerned novel higher order relationships amongst MS risk variants. These
complex genetic patterns had strong associations with MS; i.e., HLA-DRB1*15:01-SLC30A7-
rs56678847-AC093277.1-rs6880809 conferred 20.2-fold (95% CI: 8.5, 37.5; p = 4 × 10−9)
increased MS risk. In overview, we presented an analytical framework for discern features
in the missing heritability of MS that is independent of parametric model assumptions and
computationally efficient. Furthermore, we highlight possible genetic hubs that might be
involved in several pathological mechanisms in MS. These findings may also inform genetic
risk prediction efforts, particularly given the strong and robust associations observed in
this modestly sized study population.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
1/18/5/2518/s1, Table S1: MS risk variants included in the analysis. Table S2: Rules mined with
confidence ≥0.8 and support ≥0.05. Table S3: Testing for additive and multiplicative interactions for
the top ranking rule. Table S4: Haploreg annotation of MS risk variants reported in Tables 2 and 3.
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