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Abstract 27 

Background: Analyzing disease-linked genetic variants via expression quantitative trait loci 28 

(eQTLs) is important for identifying potential disease-causing genes. Previous research 29 

prioritized genes by integrating Genome-Wide Association Study (GWAS) results with tissue-30 

level eQTLs. Recent studies have explored brain cell type-specific eQTLs, but they lack a 31 

systematic analysis across various Alzheimer’s disease (AD) GWAS datasets, nor did they 32 

compare effects between tissue and cell type levels or across different cell type-specific eQTL 33 

datasets. In this study, we integrated brain cell type-specific eQTL datasets with AD GWAS 34 

datasets to identify potential causal genes at the cell type level. 35 

Methods: To prioritize disease-causing genes, we used Summary Data-Based Mendelian 36 

Randomization (SMR) and Bayesian Colocalization (COLOC) to integrate AD GWAS summary 37 

statistics with cell-type-specific eQTLs. Combining data from five AD GWAS, three single-cell 38 

eQTL datasets, and one bulk tissue eQTL meta-analysis, we identified and confirmed both novel 39 

and known candidate causal genes. We investigated gene regulation through enhancer activity 40 

using H3K27ac and ATAC-seq data, performed protein-protein interaction and pathway 41 

enrichment analyses, and conducted a drug/compound enrichment analysis with the Drug 42 

Signatures Database (DSigDB) to support drug repurposing for AD. 43 

Results: We identified 27 candidate causal genes for AD using cell type-specific eQTL datasets, 44 

with the highest numbers in microglia, followed by excitatory neurons, astrocytes, inhibitory 45 
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neurons, oligodendrocytes, and oligodendrocyte precursor cells (OPCs). PABPC1 emerged as a 46 

novel astrocyte-specific gene. Our analysis revealed protein-protein interaction (PPI) networks 47 

for these causal genes in microglia and astrocytes. We found the "regulation of aspartic-type 48 

peptidase activity" pathway being the most enriched among all the causal genes. AD-risk 49 

variants associated with candidate causal gene PABPC1 is located near or within enhancers only 50 

active in astrocytes. We classified the genes into three drug tiers and identified druggable 51 

interactions, with imatinib mesylate emerging as a key candidate. A drug-target gene network 52 

was created to explore potential drug targets for AD. 53 

Conclusions: We systematically prioritized AD candidate causal genes based on cell type-54 

specific molecular evidence. The integrative approach enhances our understanding of molecular 55 

mechanisms of AD-related genetic variants and facilitates the interpretation of AD GWAS 56 

results. 57 

 58 
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SMR: Summary Data-Based Mendelian Randomization 67 

COLOC: Bayesian Colocalization 68 

LOAD: Late-Onset Alzheimer’s Disease 69 

UKBEC: The UK Brain Expression Consortium 70 

GTEx: Genotype-Tissue Expression Consortium 71 

DLPFC: Dorsolateral Prefrontal Cortex 72 

PFC: Prefrontal Cortex 73 

OPCs: Oligodendrocyte Progenitor Cells 74 

TMM: Trimmed Mean of M-values 75 

CPM: Counts Per Million 76 

PCs: Principal Components 77 

HEIDI: Heterogeneity in Dependent Instruments 78 

PPs: Posterior Probabilities 79 

PPI: Protein–Protein Interaction 80 

LD: Linkage Disequilibrium 81 

DSigDB: The Drug Signatures Database 82 

DEG: Differential Gene Expression 83 

 84 

Background 85 

Alzheimer's Disease (AD) is a multifaceted neurodegenerative disorder characterized by 86 

progressive cognitive decline and memory loss[1]. AD is broadly categorized into early-onset 87 

and late-onset forms, with late-onset AD (LOAD) being the most common[2]. The genetic 88 

architecture of AD is complex, involving numerous deleterious variants distributed across 89 

various genes[2]. Among these, the APOE ε4 allele is recognized as the strongest genetic risk 90 
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factor for late-onset AD[3]. Genome-Wide Association Studies (GWAS) have significantly 91 

advanced our understanding of the genetic basis of AD[4-9]. Early AD GWAS studies identified 92 

key loci like CLU and CR1[5]. The latest AD GWAS study has significantly expanded our 93 

understanding of the genetic basis of Alzheimer’s disease, identifying 83 genetic variants across 94 

75 loci, including 42 newly discovered variants in European ancestry populations[4].  95 

 96 

However, while GWAS studies are instrumental in identifying genetic variants associated with 97 

AD, they fail to elucidate the molecular and cellular mechanisms by which the variants 98 

contribute to the disease. Only a small fraction of these variants resides within coding regions, 99 

while a significant number of non-coding risk variants remain unexplained. To better understand 100 

the underlying mechanisms through which these risk variants act, recent studies have employed 101 

Expression Quantitative Trait Loci (eQTL) analyses[10-15] for following up study of GWAS 102 

results. The eQTL analyses can reveal how non-coding variants identified by GWAS influence 103 

the risk of AD through changes in gene expression[16]. Several public eQTL datasets derived 104 

from brain tissue have become available, including the Braineac dataset from the UK Brain 105 

Expression Consortium (UKBEC)[17], the Genotype-Tissue Expression (GTEx) consortium[18] 106 

and the MetaBrain dataset[10]. These datasets have enhanced the interpretation of GWAS 107 

findings by elucidating how risk variants regulate gene expression on the tissue level.  108 

 109 

Furthermore, a few recent eQTL studies have demonstrated that these non-coding variants affect 110 

gene expression in a cell-type-specific manner, underscoring the complexity of their functional 111 

impact[11, 14]. Cell type-specific eQTLs enable researchers to determine the cell types that are 112 

most influenced by genetic variants and enable the identification of key cell types and regulatory 113 
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networks involved in the disease progression, thereby offering enhanced understanding of the 114 

underlying mechanisms of diseases. Moreover, previous research has shown that GWAS-115 

identified risk variants in non-coding regions can influence phenotypic outcomes by perturbing 116 

transcriptional gene promoters and enhancers[19]. For instance, a study has shown that the AD-117 

associated genes BIN1 and PICALM are regulated through AD risk variants that overlap with 118 

microglia-specific enhancers, which interact with the active promoters of these genes[19]. 119 

Understanding whether these genetic risk variants overlap with specific regulatory elements 120 

provides deeper insights into the cell-type-specific mechanisms underlying gene expression 121 

regulation. 122 

 123 

In this study, we systematically integrated AD GWAS summary statistics with cell type-specific 124 

eQTL data to enhance our understanding of the genetic mechanisms underlying AD. We 125 

employed Summary Data-Based Mendelian Randomization (SMR) and Bayesian colocalization 126 

(COLOC) methods to identify and prioritize potential disease-causing genes. Our analysis 127 

included five recent AD GWAS datasets and three cell type-specific eQTL datasets derived from 128 

single-cell sequencing of AD brain samples, as well as a tissue-level metabrain eQTL dataset 129 

from previous studies. We focused on prioritizing candidate causal genes for follow-up 130 

functional studies in the future. We examined their associated variants and the possible effects on 131 

enhancers in a cell type-specific manner. By comparing our results with existing studies, we 132 

identified novel cell type-specific candidate genes and used tools such as eQTpLot to visualize 133 

their colocalization. Additionally, we used differential gene expression analysis data to 134 

investigate the associations between these novel candidate causal genes and AD pathology and 135 
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cognitive function. This comprehensive approach aims to improve our understanding of AD's 136 

genetic basis at the molecular and cellular level and identify potential therapeutic targets. 137 

 138 

Methods 139 

Datasets 140 

We utilized summary statistics from 5 latest GWAS studies on AD involving European ancestry, 141 

downloaded from the NHGRI-EBI GWAS Catalog. As shown in Additional file 1: Table S1, 142 

Kunkle et al. 2019 included 21,982 AD cases, and 41,944 controls from the U.S., Canada, 143 

France, Germany, Netherlands, Iceland, U.K., Greece, and other regions, totaling 63,926 144 

samples[6]. Jansen et al. 2019 involved 24,087 AD cases, 47,793 proxy cases, and 383,378 145 

controls, with a total of 455,258 samples from the U.S., Norway, Sweden, U.K., and other 146 

regions (Additional file 1: Table S1)[7]. Wightman et al. 2021 analyzed 39,918 AD cases, 46,613 147 

proxy cases, and 676,386 controls, with a total sample size of 762,917 from Finland, Iceland, 148 

Norway, Spain, Sweden, U.K., U.S., and other regions (Additional file 1: Table S1)[9]. 149 

Schwartzentruber et al. 2021 included 21,982 AD cases, 53,000 proxy cases, and 419,944 150 

controls, totaling 472,868 samples from Greece, Canada, U.S., U.K., France, and Germany 151 

(Additional file 1: Table S1)[8]. Bellenguez et al. 2022 provided data on 39,106 clinically 152 

diagnosed AD cases, 46,828 proxy cases, and 401,577 controls, amounting to 487,511 samples 153 

from Portugal, Switzerland, Spain, Greece, Czech Republic, Netherlands, Sweden, U.S., 154 

Belgium, Norway, Finland, Denmark, Italy, U.K., Bulgaria, France, and Germany (Additional 155 

file 1: Table S1)[4].  156 

 157 
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We utilized multiple cis-eQTL datasets predominantly from individuals of European ancestry, 158 

including both tissue and cell type levels datasets in brain cortex (Additional file 1: Table S2). 159 

The Metabrain eQTL dataset offered a tissue-level cis-eQTL dataset derived from a meta-160 

analysis of 14 bulk RNA-seq datasets focused on the brain cortex[10] (see Additional file 1: 161 

Table S2). Additionally, three cell type-specific cis-eQTL datasets were obtained from single-cell 162 

sequencing data. The research conducted by Fujita et al. 2024 provided a cell type-specific eQTL 163 

dataset sourced from the dorsolateral prefrontal cortex (DLPFC) (Additional file 1: Table 164 

S2)[14]. Furthermore, Bryois et al. 2021 provided a cell type-specific eQTL dataset 165 

encompassing the temporal cortex, cortex, white matter, DLPFC, and prefrontal cortex (PFC)[11] 166 

(see Additional file 1: Table S2). Moreover, we performed eQTL analysis and generated a cell 167 

type-specific eQTL dataset utilizing the snRNA dataset from the DLPFC region as reported by 168 

the previous study from Mathys et al., 2023[20] (Additional file 1: Table S2). 169 

 170 

eQTL analysis 171 

To conduct eQTL analysis for the Mathys et al., 2023 snRNA dataset from the ROSMAP cohort, 172 

we generated pseudobulk expression profiles. We focused on seven main cell types (Excitatory 173 

neurons, Inhibitory neurons, Oligodendrocytes, Oligodendrocyte Progenitor Cells (OPCs), 174 

Astrocytes, Immune cells, Vasculature cells). Pseudobulk UMI count matrices for each cell type 175 

were generated by summing UMI counts per gene across all cells within each individual using 176 

Seurat (Version 5.0.1). Low-expression genes were filtered out using the `filterByExpr` function 177 

from edgeR (version 3.40.2) with default parameters. The remaining pseudobulk counts were 178 

normalized using the trimmed mean of M-values (TMM) method from edgeR, and log2 counts 179 
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per million (CPM) were computed and then quantile normalized with the `voom` function from 180 

limma (version 3.54.2) as a previous study[14].  181 

 182 

To identify cis-eQTLs within 1 Mb of the transcription start site of each gene, we used Matrix 183 

EQTL (version 2.3) for analysis. Bi-allelic SNPs were retained if they had a minor allele 184 

frequency >0.05, a call rate >95%, and Hardy-Weinberg equilibrium p > 10^-6 using PLINK2 as 185 

a previous study[14]. Gene expression was modeled using a linear regression with SNP allele 186 

counts and several covariates, and significance was determined by t-statistics. To account for 187 

population structure, the top 3 genotype principal components (PCs) were included as covariates 188 

as a previous study[14]. Additionally, the top 40 expression PCs, calculated within each cell type, 189 

were used to control for non-genetic structure as . Covariates including age, sex, post-mortem 190 

interval, study cohort (ROS or MAP), and total number of genes detected were also included as a 191 

previous study[14].  192 

 193 

Summary data-based Mendelian Randomization 194 

We performed SMR and Heterogeneity in Dependent Instruments (HEIDI) tests to investigate 195 

pleiotropic associations between gene expression and AD within cis-regions, using the SMR 196 

software tool (version 1.3.1). The SMR method, as detailed in the previous study[21], enables 197 

the testing of whether the effect size of a SNP on a phenotype is mediated through gene 198 

expression. This tool facilitates the prioritization of candidate causal genes underlying GWAS 199 

hits for further functional studies by leveraging summary-level data from both GWAS and eQTL 200 

datasets (as mentioned above). For our analysis, we used default parameters in the SMR software 201 

with a p-value threshold of 5.0e-8 to select the top associated eQTLs for the SMR test, focusing 202 
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exclusively on cis-regions. The HEIDI test, which assesses heterogeneity among dependent 203 

instruments, was conducted using a default eQTL p-value threshold of 1.57e-3 to filter SNPs for 204 

each probe, corresponding to a chi-squared value (df =1) of 10. The association between gene 205 

expression and AD was determined as P-value of SMR < 0.05/number of probes tested[21]. For 206 

the HEIDI test, significance was determined as P-value of HEIDI > 0.05 as previous studies[21].  207 

 208 

Bayesian colocalization analysis 209 

We conducted colocalization analysis using the Coloc package (version 5.2.3)[22] to investigate 210 

whether AD phenotype and gene expression share common causal variants in a given region. The 211 

input data comprised SNP effect sizes and associated p-values from both the AD GWAS and 212 

eQTL datasets (as mentioned above), formatted according to the package’s requirements. Using 213 

the coloc.abf function in the package, we tested the hypothesis of a shared causal variant under 214 

the assumption of at most one causal variant per trait. Colocalization analysis calculates posterior 215 

probabilities (PPs) of the five hypotheses: 1) PPH0; no association with either gene expression or 216 

phenotype; 2) PPH1; association with gene expression, not with the phenotype; 3) PPH2; 217 

association with the phenotype, not with gene expression; 4) PPH3; association with gene 218 

expression and phenotype by independent SNVs; and 5) PPH4; association with gene expression 219 

and phenotype by shared causal SNVs. As a large PP for H4 strongly supports shared causal 220 

variants affecting both gene expression and phenotype, we considered PPH4 > 0.75 and 221 

PPH4/PPH3 >3 as strong evidence for colocalization as previous studies[23].  222 

 223 
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Network analysis of cell type specific candidate causal genes 224 

For each cell type, we utilized the identified candidate causal genes as input to construct a cell 225 

type-specific protein–protein interaction (PPI) network. This network was generated using 226 

STRING (version 12.0) with a confidence score threshold of 0.4 as the minimum required 227 

interaction score and default settings for all other parameters. The resulting network was then 228 

visualized using Cytoscape (version 3.10.2). In the network, nodes represent genes, proteins, or 229 

other molecular entities, while edges illustrate the interactions between these molecules. 230 

 231 

Pathway enrichment of all candidate causal genes 232 

To perform pathway enrichment analysis, we utilized the all-candidate causal genes in Metascape 233 

v3.5.20240101[24]. We conducted pathway and process enrichment analyses using various 234 

ontology sources, including KEGG Pathway, GO Biological Processes, Reactome Gene Sets, 235 

Canonical Pathways, CORUM, WikiPathways, and PANTHER Pathway. The entire genome was 236 

used as the background for enrichment calculations. Terms with a p-value < 0.01, a minimum 237 

count of 3, and an enrichment factor > 1.5 (where the enrichment factor is the ratio of observed 238 

to expected counts) were selected for further analysis. To group similar terms, we calculated 239 

kappa similarity between enriched term pairs and performed hierarchical clustering based on 240 

kappa scores. Clusters were defined with a similarity threshold > 0.3. The most statistically 241 

significant term within each cluster was identified to represent that cluster. P-values were 242 

determined using the cumulative hypergeometric distribution, and q-values were adjusted for 243 

multiple comparisons using the Benjamini-Hochberg procedure in Metascape. We showed the 244 

top 10 clusters with their representative enriched terms (one per cluster) in the results. 245 

 246 
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eQTplot analysis for visualizing colocalization 247 

We utilized the eQTpLot (version 0.0.0.9000) R package to visualize the colocalization between 248 

AD GWAS data and eQTL data[25]. This tool enables comprehensive visualization of gene-trait 249 

interactions by generating a series of customizable plots. Using eQTpLot, we produced 250 

visualizations that highlight the overlap between AD GWAS and eQTL signals, the correlation 251 

between their p-values, and the enrichment of eQTLs among trait-significant variants. 252 

Additionally, the tool provided insights into the linkage disequilibrium (LD) landscape of the 253 

locus and the relationship between the directions of effect for eQTL signals and colocalizing 254 

GWAS peaks, which help us to better understand the genetic relationships between gene 255 

expression and AD. 256 

 257 

Cell-type-specific enhancer activity analysis 258 

GWAS risk variants located in noncoding regions can influence phenotypic outcomes by 259 

affecting transcriptional gene promoters and enhancers[19]. Clusters of enhancers, known as 260 

super-enhancers, play a vital role in regulating cell-identity genes and are key to establishing 261 

cell-type-specific gene expression patterns[19]. In this study, we evaluated the impact of disease 262 

variants on cis-gene expression in specific cell types by evaluating whether disease variants are 263 

located within or next to regulatory elements, including enhancers and promoters. A previous 264 

study highlights that although active promoters are typically conserved across different brain cell 265 

types, active enhancers show marked cell-type specificity[19]. Thus, we focused on variant-266 

enhancer analysis. We used a publicly available dataset, including ATAC-seq, which identifies 267 

open chromatin regions, and ChIP-seq, which marks active enhancers (H3K27ac) and promoters 268 

(H3K4me3) for each brain cell type, accessed through the UCSC genome browser session 269 
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(hg19). This dataset was generated from nuclei isolated from brain tissue resected during 270 

epilepsy treatment in 10 individuals[19]. This approach allowed us to identify which enhancers 271 

are active in specific cell types, thereby elucidating the cell-type-specific effects of disease 272 

variants on gene expression. 273 

 274 

Druggability analysis 275 

To identify druggable genes, we classified the identified candidate causal genes into three tiers 276 

based on druggability confidence according to a previous study[26]. Tier 1 included genes whose 277 

protein products are targets of approved small molecule, and biotherapeutic drugs were identified 278 

using manually curated efficacy target information from release 17 of the ChEMBL database. 279 

Tier 2 comprised proteins closely related to Tier 1 targets, identified through a BLASTP search 280 

of Ensembl peptide sequences against approved drug efficacy targets. Tier 3 encompassed 281 

proteins with more distant relationships to drug targets, identified by BLASTP with ≥25% 282 

identity over ≥75% of the sequence and E-value ≤0.001. Additionally, to prioritize alternative 283 

targets for non-druggable candidate causal genes, we utilized data from EpiGraphDB to identify 284 

directly AD related interacting genes that are indicated to be druggable with Tier1 285 

druggability[27] based on protein-protein interaction (PPI) networks (IntAct[28], STRING[29]) 286 

and with literature or xQTL evidence for AD relevance[27]. 287 

 288 

Potential drug/compound prediction 289 

To identify potential pharmacological drug/compound that could modulate the expression of 290 

candidate causal genes for AD, we utilized the Drug Signatures Database (DSigDB)[30]. This 291 

resource includes 22,527 gene sets and 17,389 unique compounds linked to 19,531 genes. We 292 
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accessed and downloaded the annotated drug/compound gene sets from DSigDB's official 293 

website[31]. Using the enricher function from the R package clusterProfiler (version 4.10.1), we 294 

performed enrichment analysis to explore connections between our target genes—either 295 

druggable causal genes or tier 1 interacting genes—and potential drugs, aiming for AD drug 296 

repurposing. We set an Benjamini-Hochberg adjusted p-value threshold of <0.01 to identify 297 

drugs significantly associated with these target genes. The top 10 enriched drugs/compounds 298 

were visualized using a dot plot, and an interaction network was generated with Cytoscape 299 

(version 3.10.2) to illustrate the relationships between the target genes and the enriched 300 

drugs/compounds. 301 

 302 

Results 303 

Workflow 304 

To identify and prioritize genes associated with AD, we integrated summary-level data from 305 

GWAS with eQTL data. As shown in Figure 1, we incorporated data from five recent AD GWAS 306 

datasets and three cell type-specific eQTL datasets from single-cell sequencing of AD brain 307 

samples, along with a tissue-level Metabrain eQTL dataset from previous research, as described 308 

in the Methods. As outlined in Figure 1, we first employed SMR to evaluate how SNPs 309 

associated with AD risk influence gene expression. Subsequently, we used Coloc to validate the 310 

colocalization of genetic variants within specific genomic regions. We identified 33 candidate 311 

causal genes that met our rigorous criteria (Figure 2). These genes were then examined across 312 

multiple cell type-specific datasets to assess their replicability. We explored how associated 313 

variants might regulate gene expression in a cell type-specific manner, utilizing previous data on 314 

cell type-specific enhancers or promoters in brain tissue. Additionally, we compared our findings 315 
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with prior studies to highlight novel candidate genes with less previous support as shown in 316 

Figure 1. For these novel genes, we visualized colocalization results and derived differential 317 

gene expression data from earlier studies to confirm their association with AD. Finally, we 318 

assessed the druggability of the prioritized candidate causal genes to explore potential 319 

therapeutic targets. 320 

 321 

Summary results of detected candidate causal genes 322 

We integrated data from five recent AD GWAS datasets and three cell type-specific eQTL 323 

datasets obtained from single-cell sequencing of AD brain samples, along with a metabrain 324 

tissue-level eQTL dataset from prior research. Utilizing SMR and HEIDI as well as Coloc 325 

analyses, we identified 33 candidate causal genes across these datasets that met the filtering 326 

criteria: SMR FDR < 0.05, HEIDI p-value > 0.05, Coloc PPH4 < 0.75, and Coloc PPH4/PPH3 > 327 

3, as shown in Figure 2 and Additional file 1: Table S3-S6. Out of the 33 candidate causal 328 

genes, two (AL355353.1 and AL137789.1) are lncRNA genes, while the remaining 31 genes are 329 

mRNA genes. 27 candidate causal genes were observed in cell type-specific eQTL datasets, 330 

combining results from all GWAS datasets, as shown in Figure 2. As shown in Additional file 331 

2: Figure S1-S5, the Bellenguez AD GWAS summary statistics revealed the highest number of 332 

candidate causal genes compared to the other AD GWAS datasets. With the combined results 333 

from all GWAS datasets, of the 27 cell type level candidate causal genes, 21 were found to be 334 

causal in only one cell type (Figure 2). While genes including ACE, CD2AP, JAZF1, APH1B, 335 

ARL17B and SCIMP were shared across multiple cell types, as shown in Figure 2. The majority 336 

consistently show the same sign in their MR beta values across different cell types. For example, 337 

CD2AP was detected with a positive MR beta value in both excitatory neurons and microglia in 338 
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the Fujita eQTL dataset (Figure 2). Interestingly, there is one gene, JAZF1, that exhibits an 339 

inconsistent MR beta value sign across different cell types. Specifically, JAZF1 shows a negative 340 

MR beta value in microglia in all the Fujita, Mathys and Bryois eQTL datasets (Figure 2). 341 

However, it displays a positive MR beta value in OPCs in the Fujita eQTL dataset (Figure 2).  342 

Furthermore, we noted concordant MR beta signs across single-nucleus eQTL and bulk eQTL 343 

datasets. CD2AP, EGFR, SNX31, PABPC1, ACE, ARL17B, APH1B, PRSS36, GRN, and 344 

LRRC37A are genes that are shared between the metabrain and cell type level candidate causal 345 

genes (Figure 2). The MR values of these genes consistently displayed the same sign in both the 346 

metabrain dataset and the cell type level dataset (Figure 2). Additionally, TSPAN14, SLC39A13, 347 

FCER1G, CR1, NDUFAF6, TP53INP1 were identified exclusively as candidate causal genes in 348 

the bulk metabrain eQTL dataset (Figure 2). 17 genes were identified exclusively as candidate 349 

causal genes in the cell type eQTL datasets (Figure 2). 350 

 351 

Table 1. Novel discoveries, and functional analysis of candidate causal genes 352 

 353 

 354 

 355 

 356 

 357 

- Causal genes (combined results with 5 GWAS summary data) 

Celltypes 
Identified in 1 snRNA 

dataset 
Identified in at least 2 snRNA datasets 

Astrocytes SCIMP, HS3ST5, KANSL1 EGFR, SNX31, PABPC1 

Excitatory Neurons 

APH1B, GRN, PRSS36, 

AL355353.1, ACE, 

LRRC37A, CD2AP 

SCIMP 

Immune Cells or 

Microglia 

ZYX, CCDC6, RIN3, 

ARL17B, FERMT2, 

CD2AP 

USP6NL, CASS4, PICALM, JAZF1, RABEP1, 

BIN1 

Inhibitory Neurons CELF1, ACE SCIMP 

Oligodendrocytes 
MINDY2, AL137789.1, 

APH1B 
  

OPCs ARL17B, JAZF1   
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As mentioned earlier, a total of 27 candidate causal genes were observed in cell type-specific 358 

eQTL datasets (Table 1). The highest number of candidate causal genes was detected in 359 

microglia, followed by excitatory neurons, astrocytes, inhibitory neurons, oligodendrocytes, and 360 

OPCs (Figure 2 and Table 1). We identified 10 cell type-specific candidate causal genes (EGFR, 361 

SNX31, PABPC1, SCIMP, USP6NL, CASS4, PICALM, JAZF1, RABEP1 and BIN1), which were 362 

detected in at least two snRNA datasets (Table 1). Among these, genes CASS4, PICALM, 363 

USP6NL, BIN1 and RABEP1 were previously nominated by Agora[32, 33], while genes JAZF1 364 

and SCIMP were identified as colocalized genes in previous studies[14, 15]. EGFR is a recently 365 

prioritized causal gene with genetic regulation[4]. SNX31 was identified as a colocalized gene in 366 

an earlier study with limited supporting evidence[34-36]. Additionally, PABPC1, located nearby 367 

SNX31 emerged as a novel candidate causal gene with limited supporting evidence. 368 

 369 

To analyze interactions among candidate causal genes for each cell type, we first constructed cell 370 

type-specific PPI networks as described in the Methods. Our PPI analysis revealed there are 371 

interactions among the corresponding proteins of the candidate causal genes in astrocytes and 372 

microglia, as illustrated in Figure 3. In astrocytes, we identified interactions among protein 373 

PABPC1, EGFR, and KANSL1, with EGFR serving as a central node that connects PABPC1 and 374 

KANSL1 (Figure 3A). As shown in Figure 3B, the PPI network for microglia showed a more 375 

intricate interaction landscape, with 12 nodes and 16 edges. Specifically, BIN1, FERMT2, 376 

PICALM, RIN3, CD2AP, and CASS4 were interconnected, indicating a complex network of 377 

interactions that could play a significant role in microglial functions related to AD. 378 

 379 
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To identify the enriched pathways and processes, we used Metascape to perform a 380 

comprehensive enrichment analysis of the 31 candidate causal mRNA genes. Figure 3C displays 381 

the Top 10 clusters with their representative enriched terms, one per cluster. As displayed in 382 

Figure 3C and Additional file 1: Table S7, the representative enriched term of the top 1 cluster 383 

was "regulation of aspartic-type peptidase activity" (GO term) with q-value < 0.05 (q-value: 384 

0.00178). The other clusters are not significantly enriched with q-value > 0.05.  385 

 386 

Visualization of colocalization for the novel astrocyte-specific candidate causal gene  387 

We used eQTpLot to visualize the colocalization between eQTL (Astrocyte specific eQTL from 388 

Fujita et al 2024) and AD GWAS (Bellenguez et al., 2022) signals for the novel candidate causal 389 

gene, PABPC1. As shown in Figure 4A-C, PABPC1 is indicated to be affected by the lead 390 

GWAS significant loci rs1693551 (GWAS P-value: 1.785e-08; Beta: 0.0459 from Bellenguez et 391 

al., 2022 AD GWAS summary statistics data).  Our analysis indicates that rs1693551 may also 392 

affect the other nearby gene SNX31 (Figure 4B). We observed a tendency for eQTL to be 393 

overrepresented in the lists of significant variants from the AD GWAS (p-value = 4e-5 for 394 

PABPC1 in astrocyte) (Figure 4D). Congruous SNPs effect on the gene expression in astrocyte 395 

and AD risk were also observed for PABPC1 (Figure 4A, 4E, 4F). eQTpLot P-value correlation 396 

analysis further confirms the colocalization between the PABPC1 gene expression in astrocyte 397 

and AD risk as shown in Figure 4E (r = 0.81, p = 1.36e-49).  The variant rs1693551 with 398 

reference allele of T and alternative allele of C is not identified as a new risk locus in the latest 399 

GWAS study[4]. However, our analysis reveals that it surpasses the genome-wide significance 400 

threshold, as illustrated by the Manhattan plot for chromosome 8 shown in Additional file 2: 401 

Figure S6. Additionally, we also observed colocalization of shared causal variant for PABPC1 402 
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gene expression and AD risk with eQTL datasets from Mathys et al 2023 and Metabrain 403 

(Additional file 2: Figure S7 and S8). We also visualized the colocalization for the causal gene 404 

EGFR in astrocyte (Additional file 2: Figure S9).  405 

 406 

The MR and colocalization analyses identified a causal link between PABPC1 gene expression in 407 

astrocytes and AD risk. To further explore this relationship, we examined PABPC1 expression in 408 

both astrocytes and astrocyte subtypes, and its association with AD pathology and cognitive 409 

function. Specifically, we utilized differential gene expression (DEG) results from a previous 410 

study[20] focused on the DLPFC region and applied multiple testing corrections. The findings, 411 

presented in Additional file 2: Figure S10, indicate that PABPC1 expression in astrocytes is 412 

significantly associated with perceptual orientation. Additionally, expression in the astrocyte sub-413 

type GRM3 shows a suggestive association with tangle density. 414 

 415 

Enhancers harboring AD risk variants regulate cell-type-specific gene expression 416 

Our results reveal that certain genes, such as PABPC1, was identified as candidate causal gene 417 

exclusively in astrocytes, but not in other brain cell types. This highlights that many candidate 418 

causal genes may be specific to a single cell type. To further understand this cell-type-specific 419 

effect, it is crucial to investigate how these variants influence gene expression and the underlying 420 

regulatory mechanisms. Enhancers are genomic regions that regulate gene expression, often in a 421 

cell-specific manner. A previous study [19] analyzed enhancer and promoter activity in human 422 

brain cell nuclei, revealing that genetic variants associated with brain traits and diseases exhibit 423 

cell-specific enhancer enrichment patterns. To determine if the cell-type-specific causal genes 424 

identified in our study are regulated by cell-type-specific enhancer activity, we analyzed a 425 
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publicly available dataset, including ATAC-seq for open chromatin regions and ChIP-seq for 426 

active enhancers (H3K27ac) and promoters (H3K4me3) for each brain cell type, as detailed in 427 

the Methods section. 428 

 429 

As illustrated in Figure 5, for the candidate causal gene PABPC1 in astrocytes, the associated 430 

disease variant is rs1693551 (chr8, hg19_position: 10675584 bp), which is located just 59 bp 431 

from the boundary of an astrocyte-specific enhancer (chr8, hg19_position: 101675643-432 

101676301 bp) identified in the previous study. Given its proximity to the enhancer boundary, it 433 

is possible that the enhancer region extends beyond what was detected, especially considering 434 

the dynamic nature of enhancers and technical limitations of current detection methods. Figure 5 435 

shows that this enhancer, located downstream of the PABPC1 gene, is active only in astrocytes—436 

evidenced by prominent H3K27ac and ATAC-seq peaks—while not active in other cell types. 437 

This suggests that the variant likely influences gene expression through a cell-type-specific 438 

enhancer, which may explain why PABPC1 was detected as a causal gene exclusively in 439 

astrocytes. 440 

 441 

Druggability analysis and drug/compound prediction 442 

To identify druggable genes from our candidate causal genes, we categorized them based on a 443 

prior drug tier classification[26]. Tier 1 includes targets of approved drugs and clinical 444 

candidates; Tier 2 includes targets with known drug-like interactions or high similarity to 445 

approved drug targets; and Tier 3 includes proteins with distant similarities to drug targets or 446 

those in key druggable families, as mentioned in the Methods. As detailed in Additional file 1: 447 

Table S8, we identified three candidate causal genes—EGFR, ACE, and APH1B—as Tier 1 448 
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druggable, and three genes—GRN, PRSS36, and CR1—as Tier 3 druggable. The remaining 449 

candidate causal genes were not classified as druggable based on the previous study[26]. For 450 

these non-druggable genes, we used EpiGraphDB to prioritize potential alternative drug targets 451 

within the same PPI network. We identified directly AD related interacting genes with Tier 1 452 

druggability using PPI networks from IntAct and STRING databases, shown in Additional file 453 

1: Table S8. 454 

 455 

To identify drugs targeting the causal genes identified in this study and to broaden the scope of 456 

potential drug targets, we conducted a drug/compound enrichment analysis using DSigDB. This 457 

analysis aimed to find potential drugs for 74 target genes, which include both the druggable 458 

causal genes identified in this study and directly interacting genes with Tier 1 druggability, as 459 

detailed in Additional file 1: Table S8. The results of the enrichment analysis are presented in 460 

Additional file 1: Table S9. We focused on drugs with an adjusted p-value of less than 0.01 and 461 

selected the top 10 most significant potential drugs/compound based on their adjusted p-value 462 

(Additional file 1: Table S9 and Figure 6A). Figure 6A presents the drugs grouped by gene 463 

ratio (the percentage of target genes overlapping with the drug gene set). Within each group, the 464 

drugs are ranked by their adjusted p-value significance. The results highlight that 3-(1-465 

methylpyrrolidin-2-yl)pyridine targets the highest number of genes, with 17 target genes 466 

including EEF2, ADRB2, CD4, EGFR, APP, TFRC, ITGAL, PLD1, FYN, PIK3CA, RAF1, SRC, 467 

TP53, VEGFA, MAPK1, TNFRSF1A, and ACE (Additional file 1: Table S9). In the second 468 

group, Imatinib mesylate is the most significant drug, targeting 14 genes, followed by 469 

Dinoprostone and Capsaicin. In the third group, histamine is the most significant drug, targeting 470 

13 genes, followed by Gefitinib. Imatinib mesylate is detected as the most significant drug across 471 
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groups. These top 10 enriched drugs (Figure 6A) show promise for therapeutic applications in 472 

AD and need further investigation. 473 

 474 

To illustrate the interactions between drugs and target genes—both causal genes identified in this 475 

study and directly interacting genes (AD related) with Tier 1 druggability—we constructed an 476 

interaction network using Cytoscape, as shown in Figure 6B. This network highlights that Tier 1 477 

druggable genes, such as EGFR (targeted by all top 10 drugs) and ACE (targeted by 5 of the top 478 

10 drugs) (Additional file 1: Table S9 and Figure 6B), are directly targeted by multiple drugs. 479 

Additionally, the Tier 3 druggable gene CR1 is directly targeted by Imatinib mesylate. In the 480 

network, druggable and non-druggable causal genes are represented by blue circles; interacting 481 

genes are shown in green circles, and drugs/compounds are depicted in pink (Figure 6B). The 482 

central area of the network features drugs and Tier 1 druggable genes, indicating direct targeting, 483 

while the surrounding groups represent interacting genes and non-druggable causal genes, which 484 

are indirectly targeted through these interactions. This visualization demonstrates the role and 485 

significance of the top 10 drugs in targeting multiple causal genes, both directly and indirectly 486 

(Figure 6B). 487 

 488 

Discussion 489 

Many disease-associated loci exert effects that are specific to cell types[11, 14, 37, 38]. Brain 490 

diseases are influenced by genetic effects that are specific to both cell types and brain regions[11, 491 

14, 39]. Previous GWAS studies often identify risk variants that impact disease phenotypes by 492 

regulating genes in specific tissues, yet the precise cell types involved are often not well 493 

characterized[10, 40]. Our study addresses this knowledge gap by using brain single-cell eQTL 494 
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data to reveal how genetic variants impact AD at the cellular level, offering crucial insights into 495 

cell-type-specific regulation driving the disease. In this study, we combined data from five recent 496 

AD GWAS with three cell-type-specific eQTL datasets from single-cell RNA sequencing and 497 

one bulk tissue eQTL dataset from a prior meta-analysis. Through SMR and colocalization 498 

analyses, we identified candidate causal genes at both bulk and cell-type levels, uncovering 499 

novel genes and confirming known ones. We investigated gene regulation in specific cell types 500 

by analyzing enhancer activity using previous H3K27ac and ATAC-seq data. Network and 501 

pathway enrichment analyses provided additional insights into the biological relevance of these 502 

genes. To facilitate drug repurposing for AD, we performed a drug/compound enrichment 503 

analysis using the DSigDB, mapping drug interactions with both causal and interacting 504 

druggable genes. This integrated approach highlights the importance of cell-type specific 505 

functional evidence in genetic research, revealing how AD GWAS variants contribute to disease 506 

through cell-specific gene expression. By examining genetic effects at the cellular level, we gain 507 

clearer insights into AD molecular mechanism and identify promising targets for drug discovery. 508 

 509 

In recent years, there has been growing recognition of the context-specific nature of eQTLs, 510 

extending from tissue types to functional, environmental, and cellular contexts[11, 14, 41-43]. 511 

Our study underscores the critical value of cell-type-specific eQTL datasets in identifying 512 

candidate causal genes for AD. Specifically, we identified 17 genes exclusively as candidate 513 

causal genes within the cell-type eQTL datasets (Figure 2). This finding highlights the 514 

limitations of bulk tissue analyses, which often aggregate signals across various cell types and 515 

may miss gene-regulatory effects that are specific to cellular contexts. By focusing on cell-type-516 

specific eQTL data, we can uncover gene associations that are masked when only bulk tissue 517 
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data is used. Furthermore, of the 27 candidate causal genes identified through cell-type-specific 518 

eQTL datasets, 21 were found to be causal in only one cell type (Figure 2). This cell-type 519 

specificity highlights the importance of considering cellular heterogeneity in genetic studies of 520 

complex diseases like AD.  521 

 522 

Our study reveals that the gene JAZF1 exhibits discordant MR beta value signs across different 523 

cell types. Specifically, JAZF1 shows a negative MR beta value in microglia and a positive MR 524 

beta value in OPCs (Figure 2). The negative MR beta value in microglia aligns with the known 525 

downregulation of JAZF1 in multiple brain regions[44]. This discrepancy could be attributed to 526 

technical limitations, as OPCs are less prevalent in brain single-cell datasets, leading to less 527 

reliable expression measurements. However, it is also possible that the discordant MR values 528 

reflect distinct functional roles of JAZF1 in these cell types. Microglia plays a key role in 529 

immune responses and neuroinflammation, while OPCs are critical for oligodendrocyte 530 

maturation and myelination[45, 46]. The differential impact of JAZF1 on these processes could 531 

explain its varied effects across cell types. Future research should focus on validating findings in 532 

independent datasets to resolve this discordancy. 533 

 534 

In our analysis, PABPC1 emerged as a novel candidate causal gene for AD, highlighting its 535 

potential role in disease mechanisms. Specifically, the MR and colocalization analyses identified 536 

a causal link between PABPC1 gene expression in astrocytes and AD risk. We found that 537 

PABPC1 expression in astrocytes is significantly linked to perceptual orientation and shows a 538 

suggestive association with tangle density in the GRM3 astrocyte subtype. PABPC1 is known to 539 

bind tau proteins[47]. It also regulates translation and mRNA stability[48]. Additionally, 540 
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PABPC1 is involved in stress granules and RNA splicing, critical for managing cellular stress 541 

and maintaining protein synthesis[49]. Its associations with neurofilament light chain (NF-542 

L)[50], along with its co-localization with small tau inclusions in tauopathy[51], underscore its 543 

relevance in AD pathology. These findings warrant further investigation into PABPC1 as a 544 

potential therapeutic target.  The AD risk loci rs1693551, which achieved GWAS significance 545 

only in the latest AD GWAS summary statistics[4], has been less studied. It is the leading GWAS 546 

locus associated with the expression of the causal genes SNX31 and PABPC1 in astrocytes, 547 

underscoring its potential significance in AD. This highlights the need for further investigation 548 

into its role and relevance in the disease. 549 

 550 

In our results, 21 of the 27-cell type level candidate causal genes were found to be causal in only 551 

one specific cell type (Figure 2). Previous research indicates that cell-type-specific enhancers 552 

harboring AD-risk variants can drive such cell type-specific gene regulation[19]. For example, 553 

while PICALM and BIN1 are expressed in multiple cell types, they contain microglia-specific 554 

enhancers with AD-risk variants[19]. Consistent with the previous findings, our study reveals 555 

astrocyte-specific enhancers harboring AD-risk variants associated with PABPC1  gene 556 

expression, although interactions between these enhancers and gene promoters remain 557 

unconfirmed due to the lack of PLAC-seq data in astrocytes[19]. In addition to microglia, which 558 

are well-known for their roles in AD, our study highlights the importance of astrocytes. We 559 

provide more molecular evidence showing that astrocytes are critically involved in AD through 560 

specific gene expression and enhancer activity associated with AD-risk variants. 561 

 562 
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Our DSigDB enrichment analysis identified several drugs/compounds with potential therapeutic 563 

relevance for AD, including Imatinib mesylate, histamine, Dinoprostone, 3-(1-methylpyrrolidin-564 

2-yl)pyridine, Gefitinib, Crystal violet, cerivastatin, and hexachlorophene. Imatinib mesylate was 565 

highlighted as the most significant drug (Additional file 1: Table S9). Imatinib mesylate is 566 

notable for its role as a tyrosine kinase inhibitor and has been shown to reduce Aβ production in 567 

various experimental models[52]. Research suggests it may be effective in treating 568 

neurodegenerative disorders, including AD[53]. However, further studies are needed to fully 569 

understand its effects on the brain, particularly its ability to cross the blood-brain barrier. Some 570 

research has explored how imatinib interacts with brain transporters such as breast cancer 571 

resistance protein and P-glycoprotein[54], which is important for optimizing its use in 572 

neurodegenerative diseases. 3-(1-methylpyrrolidin-2-yl)pyridine (Nicotine) stands out for 573 

targeting the highest number of analyzed genes. Nicotine, an alkaloid in tobacco, functions by 574 

activating nicotinic acetylcholine receptors (nAChRs), which are widely expressed throughout 575 

the nervous system[55]. It has dual effects on oxidative stress and neuroprotection[56], 576 

suppresses neuroinflammation[57], and prevents Aβ aggregation[58]. Despite these benefits, its 577 

use in AD is limited by cardiovascular risks[59], addiction and negative associations with 578 

smoking[60]. However, Nicotine’s gene targeting profile found in this study suggests it could 579 

impact multiple pathways involved in AD, potentially offering a therapeutic approach through 580 

nicotinic derivatives that mitigate these adverse effects. 581 

 582 

There are several limitations in this study. The study incorporated multiple datasets, including the 583 

three cell-type-specific eQTL datasets with partial overlap of participants from the ROSMAP 584 

cohort (see Additional file 1: Table S2). This partial overlap may introduce biases, potentially 585 
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affecting the robustness of our findings. Furthermore, the study analyzed data from various brain 586 

regions across multiple datasets, including the cortex from the bulk metabrain eQTL dataset, the 587 

DLPFC region from the Fujita 2024 and Mathys_2023 snRNA eQTL datasets, and a range of 588 

regions such as the temporal cortex, white matter, and PFC from the Bryois 2021 snRNA eQTL 589 

dataset. The variability in brain regions might limit the generalizability of our findings, as 590 

genetic effects can be region-specific. Also, the GWAS and eQTL datasets primarily included 591 

individuals of European ancestry, which limits the generalizability of the findings to other ethnic 592 

groups. Additionally, our analysis was limited to cis-eQTLs, which reflect direct effects on 593 

genes. Cis-eQTLs do not capture the full spectrum of genetic influences, as trans-eQTLs could 594 

reveal downstream gene sets and pathways affected by disease variants. Future studies should 595 

explore available cell-specific trans-eQTL data to better understand the causal effects of genetic 596 

variants acting in trans. Furthermore, future research should use independent snRNA eQTL 597 

datasets for validation. Lastly, while our study identified potential drug targets through 598 

enrichment analysis, their clinical efficacy remains unconfirmed. Experimental validation and 599 

clinical trials are necessary to establish their therapeutic potential. Moreover, since the candidate 600 

causal genes were identified from brain tissue data and in drugs that face challenges in crossing 601 

the blood-brain barrier, further investigation is needed to evaluate the viability of these targets 602 

for drug development. In addition, despite the common challenge that smaller gene sets pose in 603 

pathway enrichment analysis due to reduced statistical power, our results with 31 input genes 604 

demonstrate that meaningful enrichments can still be detected. As shown in Additional file 1: 605 

Table S7, the p-value of 8.13 × 10^(-8) of the one significantly enriched pathway (regulation of 606 

aspartic-type peptidase activity) indicates a highly significant enrichment, suggesting that the 607 

observed pathway association is unlikely to have occurred by chance. Furthermore, the q-value 608 
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of 1.78 × 10^(-3) of this enriched pathway confirms that the result is robust, with a very low 609 

false discovery rate, even after correcting for multiple testing. These findings indicate that, while 610 

larger gene sets generally provide more power, our analysis can still yield reliable, statistically 611 

significant results when the genes are biologically relevant. 612 

 613 

Our analysis identified both novel and established candidate causal genes, elucidating their roles 614 

in AD molecular mechanisms and highlighting the significance of cell-type specificity in gene 615 

expression regulation and enhancer activity. 616 
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ChIP-seq, which marks active enhancers (H3K27ac) and promoters (H3K4me3) for each brain 636 

cell type, accessed through the UCSC genome browser session (hg19) at: 637 

https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19 638 
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 666 

Figure legend. 667 

Figure 1. Study workflow. 668 

Figure 2. SMR beta value signs for candidate causal genes from SMR and colocalization 669 

analysis. Note: all five GWAS datasets results are combined. The candidate causal genes are 670 

filtered by SMR FDR < 0.05, HEIDI > 0.05, Coloc PPH4 < 0.75, Coloc PPH4/PPH3 > 3.  671 

Figure 3. Candidate causal genes network analysis and pathway enrichment. A. STRING 672 

PPI network of Astrocyte candidate causal genes. B. STRING PPI network of Microglia 673 

candidate causal genes. C. Pathway enrichment of all 31 detected candidate causal (mRNA) 674 

genes 675 

Figure 4. eQTpLot for colocalization between eQTLs for the gene PABPC1 and a GWAS 676 

signal for AD. The GWAS dataset is from Bellenguez et al., 2022 and the cell type eQTL dataset 677 

of astrocyte is from Fujita et al., 2024. A shows the locus of interest, containing the PABPC1 678 

gene, with chromosomal space indicated along the horizontal axis. The position of each point on 679 

the vertical axis corresponds to the p-value of association for that variant with AD, while the 680 

color scale for each point corresponds to the magnitude of that variant’s p-value for association 681 

with PABPC1 expression. Variants with congruous effects are plotted using a blue color scale, 682 
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while variants with incongruous effects are plotted using a red color scale. The directionality of 683 

each triangle corresponds to the GWAS direction of effect, while the size of each triangle 684 

corresponds to the effect size for the eQTL data. The default genome-wide p-value significance 685 

threshold for the GWAS analysis, 5e-8, is depicted with a horizontal red line. B displays the 686 

genomic positions of all genes within AD. C depicts a heatmap of LD information of all 687 

PABPC1 eQTL variants, displayed in the same chromosomal space as panels A and B for ease of 688 

reference (R2min=0.1, LDmin = 10). D depicts the enrichment of PABPC1 eQTLs among 689 

GWAS-significant variants, while E and F depicts the correlation between PGWAS and PeQTL for 690 

PABPC1 and AD, with the computed Pearson correlation coefficient (r) and p-value (p) 691 

displayed on the plot. For E, the analysis is confined only to variants with congruous directions 692 

of effect, while for F the analysis includes only variants with incongruous directions of effect. A 693 

lead variant is indicated in both E and F, and both are also labeled in panel A. 694 

Figure 5. Brain cell-type-specific chromatin profiles by UCSC Genome Browser (hg19). A. 695 

H3K27ac and ATAC-seq data for PABPC1, showing active enhancer regions and open chromatin 696 

specific to astrocytes, with a yellow vertical line marking the location of the associated disease 697 

variant and a dashed square showing the region of active enhancer.  698 

Figure 6. Potential drugs enrichment analysis and gene-drug interaction network. A. Top 699 

10 enriched drug/compounds based on DSigDB predictions. B. Interaction network illustrating 700 

connections between enriched drugs/compounds and target genes. Blue circles indicate 701 

druggable/non-druggable causal genes identified in this study, green circles represent druggable 702 

interacting genes linked to non-druggable causal genes, and pink nodes denote the top 10 703 

enriched drugs/compounds. 704 

 705 
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Additional files 706 

Additional file 1: Supplementary Tables 707 

Table S1. Alzheimer's disease GWAS studies. Table S2. Brain cortex region cis-eQTL datasets. 708 

Table S3. SMR and Coloc analysis results for metabrain eQTL and AD GWAS summary 709 

statistics. Table S4. SMR and Coloc results for Bryois cell type specific eQTL and AD GWAS 710 

summary statistics. Table S5. SMR and Coloc results for Fujita cell type specific eQTL and AD 711 

GWAS summary statistics. Table S6. SMR and Coloc results for Mathys cell type specific eQTL 712 

and AD GWAS summary statistics. Table S7. Pathway enrichment of candidate causal genes. 713 

Table S8. Druggability of candidate causal genes. Table S9. Drug/compound enrichment analysis 714 

results.  715 

 716 

Additional file 2: Supplementary Figures 717 

Figure S1. SMR beta value and significance for candidate causal genes from SMR and 718 

colocalization analysis. Figure S2. SMR beta value and significance for candidate causal genes 719 

from SMR and colocalization analysis. Figure S3. SMR beta value and significance for candidate 720 

causal genes from SMR and colocalization analysis. Figure S4. SMR beta value and significance 721 

for candidate causal genes from SMR and colocalization analysis. Figure S5. SMR beta value 722 

and significance for candidate causal genes from SMR and colocalization analysis. Figure S6. 723 

Manhattan plot of AD GWAS (Bellenguez et al., 2022) on chromosome 8. Figure S7. eQTpLot 724 

for colocalization between eQTLs for the gene PABPC1 and a GWAS signal for AD. Figure S8. 725 

eQTpLot for colocalization between eQTLs for the gene PABPC1 and a GWAS signal for AD. 726 

Figure S9. eQTpLot for colocalization between eQTLs for the gene EGFR and a GWAS signal 727 

for AD. Figure S10: DEGs detection of PABPC1 with pathology and cognitive function. 728 
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