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Abstract: Degenerative fundus disease encompasses a spectrum of ocular diseases, including diabetic retinopathy (DR) and age- 
related macular degeneration (AMD), which are major contributors to visual impairment and blindness worldwide. The development 
and implementation of effective strategies for managing and preventing the onset and progression of these diseases are crucial for 
preserving patients’ visual acuity. Melatonin, a neurohormone primarily produced by the pineal gland, exhibits properties such as 
circadian rhythm modulation, antioxidant activity, anti-inflammatory effects, and neuroprotection within the ocular environment. 
Furthermore, melatonin has been shown to suppress neovascularization and reduce vascular leakage, both of which are critical in the 
pathogenesis of degenerative fundus lesions. Consequently, melatonin emerges as a promising therapeutic candidate for degenerative 
ocular diseases. This review provides a comprehensive overview of melatonin synthesis, its localization within ocular tissues, and its 
mechanisms of action, particularly in regulating melatonin production, thereby underscoring its potential as a therapeutic agent for 
degenerative fundus diseases. 
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Introduction
Fundus degeneration encompasses a spectrum of ocular conditions, notably age-related macular degeneration (AMD) and 
diabetic retinopathy (DR).1 In developed nations, AMD stands as the primary cause of legal blindness in individuals aged 
60 and above, particularly among those of Caucasian descent.2 Projections suggest that the number of diagnosed AMD 
cases will rise to 196 million by 2020 and 288 million by 2040.3 The etiology of AMD is complex and not yet fully 
elucidated, although certain risk factors have been identified as potential contributors to the development of the 
condition.4 Smoking and sunlight exposure are known to worsen environmental risk factors, with age being identified 
as the primary demographic risk factor. Additionally, research indicates that nutritional factors, gut microbiota, hyperten-
sion, and genetic variability play a role in the development of wet AMD.5 Advanced wet AMD can lead to severe visual 
impairment due to choroidal neovascularization.6

DR is associated with various microvascular complications, including blindness, particularly in individuals under the 
age of 40.7 The estimated prevalence of diabetes is 400 million individuals, with one third experiencing DR and one tenth 

Drug Design, Development and Therapy 2024:18 2329–2346                                            2329
© 2024 Ma et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Drug Design, Development and Therapy                                               Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 30 March 2024
Accepted: 13 June 2024
Published: 18 June 2024

http://orcid.org/0000-0003-1336-7998
http://orcid.org/0000-0002-9826-181X
http://orcid.org/0000-0001-8410-1586
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


affected by vision-threatening conditions such as diabetic macular edema and proliferative DR (PDR).8 Worldwide, DR 
and AMD are the major causes of vision impairment and blindness.9 Given the increasing prevalence of diabetes and 
aging populations, the prevention and treatment of fundus degenerative diseases are of heightened importance.

Melatonin, a neurohormone predominantly produced by the pineal gland, has been the subject of extensive research 
and application across various disciplines.10 Eye research has particularly focused on the interaction between melatonin 
and the eyes, especially retinal ganglion cells. Additionally, studies have explored the impact of eye lesions on the 
circadian rhythm regulation of melatonin.11 Besides its role in regulating circadian rhythms, melatonin serves crucial 
physiological functions in ocular structures. Evidence suggests that a deficiency in melatonin may contribute to the 
development of AMD, as indicated by reduced melatonin production in AMD patients compared to controls.12 

Furthermore, individuals with AMD exhibit elevated melatonin levels during daytime hours, suggesting a disruption in 
melatonin’s diurnal cycle in individuals with this condition.13 Consequently, heightened levels of melatonin during 
daylight hours may have deleterious effects on ocular structures, potentially leading to the onset of light-induced retinal 
degeneration.

Research has shown that melatonin suppresses the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt)/signal 
transducer and activator of transcription 3 (STAT3)/nuclear factor-kappaB (NF-κB) signaling pathway in experimental 
DR, thereby preserving the integrity of the blood-retinal barrier.14 Genome-wide association studies have revealed that 
variations in genes encoding melatonin synthase and receptors are implicated in the pathogenesis of type 2 diabetes.15,16 

It has been hypothesized that melatonin may play a role in various forms of retinopathy; however, population-based 
studies have not investigated these potential associations. Melatonin exerts its effects through multiple mechanisms, such 
as antioxidant, anti-inflammatory, and neuroprotective actions. It scavenges free radicals, diminishes the release of 
inflammatory molecules, and shields ocular tissues from oxidative stress and inflammatory harm in AMD and DR.17,18 

Furthermore, melatonin inhibits neovascularization and vascular leakage, regulating the development of fundus degen-
erative lesions.19

Studies have found that exogenous melatonin is safe in the human body and has a high ability to cross the blood- 
retinal barrier.20,21 Therefore, melatonin may become a potential novel therapy in degenerative eye diseases. 
Interestingly, research has found that the synthesis of melatonin in the retina decreases with age, further suggesting 
that melatonin may be involved in age-related pathologies.22

Melatonin Biosynthesis and Physiological Functions
Mechanisms of Melatonin Synthesis and Release
Melatonin, a neurohormone primarily synthesized by the pineal gland, undergoes complex regulatory mechanisms during 
its synthesis and release.23 Various enzymes, hormones, and regulatory factors are involved in this process, and once 
produced, melatonin diffuses freely out of the cell.24,25 Understanding the processes involved in the production and 
secretion of melatonin is crucial to uncovering its significance in fundus degeneration.

Melatonin is synthesized from tryptophan, an essential amino acid, through a series of enzymatic reactions, among 
which tryptophan hydroxylase is involved.26 In the following step, 5-hydroxytryptophan is converted into 5-hydroxy-
tryptophan via the hydroxytryptophan decarboxylase. The cytochrome P450 enzyme is also involved in the regulation of 
the conversion to 5-hydroxytryptamine.27 Melatonin is eventually converted from 5-hydroxytryptophan inside the cell 
through a variety of enzyme-catalyzed modifications.28 Key enzymes in this pathway include the melatonin 
N-acetyltransferase (AANAT) and the hydroxytryptamine-O-methyltransferase (HIOMT).29 The enzyme AANAT cata-
lyzes the transfer of an acetyl group to serotonin, forming N-acetylserotonin, which is then methylated by HIOMT to 
produce melatonin.30

The Regulation of Melatonin Synthesis and Release
Light primarily regulates melatonin synthesis and release through the retino-pineal pathway.31 Light signals are 
transmitted from the retina, the light-sensitive tissue of the eye, to the pineal gland.32 Retinoid molecules in photo-
receptor cells trigger a series of biochemical reactions that ultimately lead to neural signals. As these signals travel 

https://doi.org/10.2147/DDDT.S471525                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2024:18 2330

Ma et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


through the optic nerve to the pineal gland, the pineal gland modulates melatonin synthesis and release by releasing 
neurotransmitters and activating melatonin receptors. During daytime light exposure, neurotransmitters released from the 
retina inhibit the activity of melatonin synthase and AANAT in the pineal gland, decreasing melatonin production.33 In 
contrast, in darkness or at night, the absence of light signaling reduces the release of retinal neurotransmitters, increasing 
the activity of melatonin synthase and AANAT, thus promoting melatonin synthesis and release.34

In addition to light, melatonin synthesis and release are influenced by endogenous factors, involving various systems 
such as the nervous, endocrine, and immune systems.35 Neurotransmitters in the nervous system, including dopamine, 
norepinephrine, and epinephrine, can inhibit melatonin synthesis and release, whereas neuropeptides such as oxytocin 
can promote it.36 Hormones within the endocrine system, such as cortisol, thyroid hormones, and sex hormones, also 
affect melatonin synthesis by binding to receptors in pineal cells and regulating intracellular signaling pathways.37 

Additionally, immune system cytokines and inflammatory responses can influence melatonin production and release. 
Cytokines involved in inflammatory processes, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), have 
been shown to inhibit melatonin synthesis and release.38

The pineal gland plays a crucial role as an endogenous regulator in the synthesis and release of melatonin. Pineals are 
small brain glands that are primarily responsible for melatonin synthesis and release.39 Various hormones, such as β- 
adrenoceptors and cholinergic neurons, control pineal gland activity.40 Adrenaline suppresses melatonin synthesis, while 
cholinergic neurons stimulate it.41 The synthesis of melatonin in the pineal gland is regulated by the daily rhythm of β- 
adrenergic receptor stimulation, which initiates the transcription of AANAT genes and activates the corresponding 
enzymes.42 Melatonin demonstrates a protective and enhancing influence on cholinergic neurons responsible for the 
regulation of circadian rhythm and sleep. However, a definitive correlation between these two systems has not been 
established.43 These hormones and neuromodulators regulate intracellular signaling pathways by binding to receptors on 
the surface of pineal gland cells, thereby affecting melatonin synthesis and release.

Melatonin receptors have been identified in many retinal neurons, including intrinsic photosensitive retinal ganglion 
cells (ipRGCs) containing melanopsin, suggesting that melatonin modulates the physiological function of these photo-
receptors in the inner layers of the retina.44 ipRGCs are located in the inner layers of the retina are responsible for 
circadian regulation, and are directly stimulated by light through the activation of the photoreceptor pigment melanopsin, 
which projects to the supraoptic nucleus of the optic cross, and eventually projects to the pineal gland and controls the 
release of the sleep hormone melatonin.45

In summary, the production and secretion of melatonin is an intricate and carefully controlled process. It is regulated 
by several factors, including enzymes in the synthesis pathway, pineal hormone regulation, light exposure, and 
endogenous regulation of the nervous, endocrine, and immune systems. An in-depth understanding of the mechanisms 
of melatonin synthesis and release is important for revealing its role and therapeutic potential in fundus degenerative 
diseases.

The Presence and Role of Melatonin in the Structure of the Eye
Melatonin is prevalent in ocular structures and plays a critical role in several physiological processes. Below are the key 
aspects of melatonin’s presence and function in ocular tissues.

Melatonin in the Retina
Melatonin is synthesized in retinal photoreceptors and acts as a local neuromodulator.46 In addition to endogenous 
production, melatonin can be transported into ocular tissues via the bloodstream. Melatonin receptors have been 
identified in multiple retinal structures, including retinal pigment epithelium (RPE), photoreceptors, horizontal cells, 
bipolar cells, amacrine cells, ganglion cells, and the inner and outer plexiform layers.47 The melatonin hormone has 
paracrine and autocrine impacts that are controlled by its G-protein-coupled receptors, melatonin receptor type 1 (MT1) 
and MT2, as well as potentially MT3, or can occur without receptor involvement.48 It is currently believed that it is the 
MT1 and MT2 receptors that play a major role in the eye.49 The retinal cells with receptors play several crucial roles, 
such as absorbing light that is scattered, preserving the well-being of photoreceptor cells in the retina, and offering 
nutritional assistance.50 Melatonin is present in the eye’s retina, with a high concentration in the RPE.51 Melatonin is 
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released in the dark and dopamine in the light within the eye, with melatonin suppressing the release of dopamine from 
anaplastic cells.52 MT1 receptors, present on dopaminergic and GABAergic amacrine cells in guinea pigs, humans, and 
rhesus monkeys, have the potential to induce this effect.53 Furthermore, exposure to light stimulates the release of 
dopamine from anaphase cells, which bind to D2 and D4 receptors on photoreceptors, thereby inhibiting the activity of 
AANAT and modulating cAMP and calcium concentrations, ultimately leading to a reduction in melatonin production.54 

Therefore, the widespread distribution of melatonin receptors in the retina suggests an intricate interplay between 
neuronal processes involving melatonin, dopamine, and melanopsin.

Research indicates that melatonin supports retinal health by controlling RPE cell activity, reducing oxidative stress, 
and protecting against damage.55 Knockout studies in mice have shown that defects in MT receptors lead to lipofuscin 
accumulation and decreased cell survival.56 Melatonin also influences phototransduction and modulates photoreceptor 
and bipolar cell sensitivity.57 Additionally, it mitigates cell death and inflammation in RPE cells, thereby maintaining 
retinal function.58

Melatonin in the Sclera and Uvea
Melatonin is present in the uvea, where it plays several physiological roles. It regulates ocular blood flow by modulating 
vasoconstriction and vasodilation and exhibits anti-neovascularization properties, inhibiting endothelial cell proliferation 
and migration.59–61 Melatonin also reduces ocular inflammation by modulating immune responses and decreasing 
cytokine levels and inflammatory mediator production.62 Melatonin receptors are expressed in the sclera, which may 
contribute to the maintenance of scleral elasticity.63 Melatonin receptors in the sclera may be involved in the progression 
of ocular axial length due to myopia in adolescents. As a result of the blue light (480 nm) interacting with the retina and 
sclera, melanopsin synthesis is specifically stimulated and melatonin MT1 receptor expression and melatonin concentra-
tion were decreased.64 The findings are consistent with those of a study in guinea pigs in which melatonin protease was 
inhibited by an antagonist administered intravitreally.65 This melatonin protease inhibition leads to an abnormal increase 
in eye growth, which is directly related to increased melatonin levels in the retina.

Melatonin in the Lens and Vitreous
Melatonin is also found in the lens, where it contributes to lens transparency and health.66 It was once thought that 
melatonin reached the lens via atrial fluid absorption, but recent studies suggest that it is also synthesized by human lens 
epithelial cells. Light activates melanopsin, reducing melatonin synthesis. Likewise, darkness increases AANAT expres-
sion and melatonin production in lens epithelial cells.67 Lenses are transparent tissues inside the eyes used for focusing 
light.68 Oxidative stress and inflammatory responses affect lens clarity and function. Melatonin, which has antioxidant 
and anti-inflammatory effects in the lens, can maintain lens health by inhibiting the production of free radicals and 
reducing oxidative stress, protecting lens cells from oxidative stress damage.69 The lens is unable to avoid UV exposure, 
and after UV exposure, exogenously administered melatonin interventions result in decreased lipid peroxidation, 
increased antioxidant enzyme activity, and decreased CA2+, thereby reducing cataract formation.70 Furthermore, mela-
tonin reduces inflammatory damage to lens cells by modulating the inflammation response and inhibiting the production 
of inflammatory mediators.71 Located between the lens and retina, vitreous humor is a clear gel-like substance that 
maintains the shape of the eye and supports the retina. There is no melatonin production in the vitreous, it is generally 
secreted and delivered to the vitreous and has been shown to be effective in rescuing photoreceptor degeneration in 
experimental studies.72

Melatonin in the Ciliary Body
The unpigmented ciliary epithelium is also thought to provide melatonin, and the fact that AANAT and HIOMT are 
localized to the human ocular ciliary body supports a ciliary source for melatonin.73 Researchers have identified 
melatonin receptors in rabbit iris and ciliary body, as well as melatonin metabolites in the ciliary bulge Melatonin 
receptors have been identified in the iris and ciliary body of rabbits, as well as localized to the ciliary epithelium.74,75 The 
ciliary body secretes melatonin, which is responsible for aqueous humor production and maintaining intraocular pressure 
variations throughout the day.76 Melatonin is highest at night, when intraocular pressure (IOP) is generally lowest; 
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therefore, melatonin may be negatively correlated with IOP. Moreover, topical administration of melatonin analogs has 
been shown to lower IOP, thereby altering the circadian pattern of IOP.77 Currently, it is believed that the mechanism of 
action is to reduce chloride ion efflux, which in turn reduces the formation of aqueous humor caused by fluid movement 
in the unpigmented ciliary body.78 It is possible that melatonin plays a role in the pathophysiology and treatment of 
glaucoma because of its association with an increase in aqueous humor production and intraocular pressure.79 Glaucoma- 
induced damage to the inner retina layer can impact retinal ganglion cells, potentially causing disruptions in melatonin 
levels and contributing to the prevalence of sleep disorders among individuals with glaucoma.80,81 Melatonin, on the 
other hand, has the potential to be a new treatment option for glaucoma if it has both IOP-lowering and neuroprotective 
effects.

Melatonin in the Cornea
The distribution of melatonin receptors is also detected in the cornea, which is mainly localized in the epithelium, stroma, 
and endothelium of the rabbit cornea.82 Both rabbits and humans have melatonin in their tears. Various potential impacts 
of melatonin on the eye surface have been observed. Melatonin facilitates the shedding of epithelial cells by controlling 
the development of tight junctions and the detachment of surface cells.83 Melatonin has been shown in in vitro study to 
affect corneal hydration and corneal wound healing.84 Furthermore, melatonin may play a part in the growth of corneal 
epithelial cells.85 Melatonin has also been shown to have antioxidant properties that protect corneal epithelial cells from 
ultraviolet (UV) irradiation damage, and melatonin-treated rabbit corneal epithelial cells showed a decrease in lipid 
peroxidation and an increase in mitochondrial viability after UV exposure compared to untreated control tissue.86

In Conclusion, melatonin plays a significant role in various physiological functions within the eye, including 
phototransduction and photoreceptor renewal, aqueous humor production regulation, intraocular pressure, wound healing, 
and providing antioxidant protection (Figure 1). Melatonin receptors are widely distributed across ocular tissues, 
enabling diverse responses to melatonin.87 Understanding melatonin’s synthesis and effects in ocular tissues highlights 
its importance in maintaining ocular health and its potential therapeutic applications in treating ocular diseases.

Figure 1 The distribution of melatonin in various tissues of the eye.
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Melatonin Exerts Antioxidant, Anti-Inflammatory, Cytoprotective, 
Cell-Cycle-Regulating and Proliferative Effects in Degenerative Fundus 
Lesions
Antioxidant Effects
Melatonin exerts significant antioxidant and anti-inflammatory effects in degenerative diseases of the fundus, playing 
a crucial role in maintaining ocular tissue health and mitigating lesion progression Oxidative stress is a primary factor in 
the development of degenerative fundus lesions, causing irreversible damage to cellular and tissue structures. Melatonin 
plays a neuroprotective role by activating its receptor MT1 to inhibit the expression of amyloid precursor protein 
processing enzyme in the hyperglycemia induced diabetes cell model.88 Additionally, melatonin inhibits mTOR and 
autophagy markers (LC3-II and Beclin-1) through its MT2 receptors, promoting autophagy to reduce retinal oxidative 
stress.89 It also modulates the expression of antioxidant enzymes and neuronal-type nitric oxide synthase (nNOS), while 
triggering the activation of inducible nitric oxide synthase (inNOS).90,91

Melatonin serves as a mitochondria-targeted antioxidant, protecting retinal cells from oxidative stress.92 It enhances 
the survival of retinal cells, including photoreceptors, retinal ganglion cells, and Müller cells, which are affected by 
DR.93 In diabetic retinas, melatonin prevents nitro-oxidative stress and the inflammatory response induced by high 
glucose levels.94 Studies have shown that melatonin synthesis is reduced in the retinas of diabetic rats, correlating with 
the progression of DR.95–97

In age-related macular degeneration (AMD), reduced nocturnal melatonin production contributes to oxidative 
damage, highlighting the importance of melatonin’s antioxidant effects.98,99 Melatonin regulates antioxidant gene 
transcription via nuclear factor erythroid 2–related factor 2 (Nrf2), which is compromised in aging RPE cells.100,101 

Exogenous melatonin may thus play a role in preventing and treating AMD by modulating oxidative stress and Nrf2- 
mediated defenses.102 Additionally, in fundus oxidative stress injury, reactive oxygen species (ROS) can facilitate 
telomere erosion, thereby contributing to the senescence of RPE cells.103 The retina contains active telomerase, and 
defects in telomerase activity in AMD can also lead to RPE cell damage; melatonin, which regulates telomerase activity, 
may play a role in slowing the damage.104 Melatonin appears to modulate telomerase, suggesting it may be useful to 
prevent or treat AMD.105 Since melatonin is an antioxidant, a mitochondrial protector, and an inflammatory modulator, 
its deficiency may promote the progression of DR and AMD lesions. Further clinical trials are necessary to evaluate its 
efficacy and safety.

Melatonin’s direct antioxidant effects should not be overlooked.106 It neutralizes free radicals, reducing oxidative 
stress and protecting eye tissues from damage.107–109 It also enhances mitochondrial function and intracellular antiox-
idant capacity by boosting the activity of enzymes like superoxide dismutase and glutathione peroxidase.110 Melatonin 
has demonstrated efficacy in protecting mitochondrial DNA from oxidative damage, although it did not confer protection 
against ischemia/reperfusion-induced retinal damage.

Melatonin demonstrated efficacy in safeguarding the mitochondrial DNA of ARPE-19 cells against damage induced 
by hydrogen peroxide.111 Ischemia/reperfusion is an important source of free radical production, and subcutaneous 
injection of melatonin can provide protection against retinal damage caused by ischemia/reperfusion in many rats.112 In 
autopsy studies of AMD-affected eyes, mitochondrial DNA was found to be excessively damaged by oxidative stress.113 

Furthermore, melatonin’s antioxidant properties are expressed in its ability to reduce oxidative damage to DNA.114 

Inflammation can also be triggered by mitochondrial signaling pathways. Melatonin attenuates mitochondrial damage 
and oxidative stress generated during inflammation by modulating mitochondrial function and the activity of the 
mitochondrial respiratory chain. Regulation of the mitochondrial pathway reduces the production and release of 
inflammatory mediators, thereby attenuating the inflammatory response and cellular damage. Melatonin reduces ocular 
inflammatory responses and damage by regulating the production and release of cytokines and maintaining the balance of 
cytokines and inflammatory mediators.115 Thus, the involvement of melatonin in mitochondrial regulation may be one of 
the ways to address AMD fundus lesions. It is predicted that mitochondria may play a significant role in melatonin 
synthesis, which supports the relationship between melatonin and mitochondria.116
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Anti-Inflammatory Effects
Inflammatory responses play an important role in the development of degenerative fundus lesions, leading to tissue 
damage and apoptosis. Moreover, the inflammatory process plays a significant role in the pathogenesis of DR, rendering 
it a low-grade chronic inflammatory condition. Upregulation of inflammatory mediators including nNOS, 
Cyclooxygenase-2, vascular endothelial growth factor (VEGF), mitogen-activated protein kinases (MAPK) and NF-κB 
is observed in DR, with NF-κB activation leading to cytokine release and increased production of ROS.117 A significant 
part of melatonin’s anti-inflammatory effect is its ability to reduce the inflammatory response and inflammatory mediator 
production.118 There are several mechanisms by which melatonin exerts its anti-inflammatory effects. First, it inhibits the 
production and release of inflammatory mediators, such as cytokines and inflammatory mediators. Specifically, melatonin 
suppresses the synthesis of inflammatory cytokines, including (TNF-α) and interleukin-6, leading to a decrease in 
inflammatory response.119 Second, melatonin also regulates inflammatory signaling pathways such as NF-κB and 
mitochondrial pathways.120 NF-κB is a key transcription factor involved in the regulation of inflammatory responses 
and apoptosis, among other processes. Melatonin inhibits NF-κB activation through multiple mechanisms. It inhibits the 
nuclear translocation and nuclear transcriptional activity of NF-κB, thereby suppressing the expression of inflammation- 
related genes.121 As well as blocking NF-κB activation signaling, melatonin inhibits the activity of IKK receptors.122 

Furthermore, melatonin regulates cytokine signaling pathways, including the Janus kinase/signal transducer and activator 
of transcription (JAK/STAT) family pathway, impacting immune cell function and the development of inflammatory 
responses.123

These signaling pathways play an important role in the inflammatory response, and melatonin inhibits the onset and 
progression of the inflammatory response by regulating their activity.124 In addition, melatonin reduces inflammation- 
induced apoptosis and cellular damage. It protects eye tissues from inflammation-induced damage by inhibiting oxidative 
stress and regulating the expression of proteins associated with cell survival and apoptosis.

Regulates Cell Activity and Exerts Cytoprotective and Anti-Apoptotic Effects
Melatonin also affects the activity of immune cells, regulates the immune response and inflammatory processes, and 
modulates immune cells such as macrophages and T-lymphocytes that play an important role in fundus degeneration.125 

In dendritic cells, melatonin influences immune function via the Nrf2/hemoglobin oxygenase-1 (HO-1) axis.126 Melatonin 
regulates dendritic cells to modulate the body’s immune system, but further basic and clinical studies are needed to confirm 
this in the field of ophthalmology.127 Melatonin was effective in ameliorating retinal degeneration in a mouse model, and the 
5’-nucleotidase ecto/Tet methylcytosine dioxygenase 2 (NT5E/TET2) pathway in Tregs may be the mechanism of the anti- 
retinal degeneration response to melatonin treatment, which was first demonstrated to regulate immune homeostasis through 
Tregs.128 Melatonin also affects the proliferation and differentiation of immune cells and regulates their function. By 
affecting the function of immune cells, it reduces the aggregation and activation of inflammatory cells and decreases the 
secretion and release of inflammatory mediators. In addition, melatonin can inhibit the migration of immune cells and reduce 
the inflammatory response and damage to ocular tissues.129 In addition, melatonin acts as a cytoprotectant, reducing 
apoptosis and damage to eye tissue.130 The apoptotic pathway is inhibited by melatonin, thereby increasing cell survival 
and functional recovery. According to a study, melatonin inhibits the expression of apoptosis-related proteins, including 
members of the Bcl-2 family and cysteine protease family.131 The expression and activity of these proteins play an important 
role in apoptosis, and melatonin inhibits it in ocular tissues. The action of melatonin interferes with cell survival signaling 
pathways, thereby regulating the balance between cell survival and apoptosis. A study showed that melatonin can promote 
cell survival and proliferation by activating the PI3K/Akt pathway.132 Furthermore, in terms of neuroprotection, melatonin 
treatment increased levels of brain-derived neurotrophic factor (BNDF) and its downstream phosphorylated tropomyosin 
receptor kinase B (Trkb)/Akt/extracellular regulated protein kinase (ERK)/p-cAMP response element binding protein 
(CREB) levels, and hypoxia-ischemia-induced increases in cleaved caspase-3 and Bax protein levels, as well as reductions 
in Bcl-2 protein levels, were reduced.133 Besides, activation of the NF-κB signaling pathway triggered apoptosis of retinal 
capillary cells in the DR, increasing the production of ROS and inflammatory factors.134 Melatonin regulates dendritic cells 
to modulate the body’s immune system, but further basic and clinical studies are needed to confirm this in the field of 
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ophthalmology.135 Melatonin induces the expression of SIRT1 gene to reduce the expression of BAX and caspase 3, increase 
the expression of Bcl2, and play a role in reducing mitochondrial and nuclear DNA damage.136 Melatonin exerts its 
cytoprotective effects against DR and AMD through these cytoprotective and anti-apoptotic mechanisms, attenuating cellular 
damage and inflammatory responses in ocular tissues.

In summary, melatonin’s mechanism of action in degenerative fundus diseases involves its antioxidant, anti- 
inflammatory, cytoprotective, cell proliferation regulator and anti-apoptosis (Figure 2). A comprehensive understanding 
melatonin’s role in fundus degenerative disease is crucial for revealing its therapeutic potential and developing appro-
priate therapeutic strategies.

Vasomodulation of Melatonin in Degenerative Fundus Lesions
Abnormal neovascularization is an important feature in fundus degenerative diseases such as AMD and DR. Melatonin 
exerts a role in reducing neoangiogenesis, decreasing vascular damage due to inflammatory responses in vascular tissue 

Figure 2 Melatonin plays a role in antioxidant, anti-inflammatory, and reducing cell apoptosis in degenerative fundus lesions.
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and regulating vasoconstriction (Figure 3). Melatonin regulates retinal VEGF secretion, promoting physiologic secretion 
to protect the retina from oxidative stress and reducing pathologic secretion to inhibit neovascularization.137 Inhibition of 
proliferation and migration of vascular endothelial cells is one way in which melatonin inhibits neovascularization.138 In 
addition, melatonin inhibits the production and release of VEGF and matrix metalloproteinase (MMP) in vascular 
endothelial cells, which are involved in regulating the process of neovascularization.139,140 VEGF is a major cause of 
neovascularization, and melatonin protects the retina from oxidative stress and hemorrhage by regulating VEGF secretion 
in the retina and reducing pathological secretion to inhibit neovascularization.141 The antioxidant and antiangiogenic 
characteristics of melatonin position it as a promising therapeutic option for addressing AMD and DR. The diminished 
synthesis of melatonin in the retinas of DR rats, in comparison to control subjects, may be linked to the advancement of 
DR fundus lesions.142 As well, serum melatonin concentrations are reduced at night in diabetics with PDR.97 

Furthermore, studies have shown that melatonin exhibits a protective effect against pathological retinal neovasculariza-
tion, preservation of glial cells, and mitigation of inflammatory response through the inhibition of the HIF-1α/VEGF 
signaling pathway.143 Additionally, melatonin has been found to suppress the activity of angiopoietin receptors, crucial 

Figure 3 The vascular regulatory role of melatonin in retinal degenerative diseases.
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components of angiogenesis-related signaling pathways that contribute significantly to angiogenesis and tissue 
remodeling.137 Melatonin has been shown to suppress RhoA/ROCK signaling in mouse models of choroidal neovascu-
larization, leading to a transition of macrophages and microglia from M2 to M1 phenotypes following prolonged laser 
exposure.144 These findings indicate the potential for melatonin intervention as a novel therapeutic approach for AMD 
and DR. Through the regulation of key molecules, melatonin can impact the proliferation, migration, and lumen 
formation of vascular endothelial cells, ultimately influencing vascular structure and function.

In regulating vasoconstriction, melatonin has been shown to have different effects on blood vessels and blood flow in 
different organs and tissues of the body. Mechanisms of melatonin action on the vasculature have been shown to include 
direct activation of melatonin receptors and through intercellular pathways.145,146 The prevalence of MT1 receptors in 
retinal vascular endothelial cells suggests that melatonin binding to these receptors on vascular smooth muscle cells can 
induce vasoconstriction through the enhancement of norepinephrine signaling.147 The presence of MT1 has been 
identified in the outer membranes of retinal arteries and veins, particularly in the papillary region rather than in the 
ciliary and choroidal vessels.148 The localization of MT1 in retinal vessels to the outer membrane of the vessel wall 
aligns with previous observations in human cerebral vessels.149 The primary role of MT1 receptors is thought to be 
mediating vasoconstriction.150 Therefore, we hypothesized that melatonin may act in an indirect manner on retinal 
vascular smooth muscle to regulate contraction. And there is also a study demonstrating that the onset of AMD may lead 
to smaller diameters of small blood vessels.151 In addition, patients with DR also show narrowing changes in the 
diameter of the lumen of the retinal blood vessels in the fundus, resulting in decreased blood flow to the fundus.152 Thus, 
the possible vasoconstrictive effect of melatonin on the fundus has the potential to exacerbate fundus changes in patients 
at an early stage. In spite of melatonin’s ability to modulate vasoconstriction, its effect on blood pressure appears to be 
dose-dependent. A reduction in arterial blood pressure was observed in subject men and women with 1 mg of 
melatonin.153 However, in another study it was found that ingesting 3mg of melatonin did not change the subjects’ 
blood pressure.154 In order to better understand the relationship between melatonin levels and vascular changes, adrenal 
nerve activity, and hormonal responses, additional studies are needed for various doses of the drug.146,155 Melatonin’s 
protective effects on retinal inflammation, oxidative stress, angiogenesis, and apoptosis have been demonstrated in 
animal models, suggesting that melatonin may help prevent diabetic-related retinal damage.156 However, due to a lack of 
clinical studies, it is still unknown whether melatonin has clinical benefits, despite having been taken as a supplement by 
a relatively large number of people worldwide.

Melatonin for Stem Cell Therapy in Fundus Degenerative Disease
Melatonin has demonstrated effective application in various diseases when used in pretreatment or in combination with 
scaffolds including chronic kidney disease, neurodegenerative diseases, and orthopedic disorders, whereas its use in 
ocular diseases is rare.157,158 It has been widely demonstrated that stem cells are effective in treating eye diseases.159 

Melatonin promotes the proliferation, differentiation and survival of stem cells and improves their effectiveness in 
therapy.160 For treatment of retinal diseases and vision restoration, reprogramming endogenous neural stem cells is 
considered to be the most promising approach.161 In vitro, melatonin inhibits cell apoptosis pathways and regulates DNA 
methylation to promote the survival of endogenous neural stem cells derived from bovine retina.162 The proliferation of 
pluripotent stem cells induced by endogenous neural stem cells can be further enhanced through activation of the ERK1/2 
signaling pathway downstream of melatonin. Additionally, melatonin has been shown to significantly increase retinal 
neural stem cell proliferation and expression of the marker nestin via the ERK and TGF-β/Smad pathway-mediated 
MT1.163

Moreover, melatonin has been shown to impact signaling pathways and gene expression in stem cells, modulate the 
equilibrium between cell proliferation and differentiation, and serve as an antioxidant to mitigate oxidative stress-induced 
apoptosis and augment stem cell functionality.164,165 However, the specific role of melatonin in the regulation of corneal 
epithelial stem cells and its efficacy in the treatment of ocular diseases in animal models have yet to be elucidated. Given 
the demonstrated superiority and significant potential of melatonin in stem cell therapy, it is imperative to prioritize 
further investigation into its therapeutic modalities, effects, and mechanisms. Additionally, preliminary small-scale 
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clinical trials in patients may be warranted to assess the potential for melatonin’s clinical application to enhance 
therapeutic outcomes, promote improvements in visual acuity, and facilitate the repair of fundus tissues.

Melatonin Dosing Patterns
Clinical trials have focused on oral melatonin administration, with early results showing protection of the retina and slow 
progression of AMD when administered daily (3 mg).166 In recent studies, however, it has been demonstrated that due to 
the liver’s first pass metabolism, its bioavailability is only about 15%.167 Whereas the efficacy of melatonin varies by 
dosage form, with continuous-release and absorbed forms being more efficacious than immediate-release forms, the short 
half-life and ultra-high maximal plasma concentration may further contribute to the low bioavailability of melatonin due 
to under-absorption and tolerability issues.168 Ocular surface drug delivery is convenient and safe, and is currently the 
most common route of administration in the treatment of ophthalmic diseases. The ophthalmic administration of 
melatonin has been widely used in animal experiments, and nano micelle formulation eye drops can penetrate into the 
eyes of rats.169 However, if clinical application is required, further research is needed on the concentration, safety, and 
bioavailability of drugs entering the human eye. The use of vitreous cavity injections, which circumvent the ocular 
barrier and facilitate the delivery of drugs to the targeted treatment site, is currently under observational investigation for 
the treatment of retinal diseases. Nevertheless, a prior study documented the occurrence of adverse effects, specifically 
retinal cell degeneration, following high-dose melatonin injections.170 Hence, it is imperative to conduct further research 
on the mechanism of action and potential toxicity of melatonin in the treatment of ocular diseases, as well as to establish 
the optimal therapeutic dosage for varying ocular conditions and individual patients. Additionally, the optimal timing of 
melatonin administration and the therapeutic efficacy of alternative routes of delivery, such as subconjunctival injection, 
warrant exploration through extensive clinical trials.

Efforts to enhance melatonin’s efficacy in treating degenerative fundus lesions focus on developing drug delivery 
systems that sustain release, increase local tissue drug concentrations, improve therapeutic efficacy, and reduce side 
effects. The delivery of ocular drugs using nanotechnology can penetrate the surface of the eye and provide sustained 
release. Nanocarriers can be classified into four distinct categories according to their geometries: 0D-like nanoparticles, 
1D-like nanofibers, 2D-like nanomembranes, and 3D-like nanogels.171 Research has demonstrated that the encapsulation 
of melatonin within 0D and 1D nanocarriers enhances both bioavailability and therapeutic effectiveness.172 Melatonin- 
loaded PLGA-PEG nanoparticles synthesized by solvent substitution method can also reduce IOP twice as long as 
melatonin aqueous solution, and the results show good tolerance.173 Moreover, melatonin is delivered through cationic 
and mucus carriers, which enhance its ability to cross the ocular surface barrier and prolong its retention.174 A recent 
study discovered that melatonin solution encapsulated within ethylcellulose nanoparticles exhibited enhanced corneal 
penetration attributed to its adhesion to mucin and slower release kinetics in comparison to free melatonin solution. This 
formulation significantly augmented retinal thickness and decreased apoptosis of retinal ganglion cells by approximately 
16% in a retinal detachment model, indicating a superior retinoprotective effect.175 Nevertheless, there remains a scarcity 
of advanced high-dimensional nanocarriers with high drug loading capacity and stimulus responsiveness for the loading 
of melatonin in ocular drug delivery, necessitating further development and exploration for potential clinical application. 
We learned that synergistic therapeutic effects based on melatonin, including co-administration strategies with glial cell- 
derived neurotrophic factors and neuroprotective drugs, have also been proposed, and the prognosis of co-administration 
may be better compared with single drugs. The incorporation of melatonin into multidrug systems results in improved 
sustained release of formulations, while advancements in drug delivery systems facilitate enhanced detection and 
monitoring. However, it is important to acknowledge potential challenges such as competition for drug delivery sites 
and the formation of drug co-crystals.176 Therefore, despite the development of nano-loading technologies, mass 
production of melatonin nanomedicines for ophthalmic applications remains challenging and clinical trials are still 
lacking. In addition to short-term clinical studies, it is important to evaluate the long-term efficacy and safety of the 
application of various dosage forms of melatonin in the treatment of fundus degenerative diseases.
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Conclusion
Melatonin exhibits diverse mechanisms of action and therapeutic potential in managing fundus degenerative diseases 
(Figure 4). Clinical and laboratory research underscores its role in modulating vasomotor function, maintaining fundus 
vasculature, and mitigating complications like fundus hemorrhage through anti-angiogenic and anti-inflammatory effects. 
Melatonin’s antioxidant properties neutralize free radicals, reduce oxidative stress, and protect retinal cells from 
apoptosis, promoting cell survival, repair, and normal turnover in retinal tissue. Despite these promising findings, further 
research is essential to optimize melatonin's clinical application. Long-term studies are crucial for evaluating its efficacy, 
safety, and individualized treatment approaches tailored to genetic predispositions, age, and health status. Comprehensive 
understanding of melatonin's molecular mechanisms in fundus degenerative diseases will inform clinical practice and 
guide development of optimized drug delivery systems. Continued exploration of melatonin’s therapeutic potential and 
refinement of delivery systems represent promising avenues for advancing treatment outcomes in ocular diseases.
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