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Abstract: Spontaneous venous thrombosis is often the first clinical sign of cancer, and it is linked
to a worsened survival rate. Traditionally, tumor-cell induced platelet activation has been the main
actor studied in cancer-associated-thrombosis. However, platelet involvement alone does not seem
to be sufficient to explain this heightened pro-thrombotic state. Neutrophils are emerging as key
players in both thrombus generation and cancer progression. Neutrophils can impact thrombosis
through the release of pro-inflammatory cytokines and expression of molecules like P-selectin and
Tissue Factor (TF) on their membrane and on neutrophil-derived microvesicles. Their role in cancer
progression is evidenced by the fact that patients with high blood-neutrophil counts have a worsened
prognosis. Tumors can attract neutrophils to the cancer site via pro-inflammatory cytokine secretions
and induce a switch to pro-tumoral (or N2) neutrophils, which support metastatic spread and
have an immunosuppressive role. They can also expel their nuclear contents to entrap pathogens
forming Neutrophil Extracellular Traps (NETs) and can also capture coagulation factors, enhancing
the thrombus formation. These NETs are also known to have pro-tumoral effects by supporting the
metastatic process. Here, we strived to do a comprehensive literature review of the role of neutrophils
as drivers of both cancer-associated thrombosis (CAT) and cancer progression.
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1. Introduction

The connection between cancer and thrombosis has been described since the XIX cen-
tury by Dr Trousseau who described the presence of spontaneous coagulation in oncological
patients [1,2]. Cancer patients have an increased incidence of both venous thromboem-
bolism (VTE) (4% to 20%) and arterial thrombosis (2% to 5%) [3,4]. In fact, between 20 to
30% of all first venous thrombotic events are cancer related, and their presence portends
poor prognosis and a significant decrease in patient survival [5,6]. The incidence of cancer-
associated-thrombosis (CAT) is also associated with the tumor type, stage and treatment
administered. CAT is the second most common cause of death in cancer patients (after
cancer evolution itself) and thrombi can be found in half of deceased cancer patients during
autopsy [1,7–9].

Platelets are at the crossroads of hemostasis, thrombosis, and inflammation. As such,
their involvement in CAT has been largely investigated. Cancer cells can activate platelets
through tumor cell induced platelet activation (TCIPA) [2]. In a direct manner, platelet
receptors like αIIbβ3 and αVIβ1 can bind to tumor αVβ3 and ADAM9 respectively, as
well as binding with P-selectins through PSGL-1 interaction, platelet toll-like receptor 4
and facilitating CLEC2-podoplanin interactions [10–14]. In an indirect manner, tumor cells
secrete platelet agonists (like thromboxane A2 and ADP) into the tumor microenvironment,
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activating platelets which then release more platelet agonists and create a potent activation
loop [11–13,15]. Tumor-activated platelets can also secrete growth factors into the tumor
microenvironment like transforming growth factor beta (TGF-β), vascular endothelial
growth factor (VEGF), and platelet derived growth factor (PDGF) [2,13,16]. This platelet
degranulation can also support local angiogenesis and increase the endothelial expression
of adhesion molecules [13,17,18]. This overall increased platelet activity is related to a
heightened risk of venous and arterial thrombosis in cancer patients [2,19–21].

However, platelet involvement alone does not seem to be sufficient to explain the
heightened pro-thrombotic state in cancer patients. Recently, neutrophils have been begin-
ning to enter the spotlight for their role in both tumor progression and CAT. Indeed, recent
studies described that an increase in circulating neutrophil numbers was indicative of a
worsened prognosis in gliomas, lung, and esophageal cancer [22–24]. To date, the relevant
molecular mechanisms are not entirely clear into the literature. In this review will strive to
compile the current state of the art of neutrophil involvement in cancer progression and in
cancer-associated thrombosis.

2. Neutrophils and Thrombosis

Neutrophils are the most abundant leucocytes in humans and constitute an important
pillar of the innate immunity [25,26]. They are the first immune cells to be recruited to
inflammatory sites [25,26]. Neutrophils are also key players in intravascular immunity;
their microbicidal activity prevents the spread of circulating pathogens [25]. Neutrophils
have the capacity to mediate phagocytosis and intracellular killing of different pathogens
as well as eliminate cellular debris in their phagolysosomal granules [25,27,28].

Circulating neutrophils are recruited to extra-vascular inflammatory sites via a chemokine
gradient [29]. Studies have shown that neutrophils react preferentially to a hierarchy of
chemokines, allowing them to reach the desired endothelial placement and then transmi-
grate to the surrounding tissue [29]. For example, bacterial-derived N-formyl-Methionyl-
leucyl-phenylalanine (fMLP) and complement C5a override CXCL8/IL-8 and LTB4 chemo-
tactic stimuli [29,30]. The actual recruiting cascade involves several well characterized steps:
rolling-adhesion-tethering-crawling and transmigration. The endothelium is stimulated
by inflammatory mediators like histamine and cytokines or pattern-recognition-receptors
that will enhance P-selectin and E-selectin expression on the endothelial-cell surface to
maximize neutrophil recruitment [29]. Neutrophils will begin “rolling” on the endothe-
lial surface before being primed and activated by molecules like tumor-necrosis-factor-α
(TNFα) as well as by direct contact with activated endothelial cells [29]. Priming of the neu-
trophils is necessary to achieve activation of the NADPH oxidase pathway used to destroy
pathogens [29–31]. As the neutrophils slow down, they “crawl” between endothelial cells
to reach the cell-cell junctions via ICAM1-MAC1 signaling [29,30]. Eventually neutrophils
tether to the endothelium before transmigrating, a complex process that requires multiple
integrin interactions (ICAM1 and 2, VCAM1, PECAM1 and EPCAM to name a few) [29].
Transmigration can occur between endothelial cells or transcellularly, and once neutrophils
are in the tissue, they can zoom-in on the inflammatory site [26,29,30].

Neutrophils can eliminate pathogens in different ways; in both an intra and extra-
cellular manner [27,31]. They can internalize opsonized pathogens or cellular debris into
their phagolysosomal granules for destruction with reactive oxygen species (NADPH
oxidase pathway) [29]. They also secrete their granule content to combat extracellular
pathogens [29,31,32]. Neutrophils have three distinct granule types: (1) Azurophilic or
primary containing myeloperoxidase (MPO), cathepsin G, neutrophil elastase (NE) and
bactericidal/permeability increasing protein (BPI) [31–33]. (2) Specific or secondary gran-
ules with alkaline phosphatase, NAPDH oxidase, collagenase, lactoferrin and histaminase
and (3) the tertiary granules with collagenase, cathepsin and gelatinase [29,31–33].

The role of neutrophils in the innate immunity is well characterized; however, their
importance in other phenomena like thrombosis and hemostasis has only recently begun
to be determined. It is also clear that in an altered pathological state like cancer, most



Int. J. Mol. Sci. 2022, 23, 1257 3 of 17

of the known mechanisms can be heightened, creating an amplification loop. The role
of neutrophils in thrombosis began to be elucidated in 2005 when it was reported that
leukocytes were rolling onto the growing thrombus site within the first two minutes
post laser injury [34]. However, it was not until 2012 that the importance of neutrophils
in thrombus formation was cemented [35]. Indeed, it was shown by Darbousset et al.
that mice neutrophils were the first cells to accumulate at the site of arterial injury, even
before platelets were detected [35]. Neutrophils accumulate through the interaction of
intracellular-adhesion-molecule-1 (ICAM1) with leukocyte-function-associated-antigen-1
(LFA1) and express TF [35]. Moreover, neutrophil depletion has been shown to have a
significant attenuation effect on thrombus formation in mice in vivo [36]. Interestingly,
soluble fibrinogen found in prothrombotic conditions can also activate neutrophils in
a CD11-b dependent mechanism which contributes to an increase in proinflammatory
signals [37].

Neutrophils are a crucial leukocyte subset recruited at the site of injury, in fact, they
release neutrophil elastase and augment their intracellular calcium mobilization, evidencing
their activated state [38–40]. Additionally, ATP secreted during the thrombo-inflammatory
process can directly activate neutrophils through the P2X1 membrane receptor [38]. It
has been shown that P2X1 present on PMNs is involved in thrombin generation, and that
its expression at the surface of platelets is needed for thrombus formation [38]. Several
researchers, like Darbousset, R. et al. have shown the effect of ATP on thrombosis; and
how it can activate human neutrophils in vitro [38]. On the other hand, in in vivo studies,
P2X1-deficient mice had less neutrophil-accumulation and decreased thrombus formation
at a laser-induced-injury site [38]. P2X1 activation leads to both platelet and neutrophil
activation and activated platelets will then secrete their granules containing ADP, which
enhances the platelet activation at the thrombus site [2,38,41]. These platelets will undergo
intracellular calcium mobilization and adhere to the forming thrombus [42].

Another possible route in which neutrophils can impact thrombus formation is through
the direct expression of TF on their membrane; this TF can be “obtained” after the neutrophil
interacts with monocytes and/or macrophages [28,43]. Neutrophils that are first to arrive
to the site of a laser injury can also express TF on their surface after interaction with
endothelial cells [35]. More specifically, human neutrophils can express TF after stimulation
with P-selectins and fMLP [44]. In inflammatory conditions, IgG triggers complement
activation and C5a generation, which can induce TF gene transcription in activated human
neutrophils [45].

A proposed molecular mechanism through which neutrophils impact thrombosis
is through the generation of microvesicles (MVs). Microvesicles are small membrane
vesicles released during cellular activation that contain the same membrane markers and
proteins as the cell of origin [46–48]. MVs are known to have important contributions in
inter-cellular communications and in pathological conditions like cancer [48–50]. MVs
express phosphatidyl-serine on their outer membrane, which not only facilitates formation
of coagulation complexes, but also promotes the ability of tissue factor (TF) to initiate
coagulation [51]. Moreover, neutrophil-derived MVs may contain MPO, which has been
shown to play a role in thrombus propagation by causing endothelial damage [28–48,52].
Human Neutrophil-MVs obtained after a PMA stimulation contain functionally active
MAC-1 integrins that interact with GPIb on resting platelets. This interaction can activate
platelets and induce the expression of the adhesion molecule P-selectin [53]. Please find a
schematic revision of the role of neutrophils in thrombosis in Figure 1.



Int. J. Mol. Sci. 2022, 23, 1257 4 of 17
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Schematic representation of neutrophil interactions and implications in thrombosis. 
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cascade resulting in thrombin generation and platelet activation. Activated platelets create a 
positive feedback loop to recruit more circulating platelets. Figure created using Servier Medical Art 
available at http://smart.servier.com/ (accessed on 15 September 2021). 
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in which the neutrophil sacrifices itself by expulsing its genetic material, thus forming 
«neutrophil extracellular traps» (NETs) [54].  

NETs are fibers of decondensed chromatin (DNA and histones) coated with 
antimicrobial proteins (myeloperoxidase (MPO), cathepsin G and neutrophil elastase 
(NE)) that are released by the neutrophil when it detects pathogens (bacteria, protozoa, 
fungi) in the extracellular environment [54]. These chromatin fibers create a network that 
entraps pathogens, preventing their dissemination in the host organism and eliminating 
them due to their anti-microbial properties [54,55].  

Figure 1. Schematic representation of neutrophil interactions and implications in thrombosis. Fol-
lowing endothelial injury, activated neutrophils express TF, which initiates the coagulation cascade
resulting in thrombin generation and platelet activation. Activated platelets create a positive feedback
loop to recruit more circulating platelets. Figure created using Servier Medical Art available at
http://smart.servier.com/ (accessed on 15 September 2021).

3. Neutrophil Extracellular Traps or Activated Neutrophils in Venous Thrombosis

The role of neutrophil extracellular traps (NETs) in thrombosis has been recently
described (Figure 2). NETs are part of the innate immunity’s defense against pathogens
in which the neutrophil sacrifices itself by expulsing its genetic material, thus forming
«neutrophil extracellular traps» (NETs) [54].

http://smart.servier.com/
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Figure 2. Schematic representation of NET interactions and implications in thrombosis. NETs are 
capable of trapping platelets and red blood cells, forming a red thrombus. In addition, they express 
pro-coagulant molecules such as tissue factor, fibrinogen, fibronectin or Von Willebrand factor, 
which initiate the coagulation cascade and participated to the thrombus formation. Figure created 
using Servier Medical Art available at http://smart.servier.com/ (accessed on 15 September 2021). 

The reaction of NET formation is catalyzed by peptidyl-arginine deiminase 4 (PAD4); 
which enables the chromatin de-condensation; causing Histone 3 to be citrullinated 
(CitH3) [56]. Therefore, by detecting either CitH3 or extracellular DNA, researchers can 
identify NETs. Indeed, the involvement of NETs in thrombosis was demonstrated when 
CitH3 was found in the thrombi of patients with VTE, and it was shown that the 
dissociation of NETs could promote the lysis of the thrombus [57]. 

Interestingly, studies have also highlighted the role of the enzyme PAD4 in the 
involvement of NETs in thrombosis [58]. Indeed, Martinod and colleagues demonstrated 
that after 48 h of inferior vena cava ligation only 10% of PAD4-deficient mice developed 
thrombi versus 90% in wild-type mice [58]. So PAD4 appears to be crucial in pathological 
venous thrombosis formation. Furthermore, no NETs were found in the thrombi from the 
PAD4-deficient mice, further highlighting their role in thrombus formation [55]. 

The network formed by NETs to trap pathogens can also trap platelets, an essential 
player in thrombosis [59]. In fact, Fuchs and colleagues have shown that NETs provide a 
scaffold for the activation and aggregation of platelets, as well as for red blood cells which 
form the red portion of the thrombus [59]. These data are supported by the fact that when 
mice were injected with DNase-I (a DNA-cleaving nuclease), NETs were degraded and 
no platelet aggregates were formed [59]. This suggests that NETs form an essential pro-
thrombotic substrate for thrombosis. 

The interaction of platelets and molecules that are entrapped in the NETs like von 
Willebrand factor (vWF), fibronectin and fibrinogen can also induce platelet aggregation 
[59]. The presence of fibrinogen causes the clots to consolidate through its transformation 
into fibrin in a thrombin-dependent manner [59]. In fact, Longstaff and colleagues have 
shown that contact between NETs (DNA + histones) and fibrin induces thicker fibers with 
improved stability and stiffness, and that the combination of histones and DNA 
significantly prolongs clot lysis time [60]. 

Additionally, Stakos and colleagues demonstrated that NETs were capable of 
secreting functional tissue factor (TF) [61]. TF is the initiating molecule of the extrinsic 
coagulation pathway and ultimately leads to thrombus formation [62]. The chromatin 
fibers can also inhibit the inhibitors of the extrinsic pathway, resulting in an over-activity 
of this coagulation pathway [63]. 

Nevertheless, Carminita et al. have demonstrated that following laser-induced 
injury, neutrophils -but not NETs- are involved in thrombus formation [41]. In fact, 
activated neutrophils already express CitH3 and PAD4, confirming that they are markers 
of neutrophil activation rather than NET formation [41]. Moreover, they showed that the 
inhibition of thrombus formation by DNase-I could be independent of NET formation 

Figure 2. Schematic representation of NET interactions and implications in thrombosis. NETs are
capable of trapping platelets and red blood cells, forming a red thrombus. In addition, they express
pro-coagulant molecules such as tissue factor, fibrinogen, fibronectin or Von Willebrand factor, which
initiate the coagulation cascade and participated to the thrombus formation. Figure created using
Servier Medical Art available at http://smart.servier.com/ (accessed on 15 September 2021).

NETs are fibers of decondensed chromatin (DNA and histones) coated with antimi-
crobial proteins (myeloperoxidase (MPO), cathepsin G and neutrophil elastase (NE)) that
are released by the neutrophil when it detects pathogens (bacteria, protozoa, fungi) in
the extracellular environment [54]. These chromatin fibers create a network that entraps
pathogens, preventing their dissemination in the host organism and eliminating them due
to their anti-microbial properties [54,55].

The reaction of NET formation is catalyzed by peptidyl-arginine deiminase 4 (PAD4);
which enables the chromatin de-condensation; causing Histone 3 to be citrullinated (CitH3) [56].
Therefore, by detecting either CitH3 or extracellular DNA, researchers can identify NETs.
Indeed, the involvement of NETs in thrombosis was demonstrated when CitH3 was found
in the thrombi of patients with VTE, and it was shown that the dissociation of NETs could
promote the lysis of the thrombus [57].

Interestingly, studies have also highlighted the role of the enzyme PAD4 in the in-
volvement of NETs in thrombosis [58]. Indeed, Martinod and colleagues demonstrated
that after 48 h of inferior vena cava ligation only 10% of PAD4-deficient mice developed
thrombi versus 90% in wild-type mice [58]. So PAD4 appears to be crucial in pathological
venous thrombosis formation. Furthermore, no NETs were found in the thrombi from the
PAD4-deficient mice, further highlighting their role in thrombus formation [55].

The network formed by NETs to trap pathogens can also trap platelets, an essential
player in thrombosis [59]. In fact, Fuchs and colleagues have shown that NETs provide
a scaffold for the activation and aggregation of platelets, as well as for red blood cells
which form the red portion of the thrombus [59]. These data are supported by the fact that
when mice were injected with DNase-I (a DNA-cleaving nuclease), NETs were degraded
and no platelet aggregates were formed [59]. This suggests that NETs form an essential
pro-thrombotic substrate for thrombosis.

The interaction of platelets and molecules that are entrapped in the NETs like von Wille-
brand factor (vWF), fibronectin and fibrinogen can also induce platelet aggregation [59].
The presence of fibrinogen causes the clots to consolidate through its transformation into
fibrin in a thrombin-dependent manner [59]. In fact, Longstaff and colleagues have shown
that contact between NETs (DNA + histones) and fibrin induces thicker fibers with im-
proved stability and stiffness, and that the combination of histones and DNA significantly
prolongs clot lysis time [60].

Additionally, Stakos and colleagues demonstrated that NETs were capable of secreting
functional tissue factor (TF) [61]. TF is the initiating molecule of the extrinsic coagulation
pathway and ultimately leads to thrombus formation [62]. The chromatin fibers can
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also inhibit the inhibitors of the extrinsic pathway, resulting in an over-activity of this
coagulation pathway [63].

Nevertheless, Carminita et al. have demonstrated that following laser-induced injury,
neutrophils -but not NETs- are involved in thrombus formation [41]. In fact, activated neu-
trophils already express CitH3 and PAD4, confirming that they are markers of neutrophil
activation rather than NET formation [41]. Moreover, they showed that the inhibition of
thrombus formation by DNase-I could be independent of NET formation [41]. This shows
the current need for more research on the real role of NETs in thrombus formation.

4. Neutrophils in Cancer Development

Neutrophils can play a role in the development of cancer. This is highlighted in the
relationship between neutrophilia and worsened prognosis in oncological patients [64].
Cancer cells can secrete chemokines, like IL-8, as well as GRO chemokines (CXCL1/2/3)
and TGF-β to induce neutrophil migration to the primary tumor [64,65]. This chemokine
explains why tumor-associated neutrophils (TANs) are localized at the margins of the
tumor site in the early stages of cancer and may then massively infiltrate the tumor center
in advanced stages [64].

Neutrophil secretion of chemokines is also enhanced during cancer development [66,67].
Cytokine IL17 can impact the tumoral microenvironment and cause the tumoral stroma to
develop pro-tumorigenic functions, indeed Hayata et al. showed that in a mouse model inhi-
bition of IL17a actually increased the cytotoxicity of tumor-infiltrating lymphocytes [66,68].
They also participate in immune cell recruitment to the tumor and enhancing the cancer-
associated inflammation and promoting pathogenic T-cells [67].

In 2019, Wisdom and colleagues demonstrated that neutrophils could promote tumor
resistance to radiation therapy in a genetically modified mouse model of sarcoma [69]. They
do so by increasing a MAPK-regulated transcriptional program downstream of Kras and
upregulating the expression of the AP-1 family transcription factors Fos and Jun, to promote
cell proliferation [69]. Moreover, TANs are divided into two subpopulations: the N1, which
have an anti-tumor behavior, and the N2, which have a pro-tumor one [70] (Figure 3). This
pro-tumor profile of neutrophils can be favored by the cancer cells themselves [71,72]. It
is described in the literature that tumor cells can differentially secrete cytokines such as
IL-35, IL-10 or TGF-β to induce a switch from N1 to N2 neutrophil phenotype in the early
stages of cancer [71,72]. Indirectly, tumor-derived exosomes can also polarize neutrophils
into a N2 phenotype via HMGB1/TLR4/NF-κB signaling [73–75]. Therefore, tumor cells
themselves can tip the N1-N2 balance to favor a pro-tumoral phenotype of neutrophils.

Pro-tumoral N2 neutrophils can produce reactive oxygen species (ROS) and reactive
nitrogen species (RNS) to create DNA damage and genetic instability which can potentially
initiate the tumor process [74,76]. They can also secrete mediators such as Oncostatin M
(OSM), Matrix Metalloproteinase 9 (MMP9), IL-17 and VEGF into the tumoral microenvi-
ronment to induce angiogenesis and support tumor growth [72,77,78].

Pro-tumoral N2 neutrophils play a key role in the formation of metastases by secreting
MMP9 and neutrophil elastase (NE) to favor the remodeling of the extracellular matrix nec-
essary for tumor progression [77]. In addition, Li, S. et al. have shown that neutrophils can
secrete IL-17A to activate the JAK2/STAT3 pathway to induce the epithelial-mesenchymal
transition (EMT) [78]. Moreover, N2 neutrophils secrete inflammatory cytokines such
as IL-1B and OSM to promote cancer cell migration and invasion [79]. Pro-tumoral N2
neutrophils are important allies that contribute to the tumor growth and spread through
different mechanisms.
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Figure 3. Summary of the role of N2 neutrophils during tumor development. Tumor cells can recruit
circulating neutrophils and induce a switch from N1 to N2 neutrophils. Indeed, N2 neutrophils
play an important role in several stages of cancer development, like tumor initiation and growth or
metastasis formation by secreting several key molecules. Figure created using Servier Medical Art
available at http://smart.servier.com/ (accessed on 15 September 2021).

Interestingly, N2 neutrophils also have an immunosuppressive role [72,80,81]. They
can eliminate tumor-infiltrating T lymphocytes (TIL) by activating TGF-β via MMP9 [80,81].
They also secrete high levels of arginase-1 and can activate the STAT3 and ERK path-
ways that lead to iNOS production and suppression of T-lymphocyte activation [70,72,81].
Arginase-1 and iNOS allow the transformation of L-arginine either into urea and L-
Ornithine or Nitric Oxide (NO) and citrulline. Resulting in a decrease in L-Arginine
levels, a molecule that is essential for the generation of CD3ζ75 [70,81,82]. CD3ζ is a chain
of the CD3 complex that associates with the T cell receptor (TCR) and is essential for TCR
signaling via the ITAM (immunoreceptor tyrosine-based activation motif) [82]. Without
ITAM, the formation of a functional TCR and the proliferation of T lymphocytes are im-
pacted [83]. In addition, extracellular vesicles derived from gastric cancer cells have been
shown to induce PD-L1 expression on neutrophils to inactivate TLs [80,83].

Tumors are known to recruit macrophages and platelets to their microenviron-
ment [14,84,85]. Indeed, high-infiltration of both macrophages and platelets can be corre-
lated to a worsened prognosis [2]. Tumor-associated-neutrophils can influence macrophage

http://smart.servier.com/


Int. J. Mol. Sci. 2022, 23, 1257 8 of 17

polarization to tumor-associated-macrophages (TAM) by secreting Il-8, TNF-α and
MPO [84,86–88]. These TAMs have T-cell immunosuppressive properties through PD-
PD-L1 signaling and can upregulate Treg functions, thus contributing to the local immuno-
suppression that favors tumor growth [83,87,88].

Tumoral platelet infiltration is known to give tumors a survival advantage by degran-
ulation, supporting both angiogenesis and tumor-growth [2]. It is logical to assume that
neutrophils also interact with these cell types. Activated platelets express P-selectin, which
can bind to neutrophils through the PSGL-1 receptor to create platelet-neutrophil aggregates
that support metastasis by hiding cancer cells from shear forces in circulation [14,89,90].
Activated platelets can also secrete transforming growth factor beta (TGF-β1) to recruit
more neutrophils to the tumoral site and increase T-cell immunosuppression [2,65,70,80].

5. NETs in Cancer Development

NETs can support a pro-tumoral role as they are believed to be involved in tumor
growth, metastasis, and the awakening of dormant cancer cells [91] (Figure 4). This
could explain why NETs are a marker of poor prognosis in cancer patients, especially in
terminal cancer patients [92]. In 2016, Demers et colleagues demonstrated with PAD4-
deficient mice that NETs are essential for promoting tumor growth [93]. However, the
exact mechanisms involved remain unknown to date. In 2019, Yazdani et al. proposed
that neutrophil elastase (NE) released by NETs activates TLR4 in cancer cells which results
in upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(PGC1A), a transcription coactivator that leads to increased mitochondrial biogenesis to
provide additional energy for the tumor to accelerate its growth [94].

Interestingly, Zhang et al. found that the number of circulating NETs in peripheral
blood correlated with disease stage in gastric cancer [95]. Indeed, Zhang et al. considered
nucleosome-bound NE to indicate NET formation in serum and plasma of peripheral blood
samples; these complexes were identified using capture ELISA [95].

In 2017, Park and colleagues demonstrated that blocking NET formation with DNase-I
treatment reduced cancer invasion and prevented lung metastasis in mice [96]. Similarly,
in colorectal cancer (CRC), it has been shown that increased NETs contribute to the devel-
opment of CRC liver metastasis and that their digestion with DNase-I limits the increase in
liver metastasis associated with NETs [97].

The exact mechanisms by which NETs are involved in metastasis remain somewhat
unclear and controversial. Indeed, two initial hypotheses as to their involvement have
been put forward: (1) that the DNA network formed by NETs may trap circulating cancer
cells at the site of dissemination or (2) that they may increase local vascular permeability
that facilitates the extravasation of cancer cells into the surrounding tissues [96]. Several
studies support the first hypothesis that NETs facilitate the adhesion of circulating tumor
cells to form metastases [98–100]. In 2020, Yang and colleagues demonstrated that NETs
trap cancer cells but do not exert cytotoxicity on them [97]. NETs can increase the cancer
cell’s proliferative and invasive capacity by triggering tumor IL-8 expression [97]. The
over-expression of IL-8 can in turn activate neutrophils and generate NETs that promote
metastasis [97].

A third hypothesis (3) regarding the role of NETs in metastasis formation has recently
been put forward [101]. The extracellular DNA represented by NETs can act as a chemo-
tactic factor to attract cancer cells, instead of simply entrapping them [101]. This has been
shown in several mouse models and would occur via the CCDC25 receptor present on
the surface of cancer cells [101]. In fact, the CCDC25 receptor then interacts with NETs
to recruit ILK to initiate the β-parvin-RAC1-CDC42 cascade, which induces cytoskeletal
rearrangement and tumor cell migration [101].
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formed by NETs may trap circulating cancer cells at the site of dissemination. (2) DNA network
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cells into the surrounding tissues. (3) The extracellular DNA represented by NETs can act as a
chemotactic factor to attract cancer cells. Figure created using Servier Medical Art available at
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Last but not least, it has been shown in the literature that NETs are also involved in the
awakening of so-called “dormant” or senescent cancer cells [102]. Tumor cells originating
from the primary site can be disseminated in other tissues and remain dormant [102]. The
stimuli that induce them to awaken are not well known. It has been described in mouse
models that NE and MMP9 released by NETs can cleave laminin and induce the prolifera-
tion of dormant cancer cells by activating integrin α3β1 to mediate cell migration [102,103].
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Thus, NETs seem to have many pro-tumor effects, but the exact molecular mechanisms
remain elusive.

However, the role of NETs in cancer progression remains controversial as anti-tumor
effects have also been described [104]. For example, Arelaki and colleagues demonstrated
in 2016 that NETs generated in vitro prevent the growth of colorectal cancer cells and
primary myeloid leukemia cells, by inducing their apoptosis and/or inhibiting their prolif-
eration [104]. These anti-tumor effects remain to date mostly unknown.

6. NETs and Cancer-Associated Thrombosis

Recently, researchers began to study the role of NETs in CAT, especially since CitH3
was shown to be present in the thrombi of cancer patients [105,106]. Numerous studies
have corroborated the link between NETs and CAT, including a 2-year prospective study
of 946 patients that shows that patients with elevated blood CitH3 levels had a higher
cumulative incidence of VTE [107,108].

As we have previously stated, NETs can induce a pro-thrombotic and pro-coagulant
state via multiple mechanisms. This pro-coagulant state can be amplified by the cancer cells
themselves since they can secrete G-CSF (Granulocyte-Colony Stimulating Factor) in very
large quantities [93,109,110]. G-CSF release induces a higher production of neutrophils
and, as Demers and colleagues have shown, it also allows neutrophils to spontaneously
create more NETs [109]. In addition, cancer cells themselves are also able to release PAD4
into their microenvironment, which promotes citrullination of histone 3 and chromatin
de-condensation, leading to NET formation [95].

On the other hand, the tumor microenvironment can also increase the pro-thrombotic
state. Indeed, tumors often grow faster than their blood supply, thus provoking hypoxia
(which is characteristic of most solid tumors) [110]. McInturff et al. have shown that hypoxia
favors the formation of NETs via the mammalian target rapamycin (mTOR) which regulates
NET formation by post-transcriptional control of the expression of hypoxia-inducible factor
1 α (HIF-1α) [111].

Thus, NETs may be an attractive target for reducing CAT. Indeed, Boone and col-
leagues have shown that the use of chloroquine reduces the hypercoagulability observed in
pancreatic cancer by inhibiting NETs [112]. Furthermore, it has been shown in an orthotopic
mouse model of breast cancer that the use of dunnione, a potent substrate of NAD(P)H
quinone oxidoreductase 1, attenuates the pro-thrombotic state by inhibiting TF and NETs
formation [113].

Elaskani et al. studied the NET-induced platelet aggregation and found that targeting
the NET scaffold was not an effective strategy to reduce platelet activation [114]. More
traditionally used anticoagulant and anti-platelet drugs like low molecular weight or un-
fractioned heparin or direct-acting oral anticoagulants (Apixaban, dabigatran, rivaroxaban
or endoxaban) continue to be the gold standard for thrombosis treatment in CAT [115,116].
Recently, the use of platelet P2RY12 inhibitors has been proposed to both prevent and treat
TCIPA and CAT, but this application has not yet been validated in clinical trials [15,117].

7. Conclusions

We have endeavored to describe the current state of the literature on the relationship
between neutrophils, thrombosis, and cancer. Neutrophilia is associated with worse prog-
nosis in cancer patients and this increased neutrophil count has a direct impact on the
development of cancer and CAT. Cancer cells themselves can participate in this relationship,
creating a vicious circle that enhances both tumor growth and CAT. An important contrib-
utor to this relationship appears to be NET formation by neutrophils. NETS potentially
sustain not only cancer growth, but also the development of cancer-associated thrombosis;
yet the exact molecular mechanisms remain to be elucidated. We have shown that neu-
trophils play a key role in thrombus and CAT development; highlighting the necessity
for further research to harness the power of neutrophils as new potential therapeutic or
diagnostic targets in cancer.
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Abbreviations

ATP Adenosine triphosphate
BPI Bactericidal/permeability increasing protein
CAT Cancer associated thrombosis
CCDC25 Coiled-Coil Domain Containing 25
CitH3 Citrullinated histone H3
CRC Colorectal cancer
CXCL8/IL-8 Interleukin 8
EMT Epithelial-mesenchymal transition
EPCAM Epithelial cell adhesion molecule
ERK Extracellular signal-regulated kinases
fMLP N-formyl-Methionyl-leucyl-phenylalanine
G-CSF Granulocyte-Colony Stimulating Factor
HIF-1α Hypoxia-inducible factor 1 α

HMGB1 High-mobility group box 1
ICAM1/CD54 Intercellular Adhesion Molecule-1
ILK Integrin-linked kinase
iNOS Inducible nitric oxide synthase
ITAM Immunoreceptor tyrosine-based activation motif
JAK2 Janus kinase 2
LFA1 Leukocyte-function-associated-antigen-1
LTB4 Leukotriene B4
MAC1 Macrophage-1 Antigen
MAPK Mitogen-activated protein kinases
MMP9 Matrix Metalloproteinase 9
MPO Myeloperoxidase
mTOR Mammalian target rapamycin
TNFα Tumor-necrosis-factor-α
VCAM1 Vascular Cell Adhesion Molecule-1
VEGF Vascular Endothelial Growth Factor
MV Microvesicles
NE Neutrophil elastase
NET Neutrophil extracellular traps
NF-κB Nuclear factor-kappa B
nMV Neutrophil derived MVs
NO Nitric Oxide
OSM Oncostatin M
P2RX1/P2X1 P2X purinoceptor 1
PAD4 Peptidylarginine deiminase 4
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PDGF Platelet derived growth factor
PD-L1 Programmed death-ligand 1
PECAM1 Platelet endothelial cell adhesion molecule-1
PGC1A Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PMN Polymorphonuclear cells
RNS Reactive nitrogen species
ROS Reactive oxygen species
STAT3 Signal transducer and activator of transcription 3
TAM Tumor-associated macrophage
TAN Tumor-associated neutrophils
TCIPA Tumor cell induced platelet activation
TCR T cell receptor
TF Tissue Factor
TGF-β Transforming growth factor beta
TIL Tumor-infiltrating T lymphocytes
TLR4 Toll Like Receptor 4
TLs T Lymphocytes
VEGF Vascular endothelial growth factor
VTE Venous thromboembolism
vWF von Willebrand factor
MV Microvesicles
NE Neutrophil elastase
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