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ABSTRACT

In eukaryotic cells, the shortening and removal
of the poly(A) tail of cytoplasmic mRNA by
deadenylase enzymes is a critical step in post-
transcriptional gene regulation. The ribonuclease
activity of deadenylase enzymes is attributed
to either a DEDD (Asp-Glu-Asp-Asp) or an
endonuclease–exonuclease–phosphatase domain.
Both domains require the presence of two Mg2+

ions in the active site. To facilitate the biochemical
analysis of deadenylase enzymes, we have
developed a fluorescence-based deadenylase
assay. The assay is based on end-point measure-
ment, suitable for quantitative analysis and can
be adapted for 96- and 384-well microplate
formats. We demonstrate the utility of the assay
by screening a chemical compound library, resulting
in the identification of non-nucleoside inhibitors
of the Caf1/CNOT7 enzyme, a catalytic subunit of
the Ccr4–Not deadenylase complex. These
compounds may be useful tools for the biochem-
ical analysis of the Caf1/CNOT7 deadenylase
subunit of the Ccr4–Not complex and indicate
the feasibility of developing selective inhibitors of
deadenylase enzymes using the fluorescence-
based assay.

INTRODUCTION

Accurate control of gene expression depends on the
precise regulation of mRNA levels by both transcriptional
and post-transcriptional mechanisms. A key step in the
post-transcriptional regulation of mRNA levels involves
the shortening of the poly(A) tail of cytoplasmic messen-
ger RNA (mRNA) by deadenylase enzymes (1–5). These

enzymes play an important role in mRNA turnover.
In addition, deadenylation may also impact on translation
as the relation between poly(A) tail length and transla-
tional efficiency is well established (6,7).
Around 10 deadenylases are encoded by the human

genome (2). The catalytic activity of deadenylases is
provided by either an endonuclease–exonuclease–
phosphatase (EEP) domain, or a DEDD (Asp-Glu-Asp-
Asp) fold. In both cases, deadenylation is dependent on
the presence of two Mg2+ ions in the active site (2).
Examples of EEP-type deadenylases include the circadian
deadenylase Nocturnin/CCRN4L and the mitochondrial
deadenylase PDE12 (5,8,9). In contrast, PARN, a
homodimeric deadenylase that also contains a cap-
binding domain, and Pan2, which forms a heterodimeric
complex with Pan3, contain a DEDD domain (4,5,10–15).
The composition of the Ccr4–Not complex, a major
deadenylase important for cytoplasmic mRNA degrad-
ation (16–19), is unusually intricate as compared with
other deadenylases (4,20,21). In addition to at least six
non-catalytic subunits, the complex contains two distinct
subunits with deadenylase activity: a Caf1 subunit con-
taining a DEDD domain, and a Ccr4 component
characterized by an EEP fold (4,22,23). Both enzymatic
subunits are tethered to the non-catalytic components via
the large subunit CNOT1. The centrally located MIF4G
domain of CNOT1 contains multiple helical repeats that
interact with the Caf1 catalytic subunit (24,25). In turn, a
helix/loop region of Caf1 binds via hydrophobic
interactions with the leucine-rich repeat domain of the
Ccr4 deadenylase subunit (24). In vertebrate cells, the
complexity of the Ccr4–Not deadenylase is further
increased by the occurrence of two highly similar Caf1
paralogues (encoded by either CNOT7 or CNOT8)
(26,27). Similarly, the CNOT6 and CNOT6L genes
encode two Ccr4 paralogues associated with the Ccr4–
Not complex in vertebrates (28). It is currently unclear
to what extent the catalytic components of the Ccr4–Not
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complex have redundant or unique roles in mRNA
deadenylation (29–31).
To obtain further insight into the cellular and physio-

logical roles of deadenylase enzymes, novel tools such
as potent, selective and cell-permeable inhibitors of
deadenylase enzymes are desirable. Such molecules would
be valuable as chemical probes and complement the use of
RNAi-based tools, as they would inhibit the enzymatic
activity rather than interfere with potential structural
roles of deadenylase enzymes. Towards this goal, we first
developed a new fluorescence-based deadenylase assay,
because the various assays currently available for the
biochemical analysis of deadenylase enzymes are time
consuming, and less suitable for quantitative analysis and
screening. For example, widely used gel-based assays based
on (oligonucleotide) substrates labelled with fluorescent or
radioactive moieties are difficult to quantify and are labori-
ous. In contrast, quantitative assays based on methylene
blue colourimetry are insensitive and require high protein
and substrate concentrations (32,33). Finally, recently
developed quantitative assays based on size-exclusion
chromatography also have limited sensitivity, require
relatively large reaction volumes and are not suitable for
high-throughput screening (34). The fluorescence-based,
quantitative deadenylase assay described here is based on
end-point measurement and suitable for 96- and 384-well
microplate formats. To show the usefulness of the assay,
we screened a small chemical compound library and
identified several inhibitors of the Caf1/CNOT7 enzyme.
These compounds may be useful tools for the biochemical
analysis of the Caf1/CNOT7 deadenylase subunit of
the Ccr4–Not complex and indicate the feasibility of
developing small molecule inhibitors of Mg2+-dependent
ribonuclease enzymes as well as the suitability of the fluor-
escence-based deadenylase assay for the screening of
compound libraries.

MATERIALS AND METHODS

Plasmids and DNA cloning

A codon-optimized cDNA encoding human Caf1/CNOT7
was generated and subcloned using standard procedures
into the bacterial expression plasmid pQE80L (Qiagen)
using the BamHI and SalI restriction sites. A codon-
optimized cDNA fragment encoding human Ccr4/
CNOT6L lacking the amino terminal leucine-rich re-
peat domain (amino acids 1–155) was obtained using
standard polymerase chain reaction techniques and
cloned into the multiple cloning site of pQE80L
(Qiagen) using the BamHI and SalI restriction endonucle-
ases. The absence of mutations and the appropriate
reading frame were confirmed by DNA sequencing. The
PARN expression plasmid (pET33PARN) has been
described previously (35). Site-directed mutations to
inactivate the active sites (D40A, CNOT7, E240A,
CNOT6L, D28A and PARN) were introduced using
standard protocols (Stratagene Quikchange).
Oligonucleotides used for site-directed mutagenesis were
designed using the online PrimerX tool (http://www.
bioinformatics.org/primerx/).

Protein expression and purification

The human Caf1/CNOT7 deadenylase enzyme was
purified from Escherichia coli strain BL21 (DE3). Cells
were grown in Lysogeny Broth (LB) medium containing
50 mg/ml ampicillin (2 l) at 37�C with vigorous shaking
until the optical density (600 nm) was between 0.6 and
0.8. Expression was then induced by the addition of
0.2mM isopropyl b-D-1-thiogalactopyranoside for 3 h at
30�C, or overnight at room temperature. Cells were har-
vested by centrifugation (6000 rpm) using a Sorvall SLC-
6000 SUPER-LITE rotor at 4�C for 15min. The super-
natant was discarded and the cell pellet was resuspended
in 30ml ice-cold extraction buffer (20mM Tris–HCl pH
7.8, 500mM NaCl, 10% glycerol, 2mM b-
mercaptoethanol). Cells were frozen and kept at �80�C
until further use. After thawing the bacterial suspension,
the cells were lysed on ice using a Qsonica XL2000
sonicator (amplitude: 40%) using five 30 s on/30 s off
cycles. The crude lysate was centrifuged in a Sorvall SS-
34 rotor at 10 000 rpm, 4�C for 30min to remove insoluble
material and stored at �80�C until further use.

The hexahistidine-tagged Caf1/CNOT7 protein was
purified in a single step using HisTrap columns (GE Life
Science; 1ml bed volume) at 4�C. The soluble lysate was
applied to the column using a syringe at an approximate
flow rate of 2–3 drops per second (>1ml/min).
Subsequently, the column was washed using a syringe
filled with 10ml wash buffer (20mM Tris–HCl pH 7.8,
500mM NaCl, 10% glycerol, 2mM b-mercaptoethanol,
10mM imidazole) and finally, eluted with 5ml elution
buffer (20mM Tris–HCl pH 7.8, 500mM NaCl, 10%
glycerol, 2mM b-mercaptoethanol, 250mM imidazole),
which was collected in 1ml fractions. Elution fractions
were analysed by sodium dodecyl sulphate–polyacryl-
amide gel electrophoresis SDS–PAGE and coomassie
staining (Invitrogen Bio-Safe Staining kit) and peak
fractions used. Ccr4/CNOT6L was expressed and
purified from E. coli using a similar procedure. The
PARN enzyme was purified by immobilized metal
affinity chromatography as described before with minor
modifications (35).

Oligonucleotides

Desalted oligonucleotides used as RNA substrate or DNA
probe were purchased from Sigma Genosys. Alternatively,
high performance liquid chromatography purified oligo-
nucleotides were purchased from Eurogentec. The 16-mer
RNA substrate oligonucleotide (50-CCU UUC CAA AAA
AAA A-30) contained a 50 fluorescein (Flc) group. The
DNA probe (50-TTT TTT TTT GGA AAG G-30)
contained a 30 tetramethylrhodamine (TAMRA) or a 30

black hole quencher (BHQ)-1 modification.

Assay conditions

Standard reaction conditions for deadenylase assays were:
20mM Tris–HCl pH 7.9, 50mM NaCl, 2mM MgCl2,
10% glycerol, 1mM b-mercaptoethanol and 1.0 mM 50-
Flc-labelled RNA substrate in nuclease-free water.

For gel-based detection of ribonuclease activity,
deadenylase reactions (10 ml) were incubated at 30�C for

e30 Nucleic Acids Research, 2014, Vol. 42, No. 5 PAGE 2 OF 10

,
that are 
-
By 
colorimetry 
,
-
-
,
optimised 
-
optimised 
-
PCR 
was
before
;
,
http://www.bioinformatics.org/primerx/
http://www.bioinformatics.org/primerx/
.
L
&Unicode_x2070;
-
(IPTG) 
ours
&Unicode_x2070;C
&deg;
utes
E
B
-
-
&Unicode_x2070;
ec
ec
&deg;
utes
-
&Unicode_x2070;
&Unicode_x2070;
-
W
B
-
,
,
E
B
-
-
C
immobilised 
HPLC-
'
'
'
'
'
'
'
-
'
 &Unicode_x2070;


60min, stopped by the addition of 12 ml RNA loading
buffer [95% formamide, 0.025% bromophenol blue,
0.025% xylene cyanol FF, 0.025% sodium
dodecylsulphate and 5mM ethylenediaminetetraacetic
acid (EDTA)] and heated for 3min at 85�C. A small
sample of the RNA mixture (3ml) was analysed by
denaturing PAGE using a 20% acrylamide:bisacrylamide
(19:1) gel containing 50% (w/v) urea. Polyacrylamide gels
(8� 8 cm; Invitrogen Xcell system) were pre-run for
30min at 200V before sample loading. Flc-labelled
RNA was visualized by epifluorescence using a Fujifilm
LAS-4000 imager equipped with an Epi-Blue illuminator
(460 nm).

For fluorescence-based detection of nuclease activity,
deadenylase reactions (10–20 ml) were incubated at 30�C
for 60min and stopped by the addition of an equal volume
of probe mix containing 1% SDS, and a 5-fold molar
excess of 30-labelled DNA probe. Fluorescence intensity
was measured at 25�C (sensitivity setting 70–90) using a
BioTek Synergy HT plate reader with 96 or 384 U-shaped
black multi-well plates. Filter sets used were: 485±20nm
(excitation) and 528±20nm (emission). Data analysis
and curve-fitting were carried out using Microsoft Excel
2007 and Graphpad Prism 5.0.

HeLa cytoplasmic extract (S-100 fraction) was pur-
chased from Boston Biochem (cat no F-372, 5mg/ml).

Virtual screening

In order to prioritize candidates from our compound
collection as likely inhibitors of the Caf1/CNOT7
enzyme, we applied virtual library screening. This collec-
tion (University of Nottingham Managed Chemical
Compound Collection, MCCC) contains a highly
diverse set of 83 086 lead-like compounds. A database
containing the chemical structures of the MCCC com-
pounds was prepared for virtual screening using the
LigPrep and Epik modules of the Schrödinger (www.
schrodinger.com) small-molecule drug discovery
software suite (36) in order to standardize protonation
states and to generate 3D conformers of the molecules.
The coordinates of an X-ray crystal structure of the
Caf1–NOT1 complex (25) (Protein Data Bank entry
4GMJ, chain C) were used to construct a docking
receptor with Sybyl 8.0 (www.tripos.com) software.
Compounds were docked to this receptor using the
genetic optimization for ligand docking (GOLD)(37)
program (www.ccdc.cam.ac.uk) in standard parameter
mode. Docked compound poses were assessed and
ranked using Goldscore fitness scores, which ranged
from 30 to 88, with high scores (>77) predicting com-
pounds with likely affinity for the active site of the Caf1
enzyme. The top 11% of virtual hits were rescored
exhaustively and a total of 1440 predicted hits were
selected for bioassay based on fitness scores and plausible
binding modes by visual inspection.

Automated screening

Compounds (10mM in dimethyl sulphoxide, DMSO)
were stored in a dry, inert environment at �20�C and
dispensed in 96-well plates using an automated facility

(TTP Labtech Technology). Compounds were diluted to
0.5mM using 20% DMSO/water. Aliquots (4 ml; 25%
DMSO/water) were transferred to black U-well 384-well
plates (Greiner Bio-One) and subsequent automated
screening was carried out using a Biomek 3000 liquid
handler (Beckman Coulter). After addition of enzyme
(8ml containing 1.0 mM Caf1/CNOT7, 50mM Tris–HCl
pH 7.9, 125mM NaCl, 5mM MgCl2, 25% glycerol,
2.5mM b-mercaptoethanol), plates were left at room
temperature for 15min before the addition of RNA sub-
strate (8 ml). The composition of the final reaction
mixture was: 0.4 mM Caf1/CNOT7, 20mM Tris–HCl
pH 7.9, 50mM NaCl, 2mM MgCl2, 10% glycerol,
1mM b-mercaptoethanol, 5% DMSO, 100 mM library
compound. After incubation at 30�C for 60min, 20 ml
probe mix (5 mM DNA probe, 1% SDS, 20mM Tris–
HCl pH 8.0, 0.5mM EDTA) was added. Fluorescence
was measured using a BioTek Synergy HT plate reader
as described above.

RESULTS

Design of a fluorescence-based deadenylase assay

Based on the findings that short RNA oligonucleotides are
substrates of deadenylase enzymes in vitro (22,30,38), we
designed a substrate detection method based on fluores-
cence resonance energy transfer (FRET). The two-stage
deadenylase assay contained three key components:
(i) the (purified) enzyme, (ii) a 50 fluorophore-labelled
RNA substrate and (iii) a DNA probe containing a
30 fluorophore. We initially used a Flc-labelled RNA sub-
strate and a complementary DNA probe labelled with
TAMRA, which form a well characterized ‘FRET pair’
(Figure 1A). The principle of the assay is the complemen-
tarity of the probe and the RNA substrate in the absence
of deadenylase activity, resulting in close proximity of the
Flc and TAMRA fluorophores, which prevents fluores-
cence of the Flc moiety. In contrast, efficient annealing
of the DNA probe is prevented when the substrate is
degraded, thus allowing detection of Flc-mediated fluor-
escence (Figure 1A).
The principle of the assay was tested using purified

Caf1/CNOT7, a catalytic subunit of the Ccr4–Not
deadenylase complex. Wild-type and catalytically
inactive versions of human Caf1/CNOT7 containing an
amino-terminal hexahistidine tag were expressed in
E. coli and purified using immobilized-metal affinity puri-
fication (Figure 1B). The catalytically inactive version
of Caf1/CNOT7 contained the amino acid substitution
Asp-40!Ala, which interferes with chelation of Mg2+

ions in the active site (22,39,40). Using a gel-based
assay, degradation of the substrate was observed when
wild-type Caf1/CNOT7 was incubated with a 50 Flc-
labelled 16-mer oligonucleotide substrate containing a 30

stretch of nine adenosine residues. The deadenylase
activity was specific, because it was not observed in the
presence of catalytically inactive Caf1/CNOT7 D40A
(Figure 1C).
Next, we carried out the fluorescence-based detection

of deadenylase activity (Figure 1D). After incubation of
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the Flc-labelled substrate with Caf1/CNOT7, we added a
solution containing sodium dodecylsulphate (0.5% final
concentration) to inhibit any residual activity of the
Caf1/CNOT7 enzyme (data not shown) and a 5-fold
molar excess of the TAMRA-labelled DNA probe. As
shown, fluorescence was detected after incubation with
wild-type Caf1/CNOT7 and was highly reproducible.
In contrast, no fluorescence was observed when the
substrate was incubated with inactive Caf1/CNOT7,
even in the presence of high enzyme concentrations or
when incubated for up to 1 h (Figure 1D and E).
The signal/background ratio was not improved by

replacing the TAMRA fluorophore of the probe with
a BHQ (Supplementary Figure S1A). To optimize the
substrate/probe ratio, we used varying probe concentra-
tions. This indicated that a three-fold probe excess was
sufficient to obtain a maximum signal/background ratio
(Supplementary Figure S1B).

Kinetic analysis of deadenylation by Caf1/CNOT7

To evaluate the suitability of the fluorescence-based
deadenylase assay for quantitative analysis, we carried
out a kinetic analysis of the Caf1/CNOT7 enzyme
activity. Thus, we incubated a fixed amount of Caf1/
CNOT7 with increasing substrate concentrations and
measured the fluorescence as a function of time
(Figure 2A). The results were consistent with multiple
substrate turnover events per enzyme. After obtaining
the initial rate of reaction by linear regression, the
substrate concentration was plotted versus the initial
rate of reaction (Figure 2B). By using non-linear
regression, we derived the Km constant of the Caf1/
CNOT7 enzyme for its oligonucleotide substrate
(10.6±2.9 mM). Similar values were obtained by linear
regression analysis using a Lineweaver–Burke plot
(Figure 2B, inset).

Figure 1. Principle of the fluorescence-based deadenylase assay. (A) Schematic diagram of the fluorescence-based deadenylase assay. The assay is
based on a 50 Flc-labelled RNA oligonucleotide substrate. After incubation of the substrate in the presence of a deadenylase enzyme, the reaction is
stopped and a 30 TAMRA-labelled DNA oligonucleotide probe complementary to the RNA substrate is added. Flc fluorescence of intact substrate
is quenched upon probe hybridization because of the close proximity of the TAMRA fluorophore. In contrast, the TAMRA-labelled probe cannot
hybridize to the Flc-labelled reaction product allowing detection of Flc fluorescence. (B) Purified enzymes used for assay development. Wild-type
Caf1/CNOT7 and inactive Caf1/CNOT7 containing the amino acid substitution D40A were expressed as His-tagged proteins in E. coli and purified
using immobilized-metal affinity chromatography. Purified proteins (3mg) were separated by 12% SDS–PAGE and stained with coomassie.
(C) Gel-based deadenylase assay. Equal amounts of wild-type and inactive Caf1/CNOT7 (0.4 mM) were incubated with 50 Flc-labelled substrate
(1mM). After incubation (60min), the substrate RNA was subjected to denaturing PAGE and visualized using epifluorescence. Indicated are the
intact RNA substrates containing nine 30 adenylate residues (A9) and the 8-mer reaction product containing a single 30 adenylate residue (A1).
(D) Fluorescence-based measurement of deadenylase activity. The indicated amount of wild-type and inactive (D40A) Caf1/CNOT7 protein was
incubated with Flc-labelled substrate (1 mM). After incubation (60min), a 5-fold molar excess of the 30 TAMRA-labelled probe was added before
fluorescence was measured. (E) Measurement of fluorescence as a function of time. Wild-type and inactive D40A Caf1/CNOT7 (0.4 mM) were
incubated with Flc-labelled substrate (1 mM). After the indicated time, a 5-fold molar excess of the 30 TAMRA-labelled probe was added before
fluorescence was measured. Error bars indicate the standard error of the mean (n=3).
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Application of the fluorescence-based deadenylase assay
for screening

To demonstrate the usefulness of the assay, we adapted
the fluorescence-based assay for use with 384-well

microwell plates and screened a compound library. The
screening assay comprises four pipetting steps, which is
compatible with automated liquid handling. First, a
solution containing a test compound (in 25% DMSO)

Figure 3. Identification of small molecule inhibitors of Caf1/CNOT7 using a fluorescence-based deadenylase assay. (A) Evaluation of the fluores-
cence-based deadenylase assay for screening by Z factor analysis. The mean value of the Z factor is 0.88±0.02 (n=4). (B) Screening of a library of
1440 compounds. The compounds were dispensed in five 384-well plates and pre-incubated with Caf1/CNOT7 enzyme for 15min at room tempera-
ture. After addition of RNA substrate (final concentration: 0.4 mM Caf1/CNOT7 enzyme, 100mM library compound, 1.0 mM substrate in a reaction
volume of 20 ml), reactions were incubated for 60min. Reactions were stopped by the addition of 20 ml of a solution containing 1.0% SDS and a
5-fold molar excess of probe. Dots indicate fluorescence of each well containing a library compound. Also indicated is the mean background
fluorescence (solid line). Dotted lines indicate three standard deviations from the mean of reactions containing library compounds or of the
mean background fluorescence, respectively.

Figure 2. Quantitative analysis of Caf1/CNOT7 enzyme kinetics. (A) Measurement of fluorescence as a function of time using the indicated oligo-
nucleotide substrate concentrations. Reactions contained 0.4 mM Caf1/CNOT7 enzyme. Error bars indicate the standard error of the mean (n=3).
Fluorescence was normalized by subtraction of background fluorescence observed in the absence of enzyme. (B) Kinetic data from panel (A) were
plotted to estimate the Km by curve fitting of the Michaelis–Menten equation (Km=10.6±2.9 mM). The inset shows the Lineweaver–Burk plot of
the kinetic data from panel (A). Curve fitting was carried out using Graphpad Prism. Error bars indicate the standard error of the mean.
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was dispensed into the microwell plates. Subsequently, a
solution containing the Caf1/CNOT7 enzyme was added
and incubated for 15min at room temperature. After
addition of the substrate, the reactions were incubated
for 60min at 30�C. Finally, reactions were terminated by
the addition of SDS and the DNA probe before measure-
ment of fluorescence. We established that the signal
remains stable for up to 7 days when the reactions are
kept in the dark at room temperature, which will facilitate
the analysis of large numbers of plates in parallel
(Supplementary Figure S2). After optimization of auto-
mated liquid handling steps, the suitability of the assay
for screening was confirmed by determination of the
Z factor (0.88±0.02, n=4), which indicates that the
assay is of high quality (Figure 3A).
Subsequently, we assessed the feasibility of identifying

small-molecule inhibitors of Caf1/CNOT7 by screening a
library of 1440 compounds, which were selected based
on a preliminary virtual screening of 83 086 compounds
(Figure 3B). This automated procedure led to 11
compounds that were analysed further. Two compounds
precipitated and were discarded. Three compounds
had very weak inhibitory activity (estimated IC50>
500mM) and were not investigated further. Of the remain-
ing six, five compounds had IC50 values between 100 and
250mM as determined by using the fluorescence-based
deadenylase assay (Figure 4A and B). In addition, we
identified one more potent compound with a low
micromolar IC50 value (Figure 4A and B). The analysis
of the structure–activity relationships of a set of analogues
of the latter compound is currently underway and will
be reported elsewhere.
To ensure that the identified compounds were bona fide

inhibitors of the Caf1/CNOT7 enzyme, and to exclude the
possibility that the compounds were identified based on
interference with the fluorescent measurements, we used
a gel-based assay. Thus, we incubated the Caf1/CNOT7
enzyme with the oligonucleotide substrate in the presence
or absence of the compounds. As expected, Caf1/CNOT7
deadenylated the oligonucleotide substrate, whereas the
substrate remained intact in control reactions that did
not contain Caf1/CNOT7 enzyme. Importantly, removal
of 30 adenylate residues was greatly reduced in the
presence of the identified compounds (Figure 5).
Together, these results indicate the suitability of the fluor-
escence-based deadenylase assay for screening as well as
the feasibility of identifying small molecule inhibitors of
the Caf1/CNOT7 enzyme.

Selective inhibition of the Caf1/CNOT7 deadenylase

To assess whether the identified compounds are selective
for the Caf1/CNOT7 enzyme, or whether they are
more general inhibitors of deadenylase enzymes, we
evaluated the effect of the compounds on the activity of
the Ccr4/CNOT6L and PARN enzymes. Thus, we
incubated these enzymes in the presence or absence of
300mM of the inhibitors. As shown, compounds NCC-
00001590 and NCC-00039069 only inhibited Caf1/
CNOT7 and did not inhibit the activity of Ccr4/
CNOT6L or PARN (Figure 6A and D). In contrast,

compounds NCC-00007277,NCC-00019223 and NCC-
00037292 displayed less selectivity and partially inhibited
the activity of PARN and Ccr4/CNOT6L, respectively
(Figure 6B, C and F). Finally, NCC-00010651 inhibited

Figure 4. Determination of IC50 values of small-molecule inhibitors of
Caf1/CNOT7. (A) Determination of IC50 values. Compounds were pre-
incubated with Caf1/CNOT7 for 15min at room temperature, followed
by the addition of RNA substrate. After incubation (60min at 30�C),
reactions were stopped by the addition of SDS and a 5-fold molar
excess of probe. Shown are representative experiments. Error bars
indicate the standard error of the mean. (B) Structures of inhibitors
with IC50 values <250 mM. The chemical structure of NCC-00037292
will be reported elsewhere. The IC50 values shown (± standard error of
the mean) are derived from at least three independent replicate
experiments.
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all three deadenylase enzymes, albeit no complete inhib-
ition of PARN and Ccr4/CNOT6L was obtained
(Figure 6E). Taken together, these results indicate that
selective inhibition of deadenylase enzymes, specifically
of the Caf1/CNOT7 enzyme, with small molecules is
feasible. Moreover, the availability of the fluorescence-
based deadenylase assay opens up routes for the screening
of more extensive compound libraries using automated
screening.

Fluorescence-based detection of 30 exonuclease activity in
complex mixtures

To assess the usability of the assay and the identified
inhibitors in more complex conditions, we used HeLa
S-100 cytoplasmic extracts. First, we incubated
increasing concentrations of the S-100 fraction with
the Flc-labelled RNA substrate and analysed the
reaction products by gel electrophoresis (Figure 7A).
At high concentrations (0.5mg/ml), complete degrad-
ation beyond the stretch of nine adenosine residues
was observed, as expected, based on the presence of
other ribonucleases in the extract. However, a fraction
of the RNA substrate appeared resistant against deg-
radation, presumably because of RNA-binding proteins.
When we used the fluorescence-based detection, we
observed a clear dose–response effect with >90% of
maximal signal observed in the presence of 0.5mg/ml
S-100 fraction (Figure 7B). To determine the activity
of the identified inhibitors of Caf1 in the context of

Figure 6. Selective inhibition of the Caf1/CNOT7 deadenylase. The activity of the Caf1/CNOT7, Ccr4/CNOT6L and PARN deadenylase enzymes
was assessed in the presence of 300mM (final concentration) of compound (A) NCC-00001590, (B) NCC-00007277, (C) NCC-00019223, (D) NCC-
00039069, (E) NCC-00010651 and (F) NCC-00037292 (100 mM). Enzymes were pre-incubated with the indicated compounds at room temperature for
15min. After addition of Flc-labelled substrate RNA, reactions were incubated at 30�C for 60min. Fluorescence was measured after addition of a
mixture containing SDS (0.5% final concentration) and a 5-fold molar excess of TAMRA-labelled probe. Error bars indicate the standard error of
the mean (n=3).

Figure 5. Validation of inhibitory activity using gel-based product
analysis. The indicated compounds (NCC-00001590, NCC-00007277,
NCC-00019223, NCC-00039069, NCC-00010651, 300mM; NCC-
00037292, 100mM, final concentration) were incubated with
purified Caf1/CNOT7 enzyme (0.4 mM) and the 50 Flc-labelled oligo-
nucleotide substrate (1.0 mM). After incubation (30�C for 60min),
reactions were inactivated by heating. Products were separated by
denaturing PAGE and directly visualized by epifluorescence.
Indicated are the intact RNA substrates containing nine 30 adenylate
residues (A9) and the 8-mer reaction product containing a single 30

adenylate residue (A1).
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a complex mixture, we used a subsaturating amount of
S-100 fraction (0.05mg/ml). Comparison of the signal
obtained in the absence or presence of S-100 fraction
indicated that a high background was observed when
using a crude extract. This is consistent with the

observation that a fraction of the RNA substrate
remains refractory to degradation in these conditions.
Although addition of DMSO (5%) did not significantly
inhibit activity of the extract, partial inhibition was
observed in the presence of three compounds. The
strongest effect was observed with compounds NCC-
00007277 and NCC-00037292 (Figure 7C).
Interestingly, these compounds partially inhibit PARN
(Figure 6), which is the predominant deadenylase in cell
extracts (41,42).

DISCUSSION

Here we report a new method for the analysis of the
biochemical activity of deadenylase enzymes. The fluores-
cence-based deadenylase assay is sensitive, can be used for
quantitative analysis and is suitable for miniaturization
using 96- and 384-well plates. We believe that this assay
has significant advantages for the quantitative evaluation
of deadenylase enzymes over existing approaches, such as
analyses based on gel electrophoresis, methylene blue
colourimetry or size-exclusion chromatography (32–34).
Due to the sensitivity of the fluorescence-based deadeny-
lase assay, activity can be detected at much lower con-
centrations and in smaller reaction volumes as compared
with colourimetry- or chromatography-based assays.
Moreover, the assay is fast and much less laborious as
compared with methods involving gel electrophoresis
or chromatography. Combined with its suitability for
plate-based formats, this allows the evaluation of a large
number of reactions in parallel with less effort as
compared with any of the alternative methods.

We demonstrate the use of the fluorescence-based
deadenylase assay for the screening of compound libraries
and identified one compound with relatively high affinity
(IC50 between 10 and 20 mM) and five inhibitors with rela-
tively low potency (IC50 around 100 mM). Despite their
low potency, these compounds will be useful for the bio-
chemical analysis of deadenylase enzymes. The identified
inhibitors are structurally unrelated, but, based on prelim-
inary molecular modelling analysis, we believe that all
compounds bind in the active site thereby blocking inter-
actions with the RNA substrate. A process to derive
a structure–activity relationship is currently underway
for the most potent compound NCC-00037292.
In addition, the screening of more extensive compound
collections in combination with the synthesis and evalu-
ation of novel chemical entities will likely result in more
potent inhibitors of the Caf1/CNOT7 deadenylase enzyme
that can be appraised in cell-based assays. This will
also provide more detail about binding to the Caf1
deadenylase and the mechanism of inhibition.

Recently, Balatsos and co-workers (43,44) reported
inhibitors of the PARN deadenylase, which—as is the
case with Caf1/CNOT7—contains a DEDD domain. In
contrast to the compounds reported here, the reported
inhibitors of the PARN enzyme were nucleoside ana-
logues with Ki values ranging between 20 and >500 mM.
It will be of interest to establish whether these nucleoside
analogues are selective inhibitors of PARN or whether
they also inhibit other deadenylases such as Caf1/CNOT7.

Figure 7. Fluorescence-based detection of 30 exonuclease activity in
complex mixtures. (A) Gel-based assay. Increasing amounts of a
HeLa S-100 cytoplasmic extract was incubated with 50 Flc-labelled sub-
strate (1mM). After incubation (60min), the substrate RNA was sub-
jected to denaturing PAGE and visualized using epifluorescence.
Indicated are the intact RNA substrates containing nine 30 adenylate
residues (A9) and the deadenylated product (A1). (B) Fluorescence-
based measurement of exonuclease activity. The indicated amount of
HeLa S-100 fraction was incubated with Flc-labelled substrate (1 mM).
After incubation (60min), a 5-fold molar excess of the 30 TAMRA-
labelled probe was added before fluorescence was measured. (C) The
activity of the S-100 fraction was assessed in the presence of NCC-
00001590, NCC-00007277, NCC-00019223, NCC-00039069 and NCC-
00010651 (300 mM) or NCC-00037292 (100 mM). *P< 0.05, **P< 0.01.
Error bars indicate the standard error of the mean (n=3).
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In conclusion, we believe that the fluorescence-based
deadenylase assay described here complements existing
assays for the quantitative, biochemical analysis of
deadenylase enzymes, e.g. when comparing the activities
of wild-type enzymes with those containing amino acid
substitutions. By using the assay for the screening of a
compound library, we demonstrate the utility of the
assay as well as the feasibility of developing selective
inhibitors of the Caf1/CNOT7 deadenylase subunit of
the Ccr4–Not complex. Such inhibitors, together with
inhibitors of other Mg2+-dependent ribonucleases, such
as those inhibiting PARN (43,44), will be highly useful
tools as chemical probes that complement existing
resources available for the study of post-transcriptional
gene regulation.
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