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Background: Early nutrition influences the risk of chronic kidney diseases (CKDs)
development in adulthood. Mechanisms underlying the early programming of altered
renal function remain incompletely understood. This study aims at characterizing
the role of cell senescence pathways in early programming of CKD after transient
postnatal overfeeding.

Materials and Methods: Reduced litters of 3 mice pups and standard litters of
9 mice pups were obtained to induce overfed animals during lactation and control
animals, respectively. Animals were sacrificed at 24 days (weaning) or at 7 months
of life (adulthood). Body weight, blood pressure, kidney weight, and glomerular
count were assessed in both groups. Senescence pathways were investigated using
β-Galactosidase staining and Western blotting of P16, P21, P53, P-Rb/Rb, and Sirtuin
1 (Sirt1) proteins.

Results: Early overfed animals had a higher body weight, a higher blood pressure
at adulthood, and a higher glomerular number endowment compared to the control
group. A higher β-Galactosidase activity, a significant increase in P53 protein expression
(p = 0.0045) and a significant decrease in P-Rb/Rb ratio (p = 0.02), were observed
at weaning in animals who underwent early postnatal overfeeding. Protein expression
of Sirt1, a protective factor against accelerated stress-induced senescence, was
significantly decreased (p = 0.03) at weaning in early overfed animals.

Conclusion: Early postnatal overfeeding by litter size reduction is associated with
increased expression of factors involved in cellular senescence pathways, and
decreased expression of Sirt 1 in the mouse kidney at weaning. These alterations may
contribute to CKD programming after early postnatal overfeeding.

Keywords: programming, overnutrition, postnatal overfeeding, kidney, chronic kidney disease, developmental
origins of health and disease
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INTRODUCTION

An upward trend in the prevalence of non-communicable
diseases (NCDs) with developmental origins, including chronic
kidney disease (CKD) and arterial hypertension is observed
worldwide (Hanson et al., 2011; Barouki et al., 2012). Converging
epidemiological studies across a range of populations over the life
course and experimental studies in animals have shown that the
environment during fetal and early postnatal life affects the risk
of developing chronic diseases later in life (Martin et al., 2005;
Dotsch et al., 2012; Adair et al., 2013; Habbout et al., 2013b).
This concept, also referred to as Barker’s hypothesis, is known as
Developmental Origins of Health and Disease (Barker et al., 1989;
Hanson and Gluckman, 2008).

The relationship between nutrition and CKDs is well
established. In the Framingham Offspring cohort (Fox et al.,
2004) and in health screening programs in the United States
(Hsu et al., 2006) and Japan (Iseki et al., 2004), baseline body
mass index (BMI) was significantly and positively correlated
to a lower glomerular filtration rate (GFR). In a New York
clinical-pathologic study, the proportion of all renal biopsies
that displayed obesity-related kidney damage, in particular
focal segmental glomerulosclerosis (FSGS), increased 10 folds
from 1986 to 2000 (Kambham et al., 2001). In both human
and animal studies, early postnatal overfeeding and excessive
weight gain have been associated with adverse outcomes in
the vascular and renal systems in adulthood (Boubred et al.,
2007, 2009; Alcazar et al., 2012; Yim et al., 2012, 2013,
2014; Adair et al., 2013). We and others showed in previous
studies that postnatally overfed rats had a higher systolic
blood pressure (SBP), proteinuria, increased glomerular number,
smaller glomerular volume, and more FSGS at adulthood
compared to control animals (Boubred et al., 2007). Similarly,
an increase in albuminuria, and FSGS has been observed
in postnatally overfed rats at 3, 6, and 12 months of age
(Yim et al., 2013, 2014).

However, while the renal consequences of postnatal
overfeeding induced by litter size reduction have been well
described (Boubred et al., 2007; Yim et al., 2013, 2014),
the underlying molecular mechanisms remain incompletely
understood. Several pathway alterations, including the renin
angiotensin system, have been described (Juvet et al., 2018).
However, the pathways leading to cellular senescence have not
yet been studied in this context.

Senescence pathways are known to play different roles in
the kidney during the life course. During kidney development,
senescence pathways participate to the regression of transitory
structures, such as the mesonephros (Da Silva-Alvarez et al.,
2019). In this context, senescence pathways display some
specificities compared to senescence later in life, as this subtype of
senescence seems to be independent of P53. Furthermore during
development, P53, was shown to be important for physiological
nephrogenesis (Song et al., 2018). At adulthood, activation of
senescence pathways occurs in a different context, as accelerated,
stress-induced senescence has been shown to play a major role in
renal aging and pathology, such as glomerulosclerosis and fibrosis
(Sturmlechner et al., 2017).

Furthermore, we recently demonstrated that early postnatal
overfeeding leads to modifications of senescence pathways and
Sirt-1 expression in the liver (Yzydorczyk et al., 2017).

In this study, we aim at characterizing the role of cell
senescence pathways in early programming of renal alterations
after transient postnatal overfeeding.

MATERIALS AND METHODS

Animal Model
This study was conducted in accordance with the 2010/63/EU
directive of the European Parliament and the “Guide for the Care
and Use of Laboratory Animals” published by the US National
Institutes of Health (NIH Publication No. 85–23, revised 1996).
The study protocol was approved by the ethics committee of
the university that housed the animal model (Comité d’Ethique
de l’Expérimentation Animale, Université de Bourgogne, Dijon,
France, protocol agreement number: 3710).

Female adult C57BL/6 mice were caged with male mice in a
proportion of 2:1 for mating. During pregnancy and lactation,
female mice were housed individually with an appropriately
enriched environment, and fed a standard ad libitum chow
diet with free access to water. On the third day of life, male
pups were randomly cross-fostered between mothers in either
reduced litters (3 pups) to induce overfeeding, or standard
litters (9 pups) for the control group. Two consecutive series
of reproduction were used, corresponding to 12 different litters.
Each litter included pups from one to six different dams.
Experiments were conducted on male pups, as the effect of
postnatal overfeeding on the development of renal disease was
demonstrated predominantly in male pups (Boubred et al.,
2007, 2009; Alejandre Alcazar et al., 2011; Alcazar et al., 2012;
Yim et al., 2013, 2014, 2017). Excess pups were sacrificed by
decapitation after isoflurane anesthesia. Pups were weaned on
day 24, after which they had ad libitum access to tap water and
a standard chow diet. Animals were sacrificed at 24 days (further
referred to as “weaning”) or 7 months of life (further referred
to as “adulthood”) by exsanguination after intraperitoneal
administration of a lethal dose of pentobarbital (80 mg/kg).

Body Weight (BW)
Offspring mice were weighed monthly, from birth until 7 months
of age. Average BW at a given age was calculated in each group.

Blood Pressure (BP)
Blood pressure was measured at 6 months of life using a
validated tail-cuff method (Boubred et al., 2007, 2009; Habbout
et al., 2013a; Li et al., 2016) in anesthetized animals. For each
animal, 3 measurements of SBP and diastolic blood pressure
(DBP) were averaged.

Kidney Weight (KW)
Freshly harvested kidneys were weighted immediately after
sacrifice. Total KW (sum of both kidney weights) is expressed
relatively to BW for each animal.

Frontiers in Physiology | www.frontiersin.org 2 May 2020 | Volume 11 | Article 511

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00511 May 21, 2020 Time: 19:49 # 3

Juvet et al. Senescence Pathways in Renal Programming

Glomerular Count
Total glomerular number was assessed by the dissection, acid
maceration method as previously published and validated
(Boubred et al., 2007). Whole kidneys (1 kidney per animal)
were incubated in 50% hydrochloric acid for 45 min at 37◦.
Incubation time was adapted according to the kidney’s weight.
Kidneys were then rinsed in tap water and stored at 4◦ overnight.
Kidneys were dissociated mechanically. Tubules and glomeruli
were then suspended in water. Glomeruli from three different
0.5 ml aliquots were counted in a counting chamber under the
microscope in a blinded manner. The total kidney’s glomerular
number endowment was calculated from the average number of
glomeruli from the three aliquots.

Histological Analysis
Kidneys were frozen at −80◦ and included in Tissue-Tek OCT.
Five micrometers sections were used for β-Galactosidase staining
(Cell Signaling Kit #9860) according to the manufacturer’s
protocol to evaluate cellular senescence (Itahana et al., 2007).
Briefly, frozen sections were rinsed in phosphate buffered saline
(PBS), then fixed and incubated with β-Galactosidase staining
solution overnight at 37◦. Negative controls were performed with
the same β-Galactosidase staining solution, but lacking the X-Gal
substrate of β-Galactosidase. Sections were analyzed with a Nikon
Ti microscope at a magnification of 20×.

Proteins Extraction
Frozen kidneys (−80◦C) were grinded and resuspended in
lysis buffer prepared with RIPA buffer (Sigma Aldrich) and
protease inhibitor (cOmpleteTM). HCl was used to adjust
pH to 8.0. Samples were then dislocated by sonication and
centrifuged. Supernatant was removed and stored at −20◦C.
Protein quantification in the obtained samples was performed
with a Pierce BCA protein assay kit (23225).

Western Blotting
Samples of 30 micrograms of proteins in Laemmli buffer
were suspended in NUPAGE reducing buffer and RIPA
buffer. After heating at 70◦C for 10 min to induce protein
denaturation, samples were charged in a 4–12% Bis-Tris gel
(invitrogen NP0335BOX) running gel. Migration was performed
at 100 V for 2:15 h in NUPAGE MOPS SDS running buffer
(NP0001). Transfer on nitrocellulose membranes 0.45 µm
(Bio-Rad 1620115) was performed overnight at 30 V in
NUPAGE transfer buffer (NP0006-1). Protein transfer was
checked with a Ponceau Red staining (Sigma). Membranes were
then blocked in 5% bovine serum albumin (BSA) dissolved
in Tris Buffered Saline with Tween (TBST). Membranes were
incubated overnight with primary antibody, washed in TBST
and incubated 2 h with secondary antibody. The following
antibodies were used at a dilution of 1/1000: Anti P16 (Abcam
Ab 201980), Anti P21 (Abcam Ab 7960), Anti P53 (Cell
Signaling 2527), Anti P-Rb (Cell Signaling 8516), Anti Rb (Cell
Signaling 9309), and Anti Sirt1 (Cell Signaling 9475). The other
following antibodies were used at a dilution of 1/2000: Anti β

Actin (Cell signaling 4967), HRP linked anti rabbit antibody

(Cell signaling 7074), HRP linked anti mouse antibody (Cell
signaling 7076).

Chemiluminescent signal was obtained with Western pico or
Western femto, depending on the proteins expression profile
(Thermo Fisher Scientific 34094 and 34577). Pictures were
captured with a G-Box (Syngene) and analyzed with the
image J software.

Statistical Analysis
Student’s t test was applied to test for intergroup difference of BP
and one-way ANOVA to test for intergroup difference of weight.
For every other parameter, continuous values between groups
were compared using the non-parametrical Mann-Whitney’s
U test. P value was considered significant if <0.05, with no
correction for multiple comparisons. No post hoc test was
performed. Data was analyzed using GraphPad Prism 8.0.1.

RESULTS

Body Weight
Birth weight was not significantly different between overfed and
control groups. At weaning, animals exposed to early transient
postnatal overfeeding had a significantly higher body weight
(30%) compared to control group. This difference persisted
throughout life until sacrifice at adulthood (Habbout et al., 2013a;
Li et al., 2016). These results were previously published (Habbout
et al., 2013a; Li et al., 2016).

Blood Pressure
At 6 months of age, systolic, diastolic and mean arterial BP were
significantly higher in animals who underwent early postnatal
overfeeding compared to the control group. These results have
been published previously (Habbout et al., 2013a; Li et al., 2016).

FIGURE 1 | Comparison of standardized total kidney weight (sum of both
kidney weights) between control (CTRL) and overfed (OF) groups at weaning.
Results are expressed as means ± standard deviation (SD), *p < 0.05.
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FIGURE 2 | Comparison of absolute total kidney weight (sum of both kidney
weights) between control (CTRL) and overfed (OF) groups at weaning and
adulthood. Results are expressed as means ± standard deviation (SD),
*p < 0.05.

Kidney Weight
Kidney weight was assessed at weaning. There were no differences
between groups in standardized total kidney weight (i.e., sum
of both kidneys expressed relatively to body weight) (n = 11 in
each group, p = 0.78) (Figure 1). However, when considering
absolute kidney weight, overfed animals had significantly higher
total kidney weight at weaning (n = 11 and n = 12 in
CTRL and OF group, respectively, p < 0.0001). This difference
persisted at adulthood (n = 10 and 12 in CTRL and OF group,
respectively) (Figure 2).

Glomerular Number
Glomerular number was assessed at adulthood. Glomerular
count in kidneys of postnatally overfed animals was 44% higher
than controls (n = 5 in each group, p = 0.0079) (Figure 3).

Senescence Associated β-Galactosidase
Activity
β-Galactosidase staining, reflecting senescence associated
β-Galactosidase activity, was more widely distributed and
more intense in early overfed animals, as shown in Figure 4.
These findings indicate a higher number and larger distribution
of senescent cells at weaning in the kidneys of animals who
underwent early postnatal overfeeding.

Senescence Pathways Analysis
To further investigate the underlying mechanisms involved in
cell senescence after early postnatal overfeeding, we analyzed
the protein expression of P-Rb, Rb, P53, P21, P16, and Sirt1.
The higher number of senescent cells in the kidney after early

FIGURE 3 | Mean glomerular count per kidney in control (CTRL) and overfed
(OF) groups at adulthood. Results are expressed as means ± SD, *p < 0.05.

postnatal overfeeding demonstrated by a higher β-Galactosidase
staining, was confirmed by quantification of protein expression
of factors involved in cellular senescence pathways at weaning
(Figure 5). The final effector Rb was found to be significantly
hypophosphorylated in the OF group compared to control group
at weaning (n = 11 for CTRL, n = 12 for OF, p = 0.002), indicating
that larger parts of the analyzed tissue have entered a state
of senescence. Activation of senescence pathways was further
confirmed by a significant increase in protein expression of P53
(n = 11 for CTRL, n = 12 for OF, p = 0.0045). Protein expression
of P16 and P21 were not significantly different between groups
(n = 11 for CTRL, n = 9 for OF, p = 0.46, n = 11 for CTRL, and
n = 12 for OF, p = 0.83; respectively). Furthermore, the protein
expression of longevity-promoting factor Sirtuin 1 (Sirt1) was
found to be significantly decreased in the OF group (n = 11
for CTRL, n = 12 for OF, p = 0.03) compared to control
group (Figure 5). No significant difference in expression of the
analyzed factors was observed at adulthood (for P16: n = 9 for
CTRL, n = 12 for OF, p = 0.11; for P21: n = 9 for CTRL,
n = 10 for OF, p = 0.11; for P53: n = 9 for CTRL, n = 12
for OF, p = 0.35; for P-Rb/Rb: n = 8 for CTRL, n = 7 for
OF, p = 0.61; and for Sirt1: n = 8 for CTRL, n = 12 for OF,
p = 0.95) (Figure 6).

DISCUSSION

Increasing number of evidence suggests that the postnatal
period is a critical window of sensitivity for long-term kidney
health. Indeed, when applied during this period, a transient
overnutrition leads to increased body weight, elevated BP,
and increased glomerular number (Boubred et al., 2007, 2009;
Yim et al., 2012, 2013, 2014). Consistent with those findings,
animals exposed to postnatal overfeeding in our study exhibited
increased body weight, elevated BP at adulthood, and increased
glomerular number. Our results further shed new light on the
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FIGURE 4 | β-Galactosidase staining in three different index animals (A, negative control; B, CTRL group; C, OF group). The bar on picture B represents 50 µm.

role of senescence pathways in the kidney after transient early
postnatal overfeeding.

We observed that early transient postnatal overfeeding in mice
is associated with an early activation of senescence pathways
in the kidney. This increase has been evidenced by the semi-
quantitative assessment of tissular senescence by β-Galactosidase
staining and confirmed by Western blotting. Indeed, the
pathway’s end effector Rb is significantly hypophosphorylated
at weaning in OF animals, thus indicating larger parts of the
analyzed tissue have entered a state of senescence. We also found
P53, an upstream regulator of Rb, to be significantly increased
after early postnatal overfeeding.

We found that the longevity-promoting factor Sirt1 is
significantly downregulated at weaning in the kidney of
animals who underwent early postnatal overfeeding. This is
consistent with the ongoing overfeeding at that time point,
as Sirt1 expression is regulated by the intracellular energy
balance (Oellerich and Potente, 2012). Furthermore, Sirt 1
interacts with P53, as these factors inhibit each other (Kong
et al., 2015). Thus the decrease of Sirt1 levels at weaning
is consistent with P53 upregulation. It is noteworthy that
the protective effects that Sirt1 exerts on the kidney are
numerous and interact with many cellular pathways (Kong
et al., 2015). Sirt1 downregulation is likely to contribute to
programming of renal disease after early transient postnatal
overfeeding. In rodents, nephrogenesis begins in the middle
gestation and continues for several days after birth. It is
likely that overfeeding during the early postnatal key
window is responsible for the increased nephron number.
However, reduced glomerular volume in this context has
been observed, which can explain the later development of

glomerulosclerosis and renal failure. Our study focused on the
molecular mechanisms underlying the previously described
renal sequellae of postnatal overfeeding and demonstrate
that senescence pathway are activated early in this model.
Several studies in humans and animal models demonstrate
the presence of senescent cells in multiple localizations of
the kidney (cortical tubules, glomeruli, interstitium, and
arteries) in the context of renal aging (Valentijn et al., 2018)
and diseases, such as deoxycorticosterone acetate (DOCA)-
salt-induced hypertension, streptozotocin-induced diabetic
nephropathy, and cisplatin-induced nephrotoxicity (Westhoff
et al., 2008; Kitada et al., 2014). In this study, we show that
senescence pathways may also play a role in the programming
of renal alterations after early transient postnatal overfeeding.
Interestingly, Jennings et al. (1999) demonstrated that early
postnatal growth impacts longevity in male rats and affects
telomere shortening in the kidney, conditions known to be
associated with senescence.

Importantly, these alterations in senescence pathways and
Sirt1 expression in the context of transient postnatal overfeeding
do not seem to be specific to the kidney. Our group previously
showed similar alterations in the liver at adulthood in the
same animal model (Yzydorczyk et al., 2017). However, none
of the alterations in protein expression described at weaning
in the kidney were observed at adulthood. The kidney is
a non-regenerative organ, and kidney damage secondary to
transient and early exposure to harmful factors may induce
definitive organ damage. Even if the noxious stimulus is
removed, the already caused renal harm cannot be corrected,
as no additional glomeruli can be formed later in life, after
weaning. This will affect renal health in the long term,
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FIGURE 5 | Protein expression of P-Rb, Rb, P53, P16, P21, and Sirt1 were
analyzed in the kidney of control (CTRL) or overfed (OF) mice at weaning. P53
protein expression was significantly increased in OF group (p = 0.0045) while
Sirt1 protein expression and P-Rb/Rb ratio were significantly decreased
(p = 0.03 and 0.02, respectively) compared to the CTRL group. Results are
expressed as mean ± SD, *p < 0.05.

although the noxious stimulus is not present anymore. In this
model, overfeeding was induced during lactation by litter size
reduction, with a significant impact on body weight, blood
pressure and glomerular count later in life, and associated
with early modifications in senescence pathways. In humans,
breastmilk is beneficial compared to formula for infant nutrition,
with a significantly decreased systolic and diastolic blood
pressure, and a significantly lower BMI at adulthood (Fergusson
et al., 2014). This study is a reminder that early postnatal
overfeeding, including during lactation, still entails long-
term risks.

FIGURE 6 | Protein expression of P-Rb, Rb, P53, P16, P21, and Sirt1 were
analyzed in the kidney of control (CTRL) or overfed (OF) mice at adulthood. No
significant change in protein expression in any of the analyzed markers was
observed between CTRL and OF group. Results are expressed as
mean ± SD, *p < 0.05.

This study presents several limitations. Evaluation of long-
term renal consequences was limited to glomerular count and
blood pressure measurement. Further studies should aim at
studying in parallel the molecular changes in the senescence
pathways and other parameters of late renal dysfunctions, such
as renal function and glomerulosclerosis. In addition, to confirm
the causality of senescence pathway activation and decrease of
Sirt 1 expression on later renal dysfunction, further studies should
investigate if Sirt 1 induction using resveratrol (Ligi et al., 2011;
Vassallo et al., 2014) or blocking of selected factors involved in
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senescence pathways, such as P53, could reverse the activation of
identified senescence pathways and prevent the development of
renal dysfunction at adulthood. Another limitation of this study
is that only male animals were analyzed. However, future studies
exploring the response to early postnatal overfeeding should be
performed in females as well.

CONCLUSION

In conclusion, senescence pathways are upregulated in the mouse
kidney after early postnatal overfeeding secondary to litter size
reduction, and may contribute to programming of renal disease
in adulthood. Given the growing interest in early prevention of
renal disease (Luyckx et al., 2017; The Low Birth Weight and
Nephron Number Working Group, 2017), it can be speculated
that optimizing nutrition early in life may contribute to reducing
the risk of CKD at adulthood.
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