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ABSTRACT

Objectives Diet and nutrition might play an important
role in the aetiology of metabolic syndrome (MetS). Most
studies that examine the effects of food intake on MetS
have used conventional statistical analyses which usually
investigate only a limited number of food items and are
subject to sparse data bias. This study was undertaken
with the goal of investigating the concurrent effect

of numerous food items and related nutrients on the
incidence of MetS using Bayesian multilevel modelling
which can control for sparse data bias.

Design Prospective cohort study.

Setting This prospective study was a subcohort of the
Tehran Lipid and Glucose Study. We analysed dietary
intake as well as pertinent covariates for cohort members
in the fourth (2008-2011) and fifth (2011-2014) follow-up
examinations. We fitted Bayesian multilevel model and
compared the results with two logistic regression models:
(1) full model which included all variables and (2) reduced
model through backward selection of dietary variables.

Participants 3616 healthy Iranian adults, aged >20 years.

Primary and secondary outcome measures Incident
cases of MetS.

Results Bayesian multilevel approach produced results
that were more precise and biologically plausible
compared with conventional logistic regression models.
The OR and 95% confidence limits for the effects of the
four foods comparing the Bayesian multilevel with the full
conventional model were as follows: (1) noodle soup (1.20
(0.67 to 2.14) vs 1.91 (0.65 to 5.64)), (2) beans (0.96 (0.5
t0 1.85) vs 0.55 (0.03 to 11.41)), (3) turnip (1.23 (0.68 to
2.23) vs 2.48 (0.82 to 7.52)) and (4) eggplant (1.01 (0.51
t0 2.00) vs 109396 (0.152x107° to 768x10'%)). For most
food items, the Bayesian multilevel analysis gave narrower
confidence limits than both logistic regression models, and
hence provided the highest precision.

Conclusions This study demonstrates that conventional
regression methods do not perform well and might even
be biased when assessing highly correlated exposures
such as food items in dietary epidemiological studies.
Despite the complexity of the Bayesian multilevel models
and their inherent assumptions, this approach performs

Strengths and limitations of this study

» A prospective cohort study using three statistical
models.

» A Bayesian multilevel model was used to control for
sparse data bias present in many nutritional studies
that use non-Bayesian analyses.

» Generation of precise effect estimates for all
comparisons.

» Food frequency questionnaires used in this study
may be subject to measurement bias.

superior to conventional statistical models in studies that
examine multiple nutritional exposures that are highly
correlated.

INTRODUCTION

Metabolic syndrome (MetS) is the clustering
of at least three of the five following medical
conditions: central/abdominal obesity,
hypertension, elevated blood sugar, elevated
triglyceride levels and reduced high density
lipoprotein (HDL) levels.! MetS is associ-
ated with the risk of developing cardiovas-
cular disease and diabetes." According to
the WHO, approximately 20%-25% of the
world’s adult population is affected by MetS.'
MetS is considered a multifactorial disease
in which nutritional exposures and diet are
major contributing factors. According to
nutritional studies, a number of foods have
been recommended for preventing MetS.
These foods include legumes, whole grains,
fruits, vegetables, nuts, fish, low-fat dairy
products and moderate consumption of
alcohol. Moreover, other dietary patterns and
approaches to slow the incidence of hyper-
tension, including a vegetarian diet have
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been proposed.” Thus far, the effects of different foods
on MetS have only been investigated in many epidemi-
ological studies using conventional statistical analyses
such as multiple logistic regression (LR).>® In most of
these studies, only a limited number of food items have
been investigated. This approach excludes potential
benefits of foods that might exist through their nutrient
contents. Conversely, a conventional model that includes
only measured nutrients erroneously assumes that there
are no unmeasured indirect nutrient effects or interac-
tions among the modelled nutrients under the assump-
tion that all food effects are transmitted through the
measured nutrients.” ' Simultaneous effects of numerous
food items and related nutrients cannot be studied with
conventional statistical models due the potential for
collinearity (strong correlation between two nutrient vari-
ables that may lead to loss of precision of effect sizes).
Another limitation is that inclusion of all food items in
conventional statistical model is that the estimates from
these models may suffer from sparse data bias."" ™" In such
circumstances, Bayesian multilevel models can be used
to deal with the aforementioned problems by providing
substantial improvement in the precision of effect sizes."*
Therefore, our study objective was to examine the simul-
taneous effects of different food items and related nutri-
ents on the incidence of MetS in healthy adults, using (1)
a Bayesian multilevel model, (2) a conventional full LR
model and (3) a reduced LR model through backward
selection.

MATERIALS AND METHODS

This prospective study is part of the Tehran Lipid and
Glucose Study (TLGS)." The TLGS began in 1998 and
was conducted on 15005 persons aged 3 to 63 years from
Tehran’s District 13. We used the data collected during
the fourth (2008-2011) and fifth (2011—2014) follow-up
examinations. Data related to dietary intake and other
covariates were collected from the fourth phase, and
incident MetS cases were identified from the fifth phase,
which was considered the follow-up phase (figure 1).

Target population

We selected 3616 adults aged =20 years who were not
affected by MetS at the fourth follow-up examination
(2008) and who had dietary information (figure 1).
Among this cohort, 590 cases of MetS were met our inclu-
sion criteria.

Inclusion criteria

Subjects who were eligible for the study included adults
aged =20 years who had been followed from the fourth
to the fifth phase and who had the following criteria: no
history of chronic diseases (diabetes, stroke, thyroid prob-
lems and cancer); did not follow any specific dietary regi-
ments (such as a weight loss diet or the intake of fewer
than 800 kcal or greater than 4000 kcal per day) and no
previous diagnosis of MetS.

66862 20 years adults
in phase 4

2008-2011

Missing data of MetS
Status

N=52

Excluded prevalent
MetS

N=2414

Non-MetS adults
N=4189

Excluded individuals
with no any follow-up

N=573

study population in
phaseS (2011-2014)

N=3647

Missing data of MetS
Status

N=31

Final study population
in phaseS (2011-2014)

N=3616

Figure 1 Follow-up the status of the TLGS participants after
the baseline examination. MetS, metabolic syndrome; TLGS,
Tehran and Lipid and Glucose Study.

Measurement of outcome

MetS was defined according to the recent published
consensus guidelines'® as having at least three of the
following criteria: (1) abdominal obesity (waist circum-
ference >90 cm in both genders, according to the “third
National survey of risk factors of non-communicable
diseases (2007). This new cut-off was obtained based on
the International Diabetes Federation criteria. These
criteria have shown a sensitivity and specificity of 65%,
and positive predictive value of 74% for the diagnosis
of MetS. Also, the data were weighted for the following
variables: age, gender and residential status)’.”; (2)
serum HDL levels (levels lower than 40mg/dL in men
and 50mg/dL in women or the consumption of HDL-el-
evating drugs); (3) hypertension (a systolic BP 2130 mm
Hg or a diastolic BP 285 mm Hg or the consumption of
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antihypertensive drugs); (4) hyperglycaemia (a fasting
blood glucose 2100 mg/dL or the consumption of hypo-
glycaemic drugs) and (5) hypertriglyceridaemia (a serum
triglyceride level 2150mg/dL or the consumption of
triglyceride-lowering drugs).

Measurement of exposure

Nutritional data on the participants’ dietary intake
were collected using a semiquantitative food frequency
questionnaire (FFQ), which consists of 147 food items.
Several nutritionists who had been trained in this field
completed the questionnaires through face-to-face inter-
views. During the interview, the average size of each of the
FFQ food items (which is equal to one food serving) was
described to each participant and was subsequently asked
about the number of times each item was consumed in
the previous year. The validity and reliability of the FFQ
have been assessed through several studies in Iran and
have been found to be acceptable.”® ' The consump-
tion frequency of each food item in the previous year
was assessed on a daily, weekly, monthly or yearly basis.
Participants were asked to use food scales to report
grams per day of consumption for each food item. The
amount of intake of energy and nutrients was determined
using a food composition table (see online supplemen-
tary appendix 1).

Ascertainment of measured variables

Other measured ascertained covariates included: weight,
height, age, gender, marital status, history of hospitalisa-
tion in the previous 3months, history of cancer, educa-
tion (primary, intermediate, high school and high school
graduate, academic education) and tobacco use (never
smoked, previously smoked, currently smoking). Data
were collected using a general information question-
naire administered by a licensed nutritionist. Finally, we
used the Strengthening the Reporting of Observational
Studies in Epidemiology checklist to ensure all method-
ological aspects of the study and appropriately reported
and accounted for.

Data analysis

We estimated the effects of food items and nutrients on
MetS using both a Bayesian multilevel and conventional
analyses. The PROC generalised linear mixed model
(GLIMMIX) in SAS (V.9.4) was used for the Bayesian
multilevel analysis. LR with two types of variable selection
(stepwise backward selection and selection of all vari-
ables) was also applied, and their results were compared
with the Bayesian multilevel analysis.

In the Bayesian multilevel approach (first analysis), we
investigated the concurrent effects on MetS of 95 food
items (listed in online supplementary appendix 1) and
12 nutrients (carbohydrates, protein, total fat, monoun-
saturated fatty acids, carotenoids, calcium, folate, magne-
sium, zing, fibre, glucose and fructose), adjusted for nine
covariates (age, gender, cancer history, hospitalisation

status, educational status, body mass index, marital status,
smoking history and calories).

In the first conventional analysis (second analysis, full
model), 95 food items and nine covariates were forced
into the model. Due to the high correlation between food
items and nutrients resulting in the non-convergence of
maximum likelihood estimates, the effects of nutrients
were not investigated in the conventional analysis.

In the third conventional analysis using stepwise back-
ward selection, the alpha level (level of statistical signifi-
cance) for selection of food items was set at 0.2, and all
nine confounders were forced into the model. Seven-
ty-seven food items were removed at this stage, leaving
only 18 food items.

In all three models, the following six food items were
removed from the models due to high degree of collin-
earity between variables (Pearson correlation 20.4),
retaining the food with a statistically stronger effect
(specified in parentheses) in the final analysis: jam
(sugar), plum (peach), lemon juice (lemon), apple juice
(apple), orange juice (orange) and cooked vegetables
(cooked carrots). Moreover, in all the models, 46 food
items (data available on request) were excluded from our
analyses because it seemed unlikely that they would have
had considerable dietary effects on MetS. Thus 95 (147-
(6+46)) food items were retained in the analysis.

To interpret the effects of foods on MetS more easily,
each food item variable was transformed from ‘grams’ to
specified servings using valid references based on daily
servings.20

Data analysis was done with Stata V.11 (Stata) for the
conventional analysis and SAS 9.2 for the Bayesian multi-
level approach. The parameters of the LR and Bayesian
multilevel models were estimated using maximum like-
lihood and shrinkage (penalised likelihood) methods,
respectively. To compare the precision of estimates, we
calculated the difference in confidence limits for ORs of
foods in the logarithm scale (upper log-OR minus lower
log-OR).

Structure of the Bayesian multilevel model
We can write the first stage model as: logit

(p!IX, W) =a+X8+Wy (1)

In this model, p is risk of MetS, Xis the matrix of food
items information, W is the matrix of other potential
confounders and B (B1,..., f95) is the vector of LR coeffi-
cients corresponding to the 95 foods items. The first stage
model is also the LR for the conventional analysis.

Second stage (2): Bj = w1 21+ mo Zoj + WpZyj + 0j = Zjmw + 0;

Zj = (le-ZZj‘ - Zp) (2)
0 ~ MVN (0.7;)

where @Wis the vector of coefficients of second-stage covar-
iates for nutrients that may contribute to dietary effects
on MetS. These second-stage covariates (Z) include nutri-
ents carbohydrates, protein, total fat, monounsaturated
fatty acids, carotenoids, calcium, folate, magnesium, zinc,
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fibre, glucose and fructose. The quantity 5j is the residual
effect of food item j, which is assumed to be an inde-
pendent normal random variable with zero mean and SD
z. Following Witte et al,'* we specified a fixed value of tau
to improve estimation convergence. Based on a similar
we set the SD z equal to 0.35 for all food items.
This corresponds to having 95% certainty that the OR for
the residual effects of foods (per serving of each food)
lies between 0.5 and 2.0. The second stage can be inter-
preted as the prior distribution for the beta coefficients in
the Bayesian multilevel method. The second-stage model
shrinks the ordinary estimates for food items towards
each other when they have similar levels of nutrients.

Models 1 and 2 can be combined into a ‘mixed-effects’
model

logit (PIX, Z, W) = (a+ X (Z +6) + W) = a + XZrr + X5 + Wy

In this model, ® and y are treated as vectors of fixed
coefficients, and & is treated as a vector of random coeffi-
cients with mean zero and variance=0.1225. Hence, one
interpretation is that the multilevel model includes XZ
interactions, which allow the effects of X on MetS to be
similar when there is a similar nutrient level in the food
items.

For the estimation of the fixed and random effects in
the Bayesian multilevel model, the mixed-model equa-
tions solution matrix (MMEQSOI) from SAS GLIMMIX
output was used. MMEQSOI contains fixed 7, random 5
, and covariate”y estimates and their respective estimated
covariance matrices. In our study, the MMEQSOI was a
117#117 (95 foods+12 nutrients+9 covarites+1 intercept)
matrix (online supplementary appendix 2).

Patient and public involvement
No patients were involved in the development and design
of this prospective study.

RESULTS

The mean (SD age of participants and median follow-up
time were 40.6 (12.6) years and 24.6 months, respectively.
The total incidence rate of MetS was 82.2 (95% CI: 75.8
to 89.1) per 10000 person-years. The incidence rate of
MetS was higher in men than in women (125.6 vs 65.3
per 10000 person-years, p<0.001). In both genders, those
affected by MetS were older (p<0.001). Also, the percent-
ages of married individuals and those who had previous
history of a heart attack were higher among those with
MetS than in the non-MetS people (p<0.001) (table 1).

Conventional analysis

The adjusted ORs and corresponding 95% confidence
limits (95% CI) for food intakes and other covariates
using full LR model and LR model with stepwise back-
ward selection are reported in table 2. The results of
the conventional analysis have been described in details
elsewhere.??

Full model (LR with all food variables in the model)

Based on this model, two food items were associated
with MetS: bananas (OR=1.38, 95% CI: 1.05 to 1.83) and
grapes (OR=1.14, 95% CI: 1.01 to 1.29). Two other food
items that were weakly associated with MetS were beef
(OR=1.71, 95% CI: 0.95 to 3.08) and chicken (OR=1.24,
95% CI: 0.99 to 1.56). On the other hand, there was a
weak evidence of an inverse association of lamb meat
(OR=0.44, 95% CI: 0.17 to 1.12) with MetS.

LR using backward selection method

In this analysis, only 18 foods remained in the final model.
Based on this reduced model, grapes (OR: 1.11, 95% CI:
1.01 to 1.29; p=0.03) and bananas (OR=1.37, 95% CI:
1.05 to 1.78; p=0.02) were associated with MetS risk. Also,
there was weak evidence of the increase in MetS risk for
the intake of rice (OR=1.11, 95% CI: 0.99 to 1.2; p=0.06),
turnip (OR=2.41, 95% CI: 0.77 to 6.69; p=0.09) and seeds
(OR=1.32, 95% CI: 0.99 to 1.77, p=0.053). On the other
hand, lamb meat was inversely associated with MetS risk
(OR: 0.40, 95% CI: 0.16 to 0.99; p=0.05).

Multi-level Bayesian analysis via the GLIMMIX

Based on this model, grapes (OR=1.14, 95% CI: 1.01 to
1.27; p=0.03) and bananas (OR=1.32, 95%CI: 1.01 to
1.74; p=0.05) were positively associated with MetS. There
was also evidence that fructose was positively associ-
ated with the MetS risk (OR=1.84, 95% CI: 0.97 to 3.51;
p=0.06) (table 2).

On comparing the three models, 15 (83.3%) of the
common OR estimates were the smallest (toward the null)
in the Bayesian multilevel model, which is not surprising
given that the mean of the residual effects of foods (SJ.)
was prespecified to zero, so the OR estimates underwent
shrinkage toward the null. In the remaining three food
items (16.7%), the OR estimates were similar between
models (table 2).

DISCUSSION

Although dietmay playarole in the aetiology of MetS, most
previous studies have only looked at a limited number of
food items mainly because of limitations of conventional
modelling approaches.8 9 On the other hand, multilevel
models and shrinkage estimators are known to give lower
prediction error and improve the precision and accuracy
of the effect sizes.'* This study used novel Bayesian multi-
level models to study the simultaneous effects of different
food items and related nutrients on the incidence of MetS
and compared it to conventional models. Bananas and
grapes were the only items that were associated with MetS
in all three models. However, on stratifying by history
of diabetes, the effects were weaker in the non-diabetes
group. Furthermore, because of the small sample size of
the diabetic group (37 new cases of MetS in the 328-popu-
lated diabetics group: 0.11 case per event), model fitting
in this group failed.
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Figure 2 Histogram of maximum-likelihood and penalised-likelihood coefficients for the effects of dietary items on metabolic
syndrome. GLIMMIX, generalised linear mixed model; MLR, multiple logistic regression.

The histogram of regression coefficients of dietary
items indicates the penalised likelihood estimates (from
GLIMMIX) are much less dispersed than the maximum
likelihood estimates in the conventional analyses
(figure 2). Also, GLIMMIX has a better goodness of fit
properties than the conventional models as the deviance
information criterions for backward selection method,
full model and Bayesian multilevel model were 29057.6,
27679.9 and 18122.1, respectively.

The largest OR estimates were observed in the
full model signalling sparse data bias. The OR estimates
in the Bayesian multilevel model were more similar to
the LR model with backward selection rather than to the
full LR model. For 10 (55.6%) of 18 common ORs, the
Bayesian multilevel model had the narrowest confidence
limits and the highest precision. For seven (38.9%) of
ORs, the backward model had the best precision whereas
there was similar precision for only one (5.6%) of the
ORs. Although in the backward method only 18 variables
remained in the final model, the Bayesian multilevel
model outperformed the backward method in terms of
precision of the OR estimates.

In the 77 (95 — 18) remaining food items that were
common in the Bayesian multilevel models and full
model, Bayesian multilevel modelling exhibited better
precision (60 (78%) vs 15 (0.20%)). In two (2%) of ORs,
both models exhibited similar precision.

In the Bayesian multilevel model, the confidence limits
for three extreme OR estimates in the full model were
more precise and biologically plausible. Specifically, these
OR estimates were as follows: noodle soup ((0.67-2.14)
in the Bayesian multilevel model vs (0.65-5.64) in the
full model), beans (0.5-1.85) vs (0.03-11.41), turnip
and (0.68-2.23) vs (0.82-7.52)). In the full model, the
estimation for eggplant OR was strongly affected by the
sparse data bias'' "*: OR=109396, 95% CI=0.152x10" to
768x10'%), but this implausible and imprecise estimation
was balanced in the Bayesian multilevel model (OR=1.01,
95%CI=0.51 to 2.00). This balancing of extreme estimates
has been shown in previous studies.'**!

The most significant limitation of the stepwise back-
ward selection method was the need for the deletion of
some variables from the model as the model assumes
(with full certainty) that these variables have no effect on

the outcome. As such the final selected model does not
take into account the uncertainty in the selection proce-
dure. The backward selection method had excluded 77
variables from the final model. This manner of variable
selection led to downward bias in the p values and subse-
quent standard errors for the reaming variables in the
model.”

Various studies®* * have shown the protective effects of
vegetables and fruits on MetS. These nutrients might exert
their protective effects potentially through the effects of
antioxidants, fibre, potassium and other phyto chemi-
cals, reducing the concentration of C reactive protein.”
However, due to low statistical power of this study, LR
models (which usually requires a minimum of 10 events
per predictor variable) were deemed underpowered to
detecta statistically significant difference for the following
food items: vegetables, like kiwifruit, watermelon, apple,
cherry, plum, tangerine, dates, nectarine, lemon, tomato,
celery, raw onion, cooked cabbage, lettuce and potato.

We observed a weak association between fructose
intake and MetS. Some studies””* have shown that the
consumption of foods and beverages that are high in fruc-
tose facilitate dyslipidaemia (increased triglycerides and
low density lipoproteins and decreased HDL). As previ-
ously mentioned,' hyperlipidaemia is considered as one
of the components of MetS, hence this finding is consis-
tent with earlier studies.

Unlike our study, a study by Esmailzadeh et af’** have
shown the protective effects of whole grains on the inci-
dence of MetS although this study only assessed a limited
number of foods and its results might be subject to a
number of biases.

One notable limitation of this study was the use of a
FFQ to assess food intake. Several studies have shown that
the FFQ has limitations in determining dietary patterns—
since it encompasses a long list of foods consumed during
the past year which may increase the possibility of recall
bias. Moreover, the FFQ underestimates the consumption
of proteins and carbohydrates allowing the possibility of
measurement error.” > Our study had limited statistical
power for some of the analysis. The general statistical rule
of thumb for sample size calculations suggests that LR
models require a minimum of 10 cases per covariate for
optimal statistical power.”® As we estimated the effects of
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104 variables (95 food intakes plus 9 confounders), we
required 1050 cases to satisty the criteria for adequate
sample size. Unfortunately, we only had 590 new cases
of MetS in this study. However, we partially made up for
this limitation through the use of the Bayesian multi-
level approach. Finally, as with many nutritional epide-
miological studies, there might be other sources of bias
including measurement error, model misspecification,
unmeasured confounding and potential for time-varying
confounding.37

In conclusion, Bayesian multilevel models present
more precise and biologically plausible estimates of
association than conventional frequentist models and
are better able to control for sparse data bias. Despite
the complexity of the semi-Bayes models, this model
is highly recommended for nutritional studies that
involve multiple, correlated and multilevel nutritional
exposures.
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