
Vol.:(0123456789)1 3

Brain Topography (2022) 35:277–281 
https://doi.org/10.1007/s10548-022-00896-y

BRIEF COMMUNICATION

Within and Between Subject Spectral Fingerprints of EEG‑Microstate 
Parameters

Johannes Zulliger1 · Laura Diaz Hernandez1 · Thomas Koenig1 

Received: 29 December 2021 / Accepted: 21 March 2022 / Published online: 12 April 2022 
© The Author(s) 2022

Abstract
Early reports have claimed that EEG microstate features (e.g. their mean duration or percent of time covered) are largely 
independent from EEG spectra. This has meanwhile been questioned for conceptual and empirical reasons, but so far, 
EEG spectral power map correlates of microstate features have not been reported. We present the results of such analyses, 
conducted both within and between subjects, and report patterns of systematic changes in local EEG spectral amplitude 
associated with the mean duration, frequency of occurrence and relative contribution of particular microstate classes. The 
combination of EEG microstate analysis with spectral analysis may therefore be helpful to come to a deeper understanding 
of local patterns of activation and inhibition associated with particular microstate classes.
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Introduction

Since the beginning of microstate research, possible links 
between EEG spectral power and microstate features have 
been discussed (Wackermann et al. 1993; Koenig et al. 2002; 
Britz et al. 2010; Milz et al. 2017; Croce et al. 2020). Early 
studies reported no (Wackermann et al. 1993) or weak cor-
relations (Koenig et al. 2002; Britz et al. 2010) between 
microstates and spectral power, but had only computed these 
correlations between individual power spectra averaged over 
all electrodes and the entire analysis time, and individual 
mean microstate features over time. In more recent stud-
ies, microstate features were found to differ within subjects 
between individual EEG epochs that were classified by their 
amount of occipital alpha power (Croce et al. 2020)., and it 
was reported that periods assigned to different microstate 

classes had locally different EEG spectral energy in particu-
lar frequency bands (Javed et al. 2019). In addition Michel 
and Koenig (2018) linked microstates to the hypothesis that 
communication among brain regions may be gated through 
coherence among slow oscillations of local cortical excita-
bility [Communication through coherence (CTC) hypothesis 
(Fries 2005)], which would predict that transient changes in 
microstate features covary with local and transient changes 
in excitability observable in EEG spectral power.

However, to our knowledge, there is yet no study that 
directly correlated the spontaneous variance of EEG micro-
state features with the local variance of EEG spectra. We 
therefore aimed to extract spectral ‘fingerprints’ of EEG 
microstates by using their natural variance over time and 
subjects as regressor on EEG spectra. Importantly, we con-
ducted these analyses both using the within-subject variance 
of the EEG, (considered as state marker), and the between 
subject variance of the EEG (typically considered to be a 
trait marker).

Methods

The EEG employed here has been collected as part 
of another study (Diaz Hernandez et  al. 2016) and 
was recorded during an initial 4 min eyes-closed rest-
ing period in 20 participants (10F/10M, mean age 
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24.8 ± 3.61 years) in 32 channels. The artefact edited 
individual EEG recordings were recomputed to average 
reference and partitioned into 2 s epochs. After applying 
a 2−20 Hz band-pass filter, 4 microstate templates previ-
ously obtained in the data (Diaz Hernandez et al. 2016, 
and Fig. 1) were applied to the EEG, and the EEG micro-
state duration, occurrence, and percent time covered were 
class-wise computed in each epoch. This yielded a total 
of 14 time-varying features (3 features × 4 classes + 1 
across microstate class mean duration and 1 mean occur-
rence across classes). In addition, epochs were FFT trans-
formed and epoch-wise varying absolute spectral ampli-
tude maps were computed in nine frequency bands [Delta 
(1−3.5 Hz), lower (3.5−6.5 Hz) and upper (6.5−8.5 Hz) 
theta, lower (8.5−10.5 Hz) and upper (10.5−13 Hz) alpha, 
lower (13−18.5 Hz), middle (18.5−21 Hz) and upper 
(21−30 Hz) beta and lower gamma (30−46 Hz)]. For the 
between subject analyses, microstate features and spec-
tral amplitude maps were individually averaged across 
epochs. There were thus 14 microstate features and 9 fre-
quency bands, and thus in total 126 combinations among 
them to be correlated with each other.

Microstate Spectral Correlates Within Subjects

For the within subject analysis, in each subject, each 
time-varying microstate feature was used as a regressor 
for the time-varying spectral amplitudes maps, yielding a 
map of spectral regression coefficients (covariance map) 
for each microstate feature, frequency band and subject. 
Topographic consistency tests (TCT, Koenig and Melie-
García 2010) were then used to test if the obtained covari-
ance maps were consistent between subjects. When the 
TCT was significant (p < 0.05), one-sample t-maps were 
computed across individual covariance-maps. In addi-
tion, to test whether the obtained covariance maps sys-
tematically varied by frequency band and/or microstate 
class, we computed TANOVAs with frequency band and 
microstate class as within factors. Finally, we computed 
and tabulated the shared spatial variance of the obtained 
covariance maps with their corresponding rectified 
microstate template maps. (Rectifying the template maps 
takes into account that map polarity is lost when spectral 
amplitudes are computed).

Microstate Spectral Correlates Between Subjects

In analogy to the within subject analysis, the individual 
mean microstate features were used as regressors on the 
individual mean spectral amplitude maps, resulting in a 
covariance map for each microstate feature and frequency 
band. The significance of these covariance maps was tested 
using TANCOVAs (Koenig et al. 2008), a randomization-
test that globally tests multichannel EEG data for significant 
associations with external predictors. When the TANCOVA 
was significant, the covariance map was displayed. To test 
whether these between-subject covariance maps system-
atically varied by frequency band, we repeated these TAN-
COVAs with frequency band as repeated measures factor. 
Finally and again, the shared variance with the template 
maps was computed and tabulated.

Results and Discussion

In the within subject analyses, 114 of 126 obtained covari-
ance maps (90.5%) were found to be consistent among 
subjects in the TCT (p < 0.05, Fig. 1), most of them with 
p-values that would survive even hard Bonferroni correc-
tions for multiple testing. This further undermines an early, 
and meanwhile repeatedly questioned claim that these two 
EEG measures are mostly unrelated (Lehmann et al. 1993; 
Koenig et al. 2002; Britz et al. 2010; Milz et al. 2017; Javed 
et al. 2019; Croce et al. 2020). Consistent covariance maps 
were found for all frequency bands. In addition, the TANO-
VAs computed on these covariance maps yielded highly sig-
nificant interactions (< 0.0001) for all three features, indicat-
ing that their topographies depended systematically both on 
the frequency band and the microstate class. For microstate 
duration and occurrence, the within subject covariance maps 
often followed a pattern that replicated the extrema of the 
template maps: at scalp locations close to the template maps’ 
maximum or minimum, EEG spectral amplitudes increased 
with the duration of the microstate, and (except for class C) 
decreased with its number of occurrences. This qualitative 
observation was further corroborated by the quantification 
of spatial variance shared between covariance and microstate 
template maps was that particularly high in the alpha band 
and for class C, but also high in the theta and beta bands and 
for other microstate classes (Table 1). Accordingly, across-
class microstate duration and occurrence were associated 
with widespread and broadband increases (for duration) 
and decreases (for occurrence) of EEG spectral amplitude. 
Within subject, the increase namely of alpha band activity 
thus seems to stabilize EEG microstates in time, which con-
verges with earlier made associations between alpha activity 
and EEG microstates (Milz et al. 2017).

Fig. 1   Within (left columns) and between (right columns) spectral 
covariates of the EEG microstate features duration (upper rows), con-
tribution (middle rows), and occurrence (lower rows) as a function of 
frequency bands. Within subject covariance maps are in steps of 1 t, 
indicated p-values were obtained using TCTs, between-subject covar-
iance maps have arbitrary units and were tested using TANCOVAs
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Microstate relative contribution, which integrates dura-
tion and occurrence, also yielded covariance maps largely 
driven by the positions of the extrema of the template maps 
(see Table 1 for shared variance), but spectral amplitude 
changes were more varied: Spectral amplitude increased 
with contribution of microstate class C and decreased with 
microstate class D; for microstate classes A and B, increases 
were observed near the extrema of the template maps, 
whereas decreases were seen near the zero-line of the tem-
plate maps. This confirms the theorical proposal that EEG 
microstates may exhibit up- and downregulatory control over 
the excitability of local brain networks (Michel and Koenig 
2018). The particularly strong association of EEG microstate 
contribution with alpha-oscillations also dove-tails with the 
view that these oscillations represent possible gating mecha-
nisms that improve task performance by inhibiting irrelevant 
brain regions (Jensen and Mazaheri 2010). EEG microstates 
therefore present themselves as theoretically interesting, and 
timewise excellently resolved brain state markers.

In the between-subject analysis, the TANCOVAs were 
significant only in theta and alpha frequency ranges (32 of 
126 covariance maps) and captured mostly the variance 
of few occipital electrodes. This may in part explain why 
spectral correlates of EEG microstates tended to be over-
looked. In addition, and in contrast to the within subject 
analyses, between-subject covariance maps were quite simi-
lar across microstate classes and frequency bands. Indeed, 
using frequency band as repeated measures factor in the 
TANCOVAs did not yield a significant microstate feature 
× frequency band for any microstate feature. The obtained 
covariance maps resembled the typical distribution of eyes-
closed alpha-range spectral amplitude maps, indicating that 
subjects with longer and thus less microstates per time had 
more of the typical occipital alpha activity. When looking 
at microstate contribution, the average percent time spent in 
microstates of class A and D correlated positively with this 
alpha activity, whereas the opposite was found for micro-
state classes B and C, corroborating earlier conclusions that 

Table 1   Spatial variance shared among the obtained spectral correlates of EEG microstate features and the corresponding rectified microstate 
template maps

Within subject analysis Between subject analysis
Class A Class B Class C Class D Class A Class B Class C Class D

Du
ra

�o
n

Delta 4.3% 0.9% 59.9% 22.5%
Low Theta 0.0% 0.2% 48.1% 54.6% 0.0%
High Theta 1.3% 0.4% 70.2% 83.5% 0.0% 19.4% 23.9% 34.7%
Low Alpha 6.3% 2.0% 93.2% 67.8% 3.3% 28.8% 63.4% 24.1%
High Alpha 11.0% 1.5% 86.9% 37.6% 12.4%
Low Beta 8.4% 2.3% 77.3%
Mid Beta 4.1% 0.2% 70.7%
High Beta 4.8% 57.8%
Gamma 5.9% 0.6%

O
cc

ur
re

nc
e

Delta 29.6% 21.5% 44.0% 1.5%
Low Theta 13.2% 45.7% 75.8% 0.5%
High Theta 11.8% 52.2% 62.7% 3.8% 6.9% 13.4% 38.1%
Low Alpha 44.6% 51.3% 78.7% 0.4% 25.0% 15.9% 74.3%
High Alpha 63.5% 42.3% 78.6% 0.4% 31.5% 19.1% 53.0%
Low Beta 32.1% 51.0% 79.0% 0.3% 9.5% 5.1%
Mid Beta 58.9% 58.6% 73.2% 0.1%
High Beta 48.1% 36.1% 49.0% 5.4%
Gamma 7.8%

noitubirtnoC

Delta 23.8% 18.1% 57.7% 3.1%
Low Theta 5.7% 27.9% 69.0% 7.6%
High Theta 15.1% 29.7% 83.9% 12.7% 23.4% 41.9%
Low Alpha 32.7% 31.1% 94.1% 9.7% 32.2% 43.5% 74.6% 23.0%
High Alpha 51.1% 14.9% 89.6% 5.3% 36.4% 11.3%
Low Beta 32.6% 37.4% 81.9% 0.0%
Mid Beta 39.9% 45.1% 74.5% 1.5%
High Beta 44.6% 44.7% 63.2% 2.1%
Gamma 25.7%

Cells are color coded by the amount of shared variance for better visualization
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microstate classes C and D may have antagonistic roles in 
regulating brain functions (Rieger et al. 2016; Croce et al. 
2020).

To conclude, this brief communication points at an inter-
esting avenue for future research in EEG, but it also has a 
series of shortcomings. On one side, it would be worthy to 
expand the employed methodology to larger samples with 
higher spatial sampling and recorded in different condi-
tions. On the other side, an obvious next step is to repeat 
this type of analysis using frequency domain inverse solu-
tions, and timewise better resolved methods for the assess-
ment of the spectral variance (Javed et al. 2019). Finally, 
the purely correlative approach employed here leaves open 
space for systematic research on the causal structure of the 
interdependencies among different EEG frequencies and 
EEG microstates.
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