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Abstract

Depression is the most common psychiatric disorder observed in Parkinson’s disease (PD) patients, however the neural
contribution to the high rate of depression in the PD group is still unclear. In this study, we used resting-state functional
magnetic resonance imaging (fMRI) to investigate the underlying neural mechanisms of depression in PD patients. Twenty-
one healthy individuals and thirty-three patients with idiopathic PD, seventeen of whom were diagnosed with major
depressive disorder, were recruited. An analysis of amplitude of low-frequency fluctuations (ALFF) was performed on the
whole brain of all subjects. Our results showed that depressed PD patients had significantly decreased ALFF in the
dorsolateral prefrontal cortex (DLPFC), the ventromedial prefrontal cortex (vMPFC) and the rostral anterior cingulated cortex
(rACC) compared with non-depressed PD patients. A significant positive correlation was found between Hamilton
Depression Rating Scale (HDRS) and ALFF in the DLPFC. The findings of changed ALFF in these brain regions implied
depression in PD patients may be associated with abnormal activities of prefrontal-limbic network.
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Introduction

For people with Parkinson’s disease (PD), depression is the most

common and disabling symptom, and up to 50 percent of people

with PD experience mild or moderate depressive symptoms [1,2].

In addition to the unpleasant mood characteristics, depression can

worsen the symptoms of PD, such as motor symptom deterioration

[3,4], rapid disease progression [5] and cognitive attenuation [3,6].

Therefore, understanding and characterizing the underlying brain

mechanisms of depression in PD patients using a neuroimaging

approach is clearly an international imperative.

During the last decades, the pathophysiology of depression in

PD patients has been accumulated from structural and functional

neuroimaging studies [2,7,8,9,10]. High-resolution structural

magnetic resonance imaging (MRI) showed PD patients with

depression displayed abnormality in size of some areas, including

the orbitofrontal gyrus, the superior temporal pole, and the

mediodorsal thalamus, when compared with the patients with PD

alone [2,9]. Functional neuroimaging techniques were also been

used to study depression in PD patients [2,7]. A previous PET

study found decreased levels of regional cerebral blood flow (rCBF)

in the medial prefrontal cortex and the cingulated cortex in

depressed PD group contrast to non-depressed PD group [7].

Recently, Cardoso and his colleagues using functional magnetic

resonance imaging (fMRI) observed decreased activities in the left

mediodorsal thalamic nucleus and the left dorsomedial prefrontal

cortex of depressed PD patients but not of non-depressed PD

patients [2]. These abnormal brain regions, which were found in

these previous studies, mainly focused on the prefrontal cortex and

limbic system, implying depression in PD patients may be

associated with abnormal alterations in the prefrontal-limbic

network.

Recently, resting-state fMRI has been widely used for investi-

gating the brain functions under normal and pathological

conditions for several special advantages, including high-resolu-

tion, no radiation use, and easy application [11,12,13,14]. During

rest, low-frequency blood-oxygen level fluctuations within a

specific frequency range (0.01–0.08 Hz) are considered to be

related to spontaneous neuronal activity [11,12,15]. The ampli-

tude of low-frequency fluctuations (ALFF), in a method developed

by Zang et al., has been widely applied to explore abnormal brain

activity associated with some neuropsychiatric disorders, including

mild cognitive impairment (MCI) [16], depression [17], Alzhei-

mer’s disease (AD) [18], schizophrenia [19] and medial temporal

lobe epilepsy [20]. Compared with traditional, task-related fMRI,

the resting-state fMRI can be performed in all manner of people

and is especially fit for people who are unable to cooperate with

functional tasks [21]. To date, few resting-state fMRI studies have
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examined whether depressed PD patients present an abnormal

activities.

In our study, we utilized ALFF to investigate the alterations in

resting state brain activities in depressed PD patients compared

with non-depressed PD patients. These abnormalities may be a

trait marker and could be helpful for the future diagnosis of

depression in PD patients. Based on previous studies, we

hypothesized that an abnormal ALFF would be discovered in

certain areas of the prefrontal-limbic network in depressed PD

patients contrast to those patients with PD alone. In addition, we

also compared PD patients those with and without depression with

normal controls (Ncs).

Methods

Ethics Statement
The human fMRI experiment conducted in this study was

approved by the Institutional Review Board of Beijing Normal

University (BNU) Imaging Center for Brain Research, National

Key Laboratory of Cognitive Neuroscience. All of the subjects

gave written informed consent according to the guidelines set by

the MRI Center of Beijing Normal University.

Participants
Twenty-one right-handed NCs and thirty-three right-handed

patients with idiopathic Parkinson’s disease, who were recruited

from the Beijing Xuan Wu Hospital of China, participated in this

study after giving written informed consent. The diagnosis of PD

was based on medical history, physical and neurological exami-

nations, response to levodopa or dopaminergic drugs, and

laboratory tests and MRI scans to exclude other diseases. All

subjects came in off medication for imaging and neuropsycholog-

ical testing. Only PD patients with normal cognitive function as

defined by a score on the Mini-Mental State Examination

(MMSE) of 27 or more [22] were selected. Seventeen of PD

patients were diagnosed with depression disorder according to the

Diagnostic and Statistical Manual of Mental Disorders, 4th edition

(DSM-IV) criteria (American Psychiatric Association, 1994) and

the remaining sixteen patients had PD alone. The 24-item

Hamilton Depression Rating Scale (HDRS) was used to evaluate

the severity of depression and all depressed PD patients had a

score of at least 8 points at HDRS [23]. Additionally, Unified

Parkinson’s Disease Rating Scale (UPDRS) [24] and Hoehn and

Yahr (HY) [25] were also recorded for describing the severity of

the PD. The detailed clinical data were shown in Table I.

fMRI Data Acquisition
All fMRI data were acquired on a 3-Tesla Siemens whole-body

MRI system scanner at Xuan Wu Hospital in Beijing, China.

Foam padding and earplugs were used to limit head movement

and reduce scanner noise for the subject. During the scan, the

subjects were instructed to rest and keep their eyes closed without

thinking about anything in particular. The functional images were

collected using echo planar imaging (EPI) sequence. For each

subject, 210 images were collected and the imaging parameters

were as follows: repetition time = 2000 ms; echo time = 40 ms;

Flip Angle = 90o; slice = 28; matrix size = 64664; voxel si-

ze = 46465 mm3. A high-resolution, three-dimensional T1-

weighted structural image was acquired for each subject with the

following parameters: repetition time = 2100 ms; echo

time = 3.25 ms; Flip Angle = 10o; slice = 176; matrix

size = 2246256; voxel size = 16161 mm3.

Data Processing
Image preprocessing was performed using Statistical Parametric

Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm). Allowing for

the equilibration of the magnetic field, the first 10 volumes were

discarded. The remaining 200 time points were slice-timing

corrected to the middle axial slice, and all images were then

realigned to the first image to account for head motion. A

participant would be excluded if the translation and rotation

parameters exceeded 62 mm or 2o during the whole fMRI scans.

In our study, no subjects were excluded. After slice acquisition and

head motion correction were performed, all of the volumes were

spatially normalized to the standard SPM8 Montreal Neurological

Institute (MNI) template, re-sampled to 3 mm cubic voxels, and

smoothed by a Gaussian kernel with the full width set at a half

maximum of 5 mm.

ALFF Calculation
After preprocessing in SPM8, Further data preprocessing and

ALFF analysis was performed with REST software (http://resting-

fmri.sourceforge.net) [26]. Firstly, the linear trend was removed,

and every voxel was band-pass filtered (0.01 Hz,f,0.08 Hz) to

remove the effects of low-frequency drift and high-frequency noise.

Then we removed the influence of head motion using linear

regression but white matter and cerebral cerebrospinal fluid (CSF)

were not regressed out. The ALFF calculation procedure: 1) Fast

Fourier Transform (FFT) was used to convert all voxels from the

time domain to the frequency domain; 2) the ALFF of every voxel

was calculated by averaging the square root of the power spectrum

across 0.01 Hz to 0.08 Hz; 3) the resulting ALFF was converted

into z-scores by subtracting the mean and dividing by the global

standard deviation for standardization purposes.

Statistical Analysis
A two-sample t-test was performed to explore the ALFF

differences among depressed PD patients, non-depressed PD

patients and NCs. The between-group statistical threshold was set

at p = 0.005 and cluster size. = 432 mm3 (16 voxels), which

corresponded to a corrected p,0.05. This correction was

determined by the Monte Carlo simulations, which were

performed with REST software (http://resting-fmri.sourceforge.

net) (whole brain mask: 70831 voxels; simulation number = 5000)

[26].

Correlation between Clinical Data and ALFF
To examine the association of the ALFF abnormality with the

severity of the depression of PD patients, we performed a partial

Table 1. Clinical and demographic characteristics.

Index Depressed non-depressed normal

Age (years) 64.4613.4 60.7618.7 55.4616.4

Time since diagnosis
(years)

6.465.4 5.667.4 0

Hamilton scale 15.267.8 4.464.4 –

HY 2.161.9 1.561 –

UPDRS 42646 33.8624.2 –

MMSE 29.560.5 29.262.2 –

Gender (male/female) 7/10 8/8 13/8

Note: Abbreviations: HY–Hoehn and Yahr; UPDRS–Unified Parkinson’s Disease
Rating Scale; MMSE–Mini Mental state examination.
doi:10.1371/journal.pone.0063691.t001
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correlation analysis (controlling age and gender) between HDRS

data and ALFF values extracted from clusters of voxels, which

showed the most significant differences between depressed and

non-depressed PD patients. Each of the clusters was the

intersection of the corresponding region defined by Anatomical

Automatic Labeling atlas toolbox [27] and the within group two

sample t-test map with a cut-off threshold at p = 0.005.

Results

Clinical and Demographic Testing of Samples
In regard to our clinical and demographics of sample

participants (Table I), there were no significant differences in

gender (t = 0.495, p = 0.624), age (t = 1.668, p = 0.105), MMSE

(t = 0.692, p = 0.495), HY (t = 0.394, p = 0.730) and UPDRS

scores (t = 1.656, p = 0.110) between depressed PD patients and

non-depressed PD patients. As for HDRS (t = 8.965, p,0.001),

PD patients with depression were significantly higher than those

with PD alone. Our study tested non-depressed PD patients and

NCs and found the differences in gender (t = 0.709, p = 0.483) and

age (t = 1.414, p = 0.166) were also not significant.

Depressed PD Patients versus Non-depressed PD Patients
Compared to non-depressed PD patients, depressed PD patients

exhibited a decreased ALFF in the right dorsolateral prefrontal

cortex (DLPFC), ventromedial prefrontal cortex (vMPFC), the

rostral anterior cingulate cortex (rACC), the superior frontal

cortex and the right middle temporal gyrus. The opposite

(depressed.non-depressed) was observed in the right cerebellum

Figure 1. Statistical parametric map showing the significant differences in the ALFF between three groups: depressed PD patients,
non-depressed PD patients and NCs. A) The differences between depressed PD patients and non-depressed PD patients. B) The differences
between non-depressed PD patients and NCs. C) The differences between depressed PD patients and NCs. The threshold for display was set to
p,0.005, cluster size. = 432 mm3.
doi:10.1371/journal.pone.0063691.g001
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posterior lobe and the right cerebellum anterior lobe. Detailed

information about the Montreal neurological institute (MNI)

coordinates and clusters was provided in Fig. 1A and Table II.

Non-depressed PD Patients versus NCs
The group differences between non-depressed PD patients and

NCs were shown in Fig. 1B and Table III. The ALFF in NCs was

higher than in patients with PD alone in the bilateral caudate, the

left putamen, the supplementary motor area (SMA), the bilateral

superior frontal gyrus and the posterior cingulated gyrus. The

ALFF, which was significantly lower in NCs than non-depressed

PD, was found in the left middle temporal gyrus, the right middle

occipital gyrus, the bilateral superior occipital gyrus, the left

inferior temporal gyrus, the left precuneus and the right angular

gyrus.

Depressed PD Patients versus NCs
As shown in Fig. 1C and Table IV, the depressed PD group

demonstrated a decreased ALFF in the bilateral caudate, the left

putamen, the bilateral precuneus, the right superior frontal gyrus,

the right middle frontal gyrus, the left putamen, the right medial

frontal gyrus, the right superior temporal gyrus and the right

thalamus contrast to NCs. Conversely, the right angular gyrus, the

bilateral middle temporal gyrus, the left inferior frontal gyrus, the

left precuneus, the left inferior parietal gyrus and the right fusiform

gyrus displayed an increased ALFF in the depressed PD patients.

Correlations between ALFF Values and HDRS
We examined the relationships between the HDRS and ALFF

in regions with significant group differences (depressed PD patients

vs. non-depressed PD patients), including DLPFC, rACC,

vMPFC. The only significant correlation we found between ALFF

values and HDRS was in the DLPFC (r = 0.698, p = 0.003). The

other correlation were all less than 60.2 (p.0.05).

Discussion

The present fMRI study aimed to investigate the alterations in

resting-state brain activities in depressed PD patients, and we

found a decreased ALFF in the DLPFC, the vMPFC and the

rACC in depressed PD patients when compared with non-

depressed PD patients. Inversely, An increased ALFF (depressed

PD patients. non-depressed PD patients) was observed in the

cerebellum posterior cortex. In addition, when compared with

NCs, the depressed PD patents and non-depressed PD patients

both showed altered activities mainly in the basal ganglia and the

prefrontal cortex. Furthermore, a significant positive correlation

was found between the HDRS score and ALFF within the

DLPFC.

The DLPFC provides a key hub in the prefrontal-limbic

network which connects to the orbitofrontal cortex, the thalamus,

parts of the basal ganglia, the hippocampus, and primary and

secondary association areas of the neocortex [28]. It has an

important role in cognitive, executive and emotional processes,

especially the down-regulation of negative emotional conditions

[29,30,31]. Abnormal activity in the DLPFC may lead to a

cognitive and mental disorder and partly contribute to interest or

pleasure deficiency and cognition declines exhibited by patients

with depression [32,33]. Our current study using resting-state

fMRI found a decreased ALFF in the DLPFC in depressed PD

patients contrast to those patients with PD alone and a positive

correlation was also been found between HDRS score and ALFF

values in the DLPFC. Consistent with our result, the hypoactivity

in the DLPFC in depression has been identified by many previous

studies, which was regarded as a critical hallmark for depression

[7,32,33,34,35,36,37]. For example, Bench et al. found a

decreased rate of metabolism and decreased rCBF levels in the

DLPFC in depression [32], and an increase in activity in the

DLPFC will remit depression symptoms [37]. Similar results were

also been found in depressed PD groups. A previous PET study

reported a decreased rCBF level in the DLPFC of depressed PD

patients compared with non-depressed PD patients [7], and

stimulating the DLPFC with repetitive transcranial magnetic

stimulation (rTMS) can be effective in remitting depression

symptoms in PD [33,35]. Together with these findings, we

speculated that hypoactivation in the DLPFC may be an

important factor for the genesis and development of depression

in PD patients.

Table 2. Brain regions exhibiting an altered ALFF between depressed PD patients and non-depressed PD patients.

Brain regions L/R Cluster size BA MNI coordinate T value

x y z

Depressed PD patients.non-depressed PD patients

Medial prefrontal cortex L&R 59 10 0 51 23 4.19

Anterior cingulated cortex 23 51 1 3.55

Middle frontal gyrus R 27 9 54 24 33 4.42

Temporal lobe L 22 – 245 239 26 3.89

Superior frontal gyrus R 17 8 24 33 54 3.85

Middle frontal gyrus R 16 10/46 42 39 24 3.95

Depressed PD patients,non-depressed PD patients

Cerebellum posterior lobe R 38 – 36 263 236 3.27

Cerebellum posterior lobe – 51 269 245 3.56

Cerebellum posterior lobe 42 269 236 3.1

Cerebellum anterior lobe L&R 17 – 23 242 26 3.48

Cerebellum anterior lobe 0 251 23 2.87

BA: Brodmann area; MNI: Montreal neurological institute.
doi:10.1371/journal.pone.0063691.t002
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The vMPFC seems to be a critical area in PD-associated

depression. The abnormalities within the vMPFC in patients with

major depressive disorder (MDD) have been documented in

previous structure and functional studies [38,39,40]. In our study,

we using ALFF investigated the abnormalities of depressed PD

patients and found a decreased activity in the vMPFC in depressed

PD contrast to those without depression PD patients. Similar to

our finding, a previous PET study compared the regional blood

flow of depressed and non-depressed PD patients and found a

decreased rCBF level in the vMPFC [7]. The vMPFC is connected

with the ACC, the hippocampus and the amygdala [41] and plays

a vital role in emotion generation and regulation [42,43]. The

activity of the vMPFC was associated with the suppression of

affective responses to a negative emotional signal and might

dampen amygdala activity [44]. Jonestone et al. found, during an

effortful affective reappraisal task, normal subjects showed an

inverse relationship between amygdala but depressed individuals

were not [45]. Therefore, the decreased level of activity in the

vMPFC in depressed PD patients may lead to an imbalance in the

inhibitory influence of the amygdala on activity leading to the

genesis of depression. Our data do not allow us to state that an

altered relationship between the vMPFC and the amygdala is

responsible for the observed decrease in activity levels in the

vMPFC, but, based on previous reports, this hypothesis should be

evaluated in the future.

In addition, a decreased ALFF in the rACC was also reported in

our current study. The rACC is a part of the brain’s limbic system

which is strongly connected with the amygdala, the orbitofrontal

cortex and the hippocampus, and it has been reported to be

associated with the processing and integration of affect-related

information [46,47]. Lesions in the rACC can lead to a series of

symptoms, including apathy, inattention, the dysregulation of

autonomic functions, akineticmutism and emotional instability,

which overlap considerably with the quintessential symptoms of

patients with MDD, implying depression has a relationship with

abnormal activity in rACC [48]. A recent resting-state fMRI study

also demonstrated that the severity of depression in PD patients

was correlated with the ALFF values in the rACC, which was

consistent with the result of our current study [49]. However, in

the absence of normal control group, Skidmore and his colleagues’

study could not decide whether the activity in rACC was

decreased or increased in depressed PD patients. Our study

compensated for this limitation and identified the rACC showed a

decreased ALFF in depressed PD patients compared with non-

depressed PD group, which gave a more complete fMRI status of

depression in PD patients.

The regions we found to have a decreased ALFF in the

depressed PD group, including the DLPFC, the vMPFC and the

rACC, are parts of the prefrontal-limbic network, which is

important for affective processing [50]. Previous non-invasive

brain imaging study has identified abnormal changes in the

prefrontal-limbic network existed in patients with MDD [41]. In

our study, we found abnormal activity levels in prefrontal-limbic

network were also existed in the depressed PD patients giving a

new clue to the pathophysiology of depression in PD group.

In contrast to the decreased activities in the prefrontal-limbic

network, we observed an increased ALFF in the right cerebellum

posterior lobe in depressed PD patients compared with non-

depressed PD patients. The traditional view of the cerebellum is

that it is only responsible for the regulation of motor functions, but

recent studies identified this area also being associated with

emotional and cognitive processing [51,52]. Previous studies

demonstrated the patients with depression showed abnormal

changes in cerebellum [53,54,55,56]. Pillay et al. reported that

patients with depression showed a volume reduction in the

cerebellum [54]. Using fMRI, Liu et al. and Guo et al. found a

decrease in regional homogeneity (ReHo) in depression patient

group compared with NCs [55,56]. Additionally, the reciprocal

connections linking the cerebellum with brainstem areas contain

neurotransmitters involved in mood regulation, including seroto-

nin, norepinephrine and dopamine [57]. The degeneration of the

dopaminergic pathway, a hallmark of PD patients [8], may lead to

the genesis of increased activity in the cerebellum. Our current

study provides evidence for the involvement of cerebellar

abnormality in depressed PD patients.

Additionally, comparing ALFF maps between non-depressed

PD patients and NCs, our study also investigated the PD related

pathophysiology and found the altered activities in PD mainly

focused on basal ganglia (including putamen, caudate) and

prefrontal cortex. Findings from previous studies suggested that

basal ganglia plays an important role in cortico-subcortical

circuits, including motor, oculomotor, dorsolateral, prefrontal,

lateral orbitofrontal and anterior cingulate [58,59]. PD is a

movement disorder characterized by the triad of bradykinesia,

Table 3. Brain regions exhibiting an altered ALFF between
non-depressed PD patients and NCs.

Brain regions L/R
Cluster
size BA MNI coordinate T value

x y z

Non-depressed PD patients,NCs

Caudate L 483 – 218 9 21 6.31

Putamen 221 6 15 3.06

Caudate R 477 – 19 5 24 4.8

Thalamus 9 24 7 3.92

SMA R 52 6 3 12 69 4.56

Superior frontal
gyrus

– 6 23 78 3.23

Vermis 3 L&R 38 – 3 242 23 4.56

Posterior cingulate
gyrus

L 20 31 218 248 33 3.44

Non-depressed PD patients.NCs

Medial prefrontal
gyrus

L 36 10 23 63 23 3.36

Angular R 81 51 251 36 4.42

Supramarginal 45 239 42 3.68

Middle temporal
gyrus

L 50 254 230 218 3.91

Middle occipital
gyrus

R 31 19 39 284 21 3.81

Inferior frontal
gyrus

L 24 245 27 3 3.81

Precuneus L 30 31 26 260 24 3.92

Calcarine 29 269 18 3.13

Superior occipital
gyrus

L 16 7 218 78 42 3.85

Superior occipital
gyrus

19 221 287 36 3.2

Superior occipital
gyrus

R 30 19 21 287 33 3.82

BA: Brodmann area; MNI: Montreal neurological institute; SMA: supplementary
motor area.
doi:10.1371/journal.pone.0063691.t003
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tremor at rest and muscular rigidity [60,61], which mainly result

from varying forms of abnormally patterned activity throughout

the motor circuit [62]. Similar to our study, some recent

researches using the index of ALFF also found abnormal activities

in PD patients mainly in prefrontal cortex and motor cortex

including SMA, the mesial prefrontal cortex and middle frontal

cortex [63,64]. Combined these previous findings with our current

study, the speculation, that PD was associated with abnormal

changes in motor circuit, was further been demonstrated.

It has recently been reported that in-scanner head motion can

have an influence on analysis results even though traditional

realignment was performed [65,66]. In our study, to control the

impact of head motion, we not only made every effort to reduce its

occurrence in the scanner and precluded those subjects with the

translation and rotation parameters exceeded 62 mm or 2o

during the whole fMRI scan, but also removed the influence of

head motion using linear regression based on REST software

(http://resting-fmri.sourceforge.net) [26] before ALFF calculating.

In addition, following previous studies, the mean relative

displacement was used to measure subjects’ head motion in

scanner [65,66]. Then two sample t-test was used to test

differences of head motion between groups and no significant

differences were found (depressed PD patients vs non-depressed

PD patients: t = 0.435, p = 0.666; non-depressed PD patients vs

NCs: t = 0.361, p = 0.720; depressed PD patients vs NCs:

t = 0.795, p = 0.432). The significant correlations between ALFF

and mean relative displacement were also not found (ACC:

r = 20.114, p = 0.662; MPFC: r = 20.017, p = 0.947; DLPFC:

r = 0.223, p = 0.39) according to calculating the correlations

coefficients between these two indexes. These findings suggested

the significant differences among groups in our current study may

have no relationship with head motion. However, further works

are needed to explore this issue.

In summary, our study used ALFF to examine the alterations in

the resting state between depressed PD patients and non-depressed

PD patients and found abnormal neural activity levels in several

brain areas associated with the prefrontal-limbic network. Our

study not only advances the knowledge of depression in PD but

also provides a new insight into the underlying neural mechanism

behind the high rate of depression in PD patients.
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