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Abstract
Capture–recapture techniques provide valuable information, but are often more cost‐
prohibitive at large spatial and temporal scales than less‐intensive sampling techniques. 
Model development combining multiple data sources to leverage data source strengths 
and for improved parameter precision has increased, but with limited discussion on 
precision gain versus effort. We present a general framework for evaluating trade‐offs 
between precision gained and costs associated with acquiring multiple data sources, 
useful for designing future or new phases of current studies. We illustrated how 
Bayesian hierarchical joint models using detection/non‐detection and banding data 
can improve abundance, survival, and recruitment inference, and quantified data 
source costs in a northern Arizona, USA, western bluebird (Sialia mexicana) population. 
We used an 8‐year detection/non‐detection (distributed across the landscape) and 
banding (subset of locations within landscape) data set to estimate parameters. We 
constructed separate models using detection/non‐detection and banding data, and a 
joint model using both data types to evaluate parameter precision gain relative to ef‐
fort. Joint model parameter estimates were more precise than single data model esti‐
mates, but parameter precision varied (apparent survival > abundance > recruitment). 
Banding provided greater apparent survival precision than detection/non‐detection 
data. Therefore, little precision was gained when detection/non‐detection data were 
added to banding data. Additional costs were minimal; however, additional spatial cov‐
erage and ability to estimate abundance and recruitment improved inference. 
Conversely, more precision was gained when adding banding to detection/non‐detec‐
tion data at higher cost. Spatial coverage was identical, yet survival and abundance 
estimates were more precise. Justification of increased costs associated with addi‐
tional data types depends on project objectives. We illustrate a general framework for 
evaluating precision gain relative to effort, applicable to joint data models with any 
data type combination. This framework evaluates costs and benefits from and effort 
levels between multiple data types, thus improving population monitoring designs.
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1  | INTRODUC TION

Robust demographic parameter estimates are critical to the conser‐
vation and management of a species (Williams, Nichols, & Conroy, 
2002). Recently, increased effort has focused on developing mod‐
els that combine multiple data sources for improved parameter in‐
ference (Besbeas, Freeman, Morgan, & Catchpole, 2002; Besbeas, 
Lebreton, & Morgan, 2003; Schaub, Gimenez, Sierro, & Arlettaz, 
2007). Multiple data sources are usually combined using joint‐like‐
lihood methods (but see Pacifici et al., 2017) and often have the 
advantage of increased population parameter precision (Besbeas et 
al., 2002; Schaub & Abadi, 2011). Several data type combinations 
have been used in these joint models, including capture–recap‐
ture, count, and fecundity data (integrated models; i.e., Ahrestani, 
Saracco, Sauer, Pardieck, & Royle, 2017; Schaub & Abadi, 2011; 
Wilson, Gil‐Weir, Clark, Robertson, & Bidwell, 2016), capture–recap‐
ture and census/count data (Catchpole, Freeman, Morgan, & Harris, 
1998), radiotelemetry and capture–recapture data (Powell, Conroy, 
Hines, Nichols, & Krementz, 2000), count and detection/non‐detec‐
tion data (Zipkin et al., 2017), and capture–recapture and detection/
non‐detection data (Freeman & Besbeas, 2012). In addition, recent 
advances with Bayesian hierarchical models have illustrated the util‐
ity of integrated data models (Schaub & Abadi, 2011; Schaub et al., 
2007), and created opportunities for designing future studies incor‐
porating multiple data sources.

Despite advantages of combining multiple data sources, discus‐
sion is limited on precision gain versus effort or cost with these joint 
data models. Many joint model studies combine data already col‐
lected with ancillary information or information derived from exist‐
ing databases (i.e., eBird [Sullivan et al., 2009, http://www.ebird.org). 
In these scenarios, there is little cost to incorporating additional data 
types, and cost‐benefit analyses may not be necessary. In field stud‐
ies, however, added costs for collecting additional data types may 
be considerable, making it desirable to evaluate trade‐offs between 
precision gained from additional data and the data acquisition cost.

For example, capture–recapture techniques provide valuable infor‐
mation, but are often cost‐prohibitive to use at large spatial and tem‐
poral scales (landscape or regional, >5 years) (but see the Monitoring 
Avian Productivity and Survivorship program [MAPS]; Saracco, Royle, 
DeSante, & Gardner, 2010; Saracco, Royle, DeSante, & Gardner, 2012). 
Consequently, projects frequently employ these techniques at smaller 
scales to reduce effort (time and money), potentially limiting the sta‐
tistical inference spatial scale (Zipkin et al., 2017; Zipkin & Saunders, 
2018). Alternatively, presence–absence data for use in occupancy 
models (MacKenzie et al., 2002) and count data are considerably less 
expensive and thus can be collected at larger scales for similar cost. 
These data types historically provided less information than more 
intensive sampling approaches, but new analytical approaches now 
allow estimation of survival, population gains from local recruitment 
and immigration, and abundance using these data types with dynamic 
N‐occupancy models (Rossman et al., 2016; Zipkin et al., 2017, 2014).

Here, we illustrate how joint models using detection/non‐detec‐
tion and banding data can be used to make inference on abundance 

at a larger spatial scale and with greater precision than was possible 
using single data type models. Our case study used an 8‐yr data set on 
western bluebird (Sialia mexicana) populations in ponderosa pine (Pinus 
ponderosa) forests of northern Arizona, USA. Our objectives were to: 
(a) estimate abundance, survival, and recruitment in a Bayesian hier‐
archical framework from separate models using detection/non‐detec‐
tion and banding data as well as a joint model using both data types, 
(b) compare precision of the resulting estimates among model types, 
and (c) evaluate differences in precision gain versus effort (a combi‐
nation of time and money) among models. This approach results in a 
general framework for cost‐benefit analysis that can be used to eval‐
uate trade‐offs between precision gained from and costs associated 
with collecting additional data types in designing future studies.

2  | MATERIAL S AND METHODS

2.1 | Case study

Within ponderosa pine forests in the southwestern USA, fire is a 
common natural disturbance (Covington & Moore, 1994; Moir, Geils, 
Benoit, & Scurlock, 1997) and secondary cavity‐nesting birds, like the 
western bluebird, rely on cavities in snags for nesting and protection 
from predators. Managers require information for predicting fire 
effects on avian community structure, especially in the Southwest 
where relatively little is known about avian responses (Bock & Block, 
2005). Because employing capture–recapture monitoring schemes 
across the landscape is often cost‐prohibitive, alternative study de‐
signs and model advancements could increase inference at larger 
spatial and longer temporal scales.

2.2 | Study area

Our study occurred in ponderosa pine forest within the Flagstaff 
Ranger District of the Coconino National Forest, northwest of 
Flagstaff, in north‐central Arizona (for study location maps and 
study area details see: Latif, Sanderlin, Saab, Block, & Dudley, 2016; 
Sanderlin, Block, & Strohmeyer, 2015). Two wildfires (Horseshoe 
Fire and Hochderffer Fire) occurred in May and June 1996 within 
the study area. The Horseshoe Fire encompassed ~3,500 ha and the 
Hochderffer fire encompassed >6,600 ha adjacent to the Horseshoe 
Fire. Burn severity, quantified by using the delta normalized burn 
ratio (dNBR; see description in “Data” section), in these areas ranged 
from low to high severity.

2.3 | Field methods

2.3.1 | Detection/non‐detection

We sampled birds starting 1 year post‐fire using the variable‐radius 
point‐count method (Reynolds, Scott, & Nussbaum, 1980). Sampling 
occurred during the breeding season over 8 years from 1999 to 2006 
(primary periods), where each season had up to three visits (second‐
ary periods). We sampled birds at 149 points spaced at approximately 

http://www.ebird.org
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200 m intervals along 15 transects (mean = 10 points/transect, 
range = 3–20). Most points received three visits/year during the sum‐
mer breeding season to sample bird distribution and detectability, 
with the exception of years 1999 and 2000 (during each of those 
years, we sampled one of the transects on only one occasion). Counts 
began within 30 min of sunrise and were completed ≤4 hr. after sun‐
rise to sample points during periods of high bird activity. Observers 
remained still for 2 min after reaching a point to allow birds to resume 
normal activity patterns. The actual point‐count lasted 8 min.

2.3.2 | Banding

Artificial nest boxes were distributed randomly among approximately 
half of the points from each fire‐severity strata (n = 72 points; 27 out 
of 59 high severity, 25 out of 50 moderate severity, 20 out of 40 

unburned) where each station had three nest boxes. After complet‐
ing a point‐count (see above), observers rewalked the transect line 
to check nest boxes for activity and band adult birds using the boxes. 
Observers captured birds by target mist‐netting (Ralph, Geupel, Pyle, 
Martin, & DeSante, 1993), or females were removed from the nest 
while incubating eggs, and banded with a U.S. Geological Survey 
Patuxent Wildlife Research Center Bird Banding Laboratory (BBL) 
leg band on one leg and two BBL color bands on the other leg with 
a unique combination (Federal Bird Banding Permit Number 21653). 
Juveniles were marked with a cohort band to identify the year of 
birth. Resighting occurred either when (a) observers removed a fe‐
male incubating eggs from the nest and quickly read her bands, or (b) 
observers read the color bands of perched birds in the nest vicinity. 
Observers attempted to recapture any juveniles resighted after their 
hatch year and mark them with unique BBL bands.

2.3.3 | Vegetation sampling

We sampled live tree basal area at all point‐count stations using a 20‐
factor prism and snag basal area using a 5‐factor prism. Unburned 
transect stations were sampled in 1997 and 2005 and burned tran‐
sect stations were sampled in 1997, 2002, and 2006.

2.4 | Data

Detection/non‐detection data covered all points, whereas banding 
data were available only for nest box locations. Banding data were 
condensed to detections during primary periods (e.g., if an individ‐
ual was detected at least once during a year, it was classified as “1” 
otherwise “0” for that year) due to inconsistent effort with second‐
ary periods, which meant mark‐resight models (Arnason, Schwarz, 
& Gerrard, 1991) were not possible. Therefore, banding data were 
used in Cormack‐Jolly‐Seber models (CJS; Cormack, 1964; Jolly, 
1965; Seber, 1965) instead. We used full‐identity birds only to re‐
duce model complexity. We collapsed point‐count detections to de‐
tection/non‐detection data for use in dynamic N‐occupancy models 
(Dail & Madsen, 2011; Rossman et al., 2016), and used detections 
within 100 m of point‐count stations for correlating detection/non‐
detection data with area quantified by fire severity (see below).

We used dNBR generated from a comparison of Landsat TM 
imagery recorded before and after wildfire (Eidenshink et al., 2007, 
http://www.mtbs.gov/) to quantify burn severity. Raw dNBR values 
were compiled at a 30 × 30 m resolution, and a mean dNBR was 
calculated for a 100‐m‐radius neighborhood centered on the point‐
count station. We used the following model covariates for single 
data type and joint models: dNBR, an indicator for nest box location 
(nbox), time since fire (tfire; indicator for burned × time since fire), 
transect line (TR), snag basal area (snag), live tree basal area (live), 
point‐count data observer (obs), and sex of banded adult bird (sex). 
Transect line and observers were random effects, whereas all oth‐
ers were fixed effects. For numerical reasons, we used standardized 
covariates (mean zero and unit variance) for dNBR, snag basal area, 
and live tree basal area.

F I G U R E  1   Directed acyclic graphs (DAG) of joint data model 
including banding (B) and detection/non‐detection (P) data for 
a western bluebird case study in ponderosa pine forests within 
Coconino National Forest in north‐central Arizona, USA between 
1999 and 2006. Notation is as follows: λ (expected count of 
individuals), N (abundance), ϕ (apparent survival probability), S 
(number of individuals that survived), γ (recruitment), G (number of 
individuals gained through recruitment), pP (point‐count detection 
probability), pB (banding detection probability), Z (latent alive matrix 
for banded individuals), YP (detection/non‐detection data), and YB 
(banding data). For simplicity, case study regression coefficient 
parameters for λ, ϕ, γ, pP, and pB were not included within the 
figure. Arrows indicate dependencies with parameters (circle 
nodes) and data (square nodes). Single arrows indicate probabilistic 
relationships, whereas double arrows indicate deterministic 
relationships. DAGs for the (a) first time period (t = 1) and (b) time 
periods after the first time period (t > 1) are displayed

(a)

(b)

http://www.mtbs.gov/
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2.5 | Models

To evaluate precision gain with the joint model (Figure 1), we first 
constructed separate models for each data structure and then the 
joint model. Results from a simulation study using the joint model 
indicated that our model was valid using statistical properties of ac‐
curacy, bias, percent coverage, and Bayesian credible interval (BCI) 
length for abundance, survival, and recruitment parameter estimates 
(Supporting Information Appendix S1 and S2). Because we did not 
know truth with our data example, we could not evaluate bias and 
accuracy. However, we evaluated precision of abundance, survival, 
and recruitment estimates (simulation study results indicated that 
patterns with precision were also reflected in patterns of bias and ac‐
curacy), and used the relative difference ([single model‐joint model]/
joint model) in length of Bayesian credible intervals (BCIs) as our re‐
sponse. We were also interested in quantifying any differences be‐
tween point estimates of the joint versus separate models for each 
data structure.

2.6 | Detection/non‐detection data single model

We used dynamic N‐occupancy models (Dail & Madsen, 2011; 
Rossman et al., 2016) to obtain demographic estimates (abundance, 
survival, recruitment) from detection/non‐detection data using a 

state‐space modeling approach. Dynamic N‐occupancy models are 
more reliable when sites have fairly low densities (due to the reliance 
on detection heterogeneity to model abundance), and studies have 
at least 75 survey sites and 5 years of data (Rossman et al., 2016). 
Our study satisfied both criteria.

The state‐space model, a first‐order Markov process, describes 
two‐time series, the biological state process and the observation 
process, that run in parallel and incorporate both process and sam‐
pling error in the same framework (i.e., Buckland, Newman, Thomas, 
& Koesters, 2004). We used a detection/non‐detection data matrix 
YP, where element YPjkt was a binary indicator of species detection. 
When YPjkt = 1, a western bluebird was detected at point j ( j = 1,…, 
149) during session k (k = 1, 2, 3) of year t (t = 1,…, 8). Changes in 
abundance Njt over time were a function of the biological state pro‐
cesses. We modeled abundance at each site j during the first year of 
sampling (t = 1) using site‐level covariates to describe the expected 
value of λj of a Poisson distribution (Equation 1):

where expected count (Equation 2) λj was:

and each point j was located within a transect R (R = 1, …, 
15), indexed by Rj. Parameter a4R was a normal random effect for 
transect R with mean 0 and a uniform (0, 5) prior on σ (e.g., a4R ~ 
Normal (0, σ2)). Parameters a0, a1, a2, and a3 had normal (µ = 0, 
σ2 = 0.1) priors.

Abundance at t > 1 was a function of the number of individuals 
that survived (Sjt) and the number of individuals that were recruited 
(Gjt) from t−1 to t: Njt=Sjt+Gjt. We modeled Sjt (Equation 3) as:

where apparent annual survival probability (Equation 4) from time 
t−1 to t, φjt, was:

Parameters b1, b2, b3, and b4 had normal (µ = 0, σ2 = 0.1) priors, while 
b0 had a normal (µ = 0, σ2 = 1) prior. We modeled Gjt (Equation 5) 
using a Poisson distribution:

where the expected number of individuals gained (Equation 6) to site 
j between t −1 and t was:

Parameters c0, c1, c2, c3, and c4 had normal (µ = 0, σ2 = 0.1) pri‐
ors. This recruitment estimate included births and immigration, 
but empirical data suggested immigration was negligible (see next 
section).

(1)[Nj1|�j]∼Poisson(�j),

(2)log (�j)=a0+a1×dNBRj+a2×nboxj+a3× tfire1+a4Rj ,

(3)[Sjt|Njt−1,�t]∼Bin(Njt−1,�t),

(4)logit(�jt)=b0+b1×nboxj+b2× tfiret+b3× livejt+b4×snagjt.

(5)[Gjt|�jt]∼Poisson(�jt),

(6)log (�jt)= c0+c1×nboxj+c2× tfiret+c3× livejt+c4×snagjt.

F I G U R E  2   Box and whisker plot for detection probability 
medians of all sampling locations by year for detection/non‐
detection data from the joint data model from a western bluebird 
case study in ponderosa pine forests within Coconino National 
Forest in north‐central Arizona, USA between 1999 and 2006. 
Detection probability estimates from detection/non‐detection data 
were originally for each secondary period but converted to primary 
periods (e.g., p̂yr=1−

�∏3

i=1

�
1− p̂session i

��
)
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We modeled the observation process (Royle & Nichols, 2003) 
(Equation 7) as:

where detection probability (Equation 8) was:

and each point j, session k, year t had observer o (o = 1, …, 9), indexed 
by ojkt. Parameter d2o was a normal random effect for observer o 
with mean 0 and a uniform (0, 5) prior on σ (e.g., d2o ~ Normal (0, 
σ2)). We assumed there was no individual heterogeneity with detec‐
tion probability. Priors for parameters d0 and d1 were normal (µ = 0, 
σ2 = 1) and normal (µ = 0, σ2 = 0.1), respectively.

2.7 | Banding data single model

We used the CJS model (Cormack, 1964; Jolly, 1965; Seber, 1965) in 
a state‐space approach (Royle & Dorazio, 2008) to obtain survival 
estimates from banding data. Western bluebirds had high site‐fi‐
delity in this study between years. Only 3 out of 471 (0.6%) indi‐
viduals detected were detected at two different transects between 
years, and 16 out of 471 (3.4%) individuals were detected at differ‐
ent points within a transect between years. Thus, to reduce model 
complexity we assumed no movement between nest box locations 
between primary periods. The model could be expanded to include 
movement between points, however (i.e., Hestbeck, Nichols, & 
Malecki, 1991).

We used a latent alive matrix Z of dimension NB × t of NB individ‐
uals ever captured during banding within the study period spanning t 
sampling years, where element Zijt took the value “1” if individual i at 
point j was alive and encountered during the time interval between 
sample t−1 and t and “0” otherwise. The CJS model is conditional on 
time of first capture of each individual, fi. We modeled initial state 
(Equation 9) for individual i as a Bernoulli trial with apparent survival 
probability φjt, where t= fi+1,… ,7:

where apparent survival probability was modeled the same as 
Equation 4.

We modeled the observation process (Equation 10) conditional 
on the true process with banding data of individual i, YBijt, using a 
Bernoulli trial:

where individual detection probability (Equation 11) was:

The prior for intercept e0 was uniform (0, 1) and for e1 was normal 
(µ = 0, σ2 = 0.1).

2.8 | Joint model

Because we assumed these data structures were independent (see 
Supporting Information Appendix S3 for exploration of independ‐
ence assumption), we factored the following components (Equation 
12) of the joint posterior distribution, also depicted in the directed 
acyclic graph (DAG) (Figure 1):

 For simplicity, case study regression coefficient parameters for λ, ϕ, 
γ, pP, and pB were not included within Equation 12.

2.9 | Inference

We conducted model selection for nested models using indicator 
variable selection (O'Hara & Sillanpää, 2009). Individual coeffi‐
cients for our predictor variables β were modified with a binary 
indicator variable vi, such that �i=vi×�i where θ i was the original 
parameter. For each single data type and joint model, we evalu‐
ated all coefficients for our predictor variables at the same time. 
All indicator variables vi had Bernoulli (0.5) priors. If the posterior 
mean for vi was closer to one than zero, the covariate had more 
model support than if vi was closer to zero. We defined strong 
model support as the posterior mean > 0.5. We implemented 
these Bayesian hierarchical models (Gelman, Carlin, Stern, & 
Rubin, 2004) in JAGS (Plummer, 2003) using the rjags package in R 
(R Core Team, 2017) (see Supporting Information Appendix S4 for 
model code). We also used package jagsUI (Kellner, 2016) a wrap‐
per around rjags to implement parallel processing, and package 
coda (Plummer, Best, Cowles, & Vines, 2006) to obtain posterior 
parameter estimates. We ran 3 parallel chains for single and joint 
models (joint data model: total length 500,000 iterations [it], burn‐
in 400,000 it, thinning 10 it; detection/non‐detection data only 
model: total length 800,000 it, burn‐in 700,000 it, thinning 10 it; 
banding data only model: total length 400,000 it, burn‐in 300,000 
it, thinning 10 it) to estimate the posterior distribution median 
of model parameters and 95% Bayesian Credible Intervals (BCI). 
Convergence was reached (R̂ < 1.1 [Brooks & Gelman, 1998]). We 
assessed goodness‐of‐fit (GOF) using the squared loss statistic for 
a Bayesian p‐value (Gelman et al., 2004:162).

2.10 | Effort

We used estimated project costs for detection/non‐detection and 
banding data to quantify effort, which was a combination of time and 
money. We evaluated effort with single and combined data sources. 
To illustrate the types of costs that might be included within a study 
to evaluate effort and precision, we quantify costs here with data 
types specific to our study. We note that cost functions are often 
study‐specific, but general cost categories exist with establishment, 

(7)[YPjkt|Njt,pPjkt]∼Bern(1− (1−pPjkt)
Njt ),

(8)logit(pPjkt)=d0+d1×nboxj+d2ojkt ,

(9)
[Zijt|Zijt−1,�jt]∼Bern(Zijt−1×�jt),

(10)[YBijt|Zijt,pBi]∼Bern(Zijt×pBi),

(11)logit(pBi)= e0+e1×sexi.

(12)

[
�,N,pP,S,G,�,�,Z,pB|YB,YP

]
∝

[
YP1|N1,pP1

]
×

[
N1|�

]
×

[
YB|pB,Zt

]
×

[
Zt|Zt−1,�t

]
×

[
St|Nt−1,�t

]
×

[
Nt|St,Gt

]
×

[
Gt|�t

]
×

[
YP|pPt,Nt

]
×

[
�,pP,�,�,pB

]
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sampling unit, sampling occasion (and combinations of sampling unit 
by sampling occasion) components. We do not include costs as‐
sociated with collecting covariate information, since relative costs 
would be the same in our case study for banding data and detec‐
tion/non‐detection data only models (e.g., we would include the 
same vegetation data in single data models). However, field costs 
may be substantial for collecting covariate data and differ between 
data types in other studies, so this would be important to include in 
such cases. We used the following cost function (Cp) for detection/
non‐detection data (Equation 13):

where s was the number of sampling units (s = 149 points), k was 
the number of sampling occasions (k = 3), t was the number of 
years (t = 8), C0,P was the initial project startup cost with detection/
non‐detection data which included study design and equipment 
costs, C1,P was the additional establishment cost per sampling unit 
for detection/non‐detection data, C2,P was the additional cost to 
sample each sampling unit per sampling occasion per year for de‐
tection/non‐detection data, and C3,P was the additional cost per 
sampling occasion per year for detection/non‐detection data. For 
our example, we used the following cost estimates: C0,p = $21,900, 
C1,p = $19 (per point cost includes two observers’ salaries and 
equipment costs), C2,p = $12 (per point/occasion/year cost includes 
two observers’ salaries), and C3,p = $64 (per occasion per year cost 
for data entry with two observers). Based on our field study, we 
assumed that two observers (one biological technician, one crew 
leader) could sample or establish 20 points total per day (10 points 
per observer).

We used the following cost function (CB) for banding data 
(Equation 14):

where s was the number of sampling units (s = 216 boxes, 72 points 
with 3 boxes per point), t was the number of years (t = 8), C0,B was 
the initial project startup cost which included study design and 
equipment costs for banding data, C4,B was the additional establish‐
ment cost per sampling unit for banding data, C5,B was the additional 
cost to sample each sampling unit per year for banding data, and 
C6,B was the additional cost to sample per year (without respect to 
number of sampling units) for banding data. For our example, we 
used the following cost estimates: C0,B = $23,400, C4,B = $105 (per 
nest box cost includes two observers’ salaries and equipment costs), 
C5,B = $55 (per nest box per year cost includes two observers’ sal‐
aries), and C6,B = $264 (data entry and equipment costs per year). 
Based on our field study, we assumed that two observers (one bi‐
ological technician, one crew leader) could sample or establish one 
box per hour.

We used the following cost function (CJ) for the joint data struc‐
tures (Equation 15) of detection/non‐detection and banding data:

where s was the number of sampling units (s = 77 points for the 
C1,J term, s = 149 points for the C2,J term, s = 216 boxes for the C4,J 

and C5,J terms), whereas k, t, C0,J, C1,J, C2,J, C3,J, C4,J, C5,J, and C6,J 

were the same as above, but for both detection/non‐detection 
and banding data sources. For our example, we used the follow‐
ing cost estimates (note that cost estimates were not the same 
as above due to differing amounts of time allocated for sampling 
and how travel time was distributed between sampling methods): 
C0,J = $28,400, C1,J = $19 (per point cost includes two observers’ 
salaries and equipment costs), C2,J = $10 (per point/occasion/year 
cost includes two observers’ salaries), C3,J = $85 (per occasion per 
year cost for data entry with two observers), C4,J = $105 (per nest 
box cost includes two observers’ salaries and equipment costs), 
C5,J = $46 (per nest box per year cost includes two observers’ sala‐
ries), and C6,J = $200 (equipment costs per year). Based on our field 
study, we assumed that two observers (one biological technician, 
one crew leader) could sample or establish 20 points total per day 
(10 points per observer) and sample or establish one box per hour.

3  | RESULTS

3.1 | Data summary

We banded 471 adult western bluebirds over 8 years. Number of 
points where yjkt = 1 for western bluebirds across point counts was 
comparable across sessions during each year (session 1 [68, 65, 65, 71, 
65, 88, 89, 96], session 2: [76, 79, 60, 63, 67, 81, 113, 85], session 3: [77, 
87, 57, 68, 73, 71, 88, 76]). There was no evidence of model overdisper‐
sion with single data type models and moderate overdispersion with 
the joint model (Bayesian p‐values: detection/non‐detection data only 
model 0.504, band data only model 0.478, joint data model 0.294). 
Detection probabilities for banding and detection/non‐detection 
data were relatively high (banding data posterior medians were 0.480 
males and 0.700 for females; posterior median range for yearly detec‐
tion probability with detection/non‐detection data [0.185–730]) with 
the exception of detection/non‐detection data in year 1 (Figure 2).

3.2 | Estimates of abundance, survival, and 
recruitment

Model support for individual covariates varied among model types 
(Tables 1 and 2). Relationships reported as positive or negative were 
statistically significant (e.g., 95% credible intervals [CI] did not in‐
clude zero). For the detection/non‐detection data model, there was 
strong model support (mean posterior of binary indicator variable 
>0.5 from indicator variable selection [O'Hara & Sillanpää, 2009]) 
for initial abundance with the covariate transect (negative and posi‐
tive posterior medians for individual transects, but 95% CIs included 
zero). For the detection/non‐detection data model apparent survival 
probability, nest box indicator (negative posterior median, but 95% 
CI included zero), time since fire (positive posterior median, but 95% 
CI included zero), and snag basal area (negative relationship) had 
strong model support. Snag basal area (positive relationship) had 

(13)CP=C0,P+C1,P×s+C2,P×k×s× t+C3,P×k× t,

(14)CB=C0,B+C4,B×s+C5,B×s× t+C6,B× t,

(15)Cj=C0,J+C1,J×s+C2,J×k×s× t+C3,J×k× t+C4,J×s+C5,J×s× t+C6,J× t,
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strong model support for recruitment with the detection/non‐de‐
tection data model. For the detection/non‐detection data model, 
the following covariates nest box indicator (positive relationship) 
and observer (negative relationship) had strong model support for 
point‐count detection probability. None of the covariates had model 
support with the banding data model.

For the joint data model, time since fire (positive posterior me‐
dian, but 95% CI included zero) and transect (negative and positive 
posterior medians for individual transects, but 95% CIs included 
zero) had strong support for initial abundance. Apparent survival 
probability had strong model support with snag basal area (negative 
posterior median, but 95% CI included zero). Recruitment had strong 
model support with covariates time since fire (positive relationship), 
live tree basal area (positive posterior median, but 95% CI included 
zero), and snag basal area (positive posterior median, but 95% CI in‐
cluded zero). Point‐count detection probability had model support 
with covariates nest box indicator (positive relationship), and ob‐
server (negative posterior medians, but 95% CIs included zero).

To illustrate how precision of estimates varied among models, 
we used examples from two points (one with and one without a 
nest box) from three transects of high, moderate, and low/unburned 
fire severity. For apparent survival probability, both the joint and 
band data only models had relatively constant survival over time, 
whereas survival with the detection/non‐detection data only model 
increased slightly with increased time since fire with points at high 
and moderate severity (Figure 3). Precision increase was greatest for 
survival estimates, followed by abundance, especially with locations 
that did not have nest boxes, and minimal increases in precision with 
recruitment (Figures 4 and 5).

3.3 | Effort comparison

The largest difference in precision between estimates with sin‐
gle and joint data sources occurred with the apparent survival 
parameter (mean relative differences in precision for all sampling 
locations: point compared to joint = 1.615 [SD = 0.939], band 
compared to joint =0.334 [SD = 0.714]), with smaller differences 
observed for abundance (mean relative difference for point com‐
pared to joint = 0.394 [SD = 0.324]) and recruitment (mean rela‐
tive difference for point compared to joint = 0.156 [SD = 0.318]) 
(Figure 6). Because apparent survival estimates based on band‐
ing data were more precise than apparent survival estimates de‐
rived using detection/non‐detection data, there was little gained 
in precision by adding detection/non‐detection data to banding 
data (but added cost also was minimal). In contrast, adding band‐
ing data to detection/non‐detection data resulted in larger in‐
creases in precision, but also required significant increases in cost 
(Figure 6). Precision also increased for abundance estimates when 
banding data were added to detection/non‐detection data, but 
again this addition required a significant cost increase (Figure 6). 
Adding banding to detection/non‐detection data resulted in mini‐
mal changes in precision for recruitment, despite the much higher 
cost involved (Figure 6).

4  | DISCUSSION

Demographic models that incorporate multiple data sources are 
often selected over single source models due to increased precision 

Parameter Covariate
Detection/non‐detection 
data only model

Banding data 
only model Joint data model

N a1 (dnbr) 0.032 NA 0.042

a2 (nbox) 0.101 NA 0.070

a3 (tfire) 0.339 NA 0.763*

a4 (transect) 0.908* NA 0.522*

ϕ b1 (nbox) 0.924* NA 0.089

b2 (tfire) 0.955* 0.013 0.021

b3 (live) 0.377 0.153 0.281

b4 (snag) 1.000* 0.164 0.703*

γ c1 (nbox) 0.091 NA 0.084

c2 (tfire) 0.060 NA 1.000*

c3 (live) 0.108 NA 0.517*

c4 (snag) 1.000* NA 0.577*

pP d1 (nbox) 1.000* NA 1.000*

d2 (obs) 1.000* NA 1.000*

pB e1 (sex) NA 0.318 0.962*

Note. Estimates marked with an “*” indicate strong model support (posterior mean > 0.5). “NA” indi‐
cated the parameter was not part of the model. Data sources included detection/non‐detection and 
banding data. Parameters included N (abundance), ϕ (apparent survival probability), γ (recruitment), 
pP (point‐count detection probability), pB (banding detection probability).

TA B L E  1   Mean estimates of posterior 
support using indicator variable selection 
for model covariates in joint data and 
single data models with detection/
non‐detection and banding data from a 
western bluebird case study in ponderosa 
pine forests within Coconino National 
Forest in north‐central Arizona, USA 
between 1999 and 2006
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of resulting population parameter estimates (Besbeas et al., 2002; 
Schaub & Abadi, 2011). If precision was the only concern for a re‐
search program, the increased costs associated with collecting ad‐
ditional data types would not be a consideration. However, most 
research programs work with limited budgets, and evaluating pre‐
cision gain versus effort for joint data models is warranted in such 
studies. This evaluation is particularly important when designing new 

studies or new phases of projects with multiple possible data collec‐
tion opportunities. Inherently, some data sources will be more reli‐
able than others, and costs relative to precision vary with the amount 
of effort required to sample across the landscape. Our general frame‐
work to evaluate differences in effort versus precision gain with one 
type of joint data model can also be applied to joint data models using 
other combinations of data types in the study design phase.

TA B L E  2   Median estimates (95% credible intervals) for model covariates in joint data and single data models with detection/non‐
detection and banding data from a western bluebird case study in ponderosa pine forests within Coconino National Forest in north‐central 
Arizona, USA between 1999 and 2006

Parameter Covariate
Covariate 
subcategories

Detection/non‐detection data 
only model

Banding data 
only model Joint data model

N a3 (tfire) — NA 0.206 (0.000, 0.356)

a4 (transect) transect A −0.087 (−0.548, 0.298) NA 0.000 (−0.442, 0.284)

transect B 0.248 (−0.111, 0.673) NA 0.000 (−0.127, 0.566)

transect C 0.359 (−0.044, 0.858) NA 0.000 (−0.011, 0.837)

transect D −0.143 (−0.783, 0.398) NA 0.000 (−0.656, 0.361)

transect E −0.063 (−0.654, 0.480) NA 0.000 (−0.557, 0.423)

transect F 0.140 (−0.443, 0.824) NA 0.000 (−0.383, 0.651)

transect G 0.304 (−0.235, 0.977) NA 0.000 (−0.243, 0.782)

transect H 0.000 (−0.400, 0.429) NA 0.000 (−0.319, 0.405)

transect I −0.396 (−1.009, 0.031) NA 0.000 (−0.869, 0.013)

transect J 0.000 (−0.514, 0.586) NA 0.000 (−0.458, 0.506)

transect K −0.591 (−1.283, 0.006) NA 0.000 (−1.133, 0.032)

transect N −0.124 (−0.801, 0.369) NA 0.000 (−0.623, 0.336)

transect R 0.000 (−0.512, 0.489) NA 0.000 (−0.427, 0.428)

transect X 0.536 (−0.017, 1.189) NA 0.000 (−0.084, 1.008)

transect Z −0.072 (−0.617, 0.367) NA 0.000 (−0.540, 0.280)

ϕ b1 (nbox) −0.877 (−1.521, 0.000) NA —

b2 (tfire) 0.219 (0.000, 0.294) — —

b4 (snag) −5.426 (−8.762, −3.140) — −1.067 (−2.437, 0.000)

γ c2 (tfire) — NA 0.092 (0.064, 0.120)

c3 (live) — NA 0.098 (0.000, 0.517)

c4 (snag) 0.581 (0.366, 0.774) NA 0.230 (−0.460, 0.706)

pp d1 (nbox) 1.134 (0.750, 1.620) NA 0.772 (0.578, 0.978)

d2 (obs) observer 1 −2.328 (−2.999, −1.783) NA −1.799 (−2.188, −1.473)

observer 2 −2.637 (−3.313, −2.088) NA −2.140 (−2.553, −1.792)

observer 3 −2.558 (−3.266, −1.931) NA −1.961 (−2.429, −1.527)

observer 4 −2.340 (−3.023, −1.781) NA −1.828 (−2.260, −1.437)

observer 5 −2.047 (−2.734, −1.464) NA −1.503 (−1.919, −1.137)

observer 6 −2.278 (−2.953, −1.741) NA −1.758 (−2.142, −1.438)

observer 7 −2.521 (−3.214, −1.914) NA −1.959 (−2.418, −1.546)

observer 8 −2.001 (−2.673, −1.441) NA −1.455 (−1.849, −1.110)

observer 9 −2.319 (−3.767, −0.851) NA −1.823 (−3.179, −0.422)

pB e1 (sex) NA — 0.956 (0.000, 1.717)

Note. We include all covariates that had strong model support with indicator variable selection (posterior mean > 0.50). “NA” indicated the parameter 
was not part of the model and “—” indicated that the covariate did not have strong model support. Parameters included N (abundance), ϕ (apparent 
survival probability), γ (recruitment), pP (point‐count detection probability).
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Our joint model combining occupancy and capture–recapture 
data yielded parameter estimates that were more precise than those 
resulting from single data type models, but the increase in precision 
varied by parameter. The greatest increase in precision estimates 
occurred for apparent survival probability, which was expected be‐
cause this parameter was shared by both single data source models. 
Abundance showed moderate improvement in estimate precision, 
followed by recruitment.

The amount of precision gained relative to cost also varied by 
data source. For apparent survival, estimates based on banding data 
were more precise than those derived from detection/non‐detec‐
tion data, so little precision was gained (but at minimal cost) when 
detection/non‐detection data were added to banding data for the 
joint model. There was a gain, however, in spatial coverage and 
ability to estimate abundance and recruitment when adding de‐
tection/non‐detection data to banding data because banding data 
were collected at a subset of locations where detection/non‐de‐
tection data occurred. Detection/non‐detection data collection is 
less time‐intensive per area sampled, and a less invasive sampling 

method, which may be a preferred for sampling threatened and 
endangered species. Conversely, adding banding to detection/non‐
detection data did not increase the spatial scope of inference since 
banding data were collected at a subset of detection/non‐detection 
data locations, but resulted in larger increases in precision for sur‐
vival and abundance. Precision increases with common parameters 
between data types are expected (Besbeas et al., 2002; Schaub & 
Abadi, 2011), especially with survival. Costs of adding banding data 
were high, however. It was possible that our case study had higher 
costs compared to other types of capture–recapture studies (i.e., 
small mammal trapping) due to the combination of nest boxes and 
mist‐nets (although noninvasive DNA capture–recapture methods 
can be costly). Incorporating demographic data from capture–re‐
capture studies need not be cost‐prohibitive, and are valuable for 
focused studies (i.e., population viability analyses to inform conser‐
vation and management efforts). Therefore, we encourage others 
to focus on our overall framework to evaluate relative costs to pre‐
cision increase and assess benefits relative to individual studies and 
objectives.

F I G U R E  3   Apparent survival (φ) 
posterior median estimates and associated 
Bayesian credible intervals from a western 
bluebird case study in ponderosa pine 
forests within Coconino National Forest 
in north‐central Arizona, USA between 
1999 and 2006. Estimates were derived 
using data from a single bird point‐count 
station and models using detection/non‐
detection data only, banding data only, 
and a joint model using both data types. 
Example sampling locations included 
those with (nbox) and without nest boxes 
(no nbox) for high (Transect A, points 2 
and 6), moderate (Transect B, points 2 and 
1), and low/unburned (Transect J, points 6 
and 1) burn severity
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F I G U R E  4   Abundance (N) posterior 
median estimates and associated Bayesian 
credible intervals from a western bluebird 
case study in ponderosa pine forests within 
Coconino National Forest in north‐central 
Arizona, USA between 1999 and 2006. 
Estimates were derived using data from a 
single bird point‐count station and models 
using detection/non‐detection data only, 
banding data only, and a joint model using 
both data types. Example sampling locations 
included those with (nbox) and without nest 
boxes (no nbox) for high (Transect A, points 2 
and 6), moderate (Transect B, points 2 and 1), 
and low/unburned (Transect J, points 6 and 
1) burn severity

F I G U R E  5   Recruitment (G) posterior 
median estimates and associated Bayesian 
credible intervals from a western bluebird 
case study in ponderosa pine forests 
within Coconino National Forest in north‐
central Arizona, USA between 1999 and 
2006. Estimates were derived using data 
from a single bird point‐count station and 
models using detection/non‐detection 
data only, banding data only, and a joint 
model using both data types. Example 
sampling locations included those with 
(nbox) and without nest boxes (no nbox) 
for high (Transect A, points 2 and 6), 
moderate (Transect B, points 2 and 1), and 
low/unburned (Transect J, points 6 and 1) 
burn severity
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One advantage of combining data is that you have a wider range 
of the covariate space from which to estimate potential effects on 
demographic parameters. With our study, the covariates selected 
with the most model support differed between the joint and sin‐
gle data models. The detection/non‐detection data only model 
had more supported covariates than the joint model, whereas the 
banding data only model had no supported covariates, suggesting a 
balance of supported covariates with both data sources for the joint 
data model. One of our assumptions was that we were sampling 
randomly from the population for both data sources. Alternatively, 
data sources may be sampling different portions of the population 
if there was a discrepancy between supported covariates. In our 
example, banding data were only collected at nest box locations, 
whereas detection/non‐detection data were collected at locations 
with and without nest boxes. The detection/non‐detection model 
indicated that survival was lower at locations with nest boxes, al‐
though this covariate was not supported within the joint data model. 
Another possibility is that detection/non‐detection and banding 
data had processes operating at different scales. We limited point‐
count detections to 100 m radius, whereas nest box locations 
(where most banding took place) were located within a 50 m radius 

of the point‐count station, potentially limiting the number of indi‐
viduals included within the banding data set, assuming nest boxes 
did not draw birds in.

A positive relationship with time since fire was evident for initial 
abundance, apparent survival, and/or recruitment, although results var‐
ied between the joint and single data source models. Although uncer‐
tainty appeared around what parameter was influenced by time since 
fire, more certainty existed for the western bluebird population increas‐
ing with time since fire. This result is consistent with changes in forest 
structure occurring after fire and consistent with other studies (Fontaine 
& Kennedy, 2012; Kotliar et al., 2002; Saab, Russell, & Dudley, 2007).

In the detection/non‐detection only data and joint data mod‐
els, the snag covariate had a positive relationship for recruitment, 
but negative with survival. The relationships were not significant, 
however, with the joint model. Because western bluebirds are cav‐
ity‐nesting species, snags are likely to contribute to a positive re‐
lationship with recruitment (i.e., Saab, Powell, Kotliar, & Newlon, 
2005; Wightman & Germaine, 2006). We did not include interaction 
effects within the model, but we expected an interaction between 
snag BA and time since fire because snags decline over time in se‐
verely burned areas.

F I G U R E  6   Violin plots showing the difference in relative Bayesian credible interval (BCI) length (a measure of precision) between models 
built from single and joint data sources using data from a western bluebird case study in ponderosa pine forests within Coconino National 
Forest in north‐central Arizona, USA between 1999 and 2006 relative to cost (USD) of adding additional data sources. Relative difference 
in BCI length was calculated as (BCI length single‐BCI length joint)/BCI length joint, so larger numbers equate to more precision gained by 
incorporating multiple data types. Individual plots show the kernel density distribution across all points sampled. Phi band (left) shows the 
gain in precision for apparent survival estimates when detection/non‐detection data were added to existing banding data. Phi pnt, N pnt, 
and G pnt (left to right in right hand group) show the increase in precision of estimates for apparent survival, abundance, and recruitment, 
respectively, when banding data were added to existing detection/non‐detection data
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We envision extending the integrated population model to in‐
clude information on nest data to better inform the recruitment 
component for a full integrated model. We expect to have in‐
creased precision with the recruitment parameter, with no addi‐
tional costs due to the way these data were collected in this study 
and parameterized within the cost equation. Depending on data 
collection limitations, additional data sources will vary in additional 
costs and effort.

Evaluating value added from different data sources relative 
to cost will be dependent on the objectives of a given project, as 
well as available resources. The explicit use of costs within our 
study establishes a framework for accomplishing this evaluation, 
and could be coupled with optimization procedures (i.e., Sanderlin, 
Block, & Ganey, 2014) to maximize accuracy (with a simulation 
study, i.e., Supporting Information Appendix S1) or precision (like 
this case study) subject to cost constraints. For example, if esti‐
mating recruitment precisely was the primary objective, our case 
study indicated that adding an additional data source carried high 
costs but resulted in limited gains in precision. The ability to evalu‐
ate costs versus precision, bias, and/or accuracy in parameter esti‐
mates is valuable for targeting where to allocate limited resources 
to meet study objectives and to evaluate power for a given effect 
size. Further, sampling design trade‐offs not only with or without 
specific data sources, but different levels of effort with each data 
source could be evaluated with respect to parameter accuracy 
and associated costs within our framework, and warrants future 
exploration. For example, in our simulation study (Supporting 
Information Appendix S1), both number of banding sites and de‐
tection/non‐detection sessions were important for estimating ap‐
parent survival (with banding sites being more important), while 
number of detection/non‐detection sessions was more important 
for estimating abundance and recruitment. In conclusion, our gen‐
eral framework to evaluate differences in effort versus precision 
gain with one type of joint data model is applicable to other data 
type combinations of joint data models, and can also be used to 
evaluate trade‐offs with different levels of effort within each 
data source. This framework allows research and monitoring pro‐
grams to evaluate optimal use of limited funds when multiple data 
sources are available within the study design phase to meet study 
objectives.
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