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Abstract: Chronic exposure to drugs of abuse produces profound changes in gene expression and
neural activity associated with drug-seeking and taking behavior. Dysregulation of opioid receptor
gene expression is commonly observed across a variety of abused substances including opioids,
cocaine, and alcohol. Early studies in cultured cells showed that the spatial and temporal gene
expression of opioid receptors are regulated by epigenetic mechanisms including DNA and histone
modifications and non-coding RNAs. Accumulating evidence indicate that drugs of abuse can
modulate opioid receptor gene expression by targeting various epigenetic regulatory networks.
Based on current cellular and animal models of substance use disorder and clinical evidence, this
review summarizes how chronic drug exposure alters the gene expression of mu, delta, kappa,
and nociceptin receptors via DNA and histone modifications. The influence of drugs of abuse on
epigenetic modulators, such as non-coding RNAs and transcription factors, is also presented. Finally,
the therapeutic potential of manipulating epigenetic processes as an avenue to treat substance use
disorder is discussed.

Keywords: opioid receptors; gene expression; drugs of abuse; DNA methylation; histone modifica-
tions; noncoding RNAs; epigenetics

1. Introduction

Substance use disorder (SUD) is characterized by excessive and continued drug use
that disrupts social and occupational activity [1]. According to the National Center for Drug
Abuse Statistics, the number of drug overdose deaths in the United States has increased
by about 30% yearly since 1999. Chronic exposure to abuse drugs produces profound
changes in gene expression and neural activity in various brain regions, which contributes
to persistent drug-seeking and taking behavior. Although different classes of drugs exert
their action on specific targets, dysregulation of the opioid system, particularly of opioid
receptors, is commonly observed across a wide variety of substances, including opioids,
cocaine, methamphetamine, alcohol, and nicotine [2]. Changes in the expression of opioid
receptors have been associated with increased vulnerability to drug-seeking and taking
behavior in both human and animal models of SUD [3,4]. Early studies in cultured cells
demonstrated that opioid receptors are subject to epigenetic regulations [5]. Since it has
become increasingly appreciated that drugs of abuse modify epigenetic regulation in the
brain [6,7], this review summarizes the mechanisms underlying epigenetic modulations of
opioid receptor subtypes in the context of SUD, which has not been reviewed previously. We
also discuss the potential of applicability of drugs, which can target epigenetic regulatory
events, as an avenue for the treatment of SUD.

2. The Physiology and Pharmacology of Opioid Receptors

There are four types of opioid receptors: mu-opioid receptors (MORs), delta-opioid
receptors (DORs), kappa-opioid receptors (KORs), and nociceptin/orphanin FQ recep-
tors (NOP receptors). They are class A rhodopsin-like G-protein-coupled receptors that
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contain seven transmembrane domains, an extracellular N-terminus and an intracellular
C-terminus, and are primarily coupled to heterotrimeric Gαi/o proteins [6]. Opioid re-
ceptors share a high sequence homology (73–100%) within transmembrane domains but
differ significantly in the N- and C-terminus with only 9–20% sequence homology [6–10].
The NOP receptors are closely related but occupy a non-opioid branch of the opioid fam-
ily of receptors [11]. The endogenous ligands for MORs and DORs are endorphins and
enkephalins, and dynorphins are the primary endogenous ligands for KORs [12]. Noci-
ceptin or orphanin FQ (N/OFQ) are endogenous ligands for NOP receptors [13]. There
are also natural and synthetic opioids, such as morphine, heroin, fentanyl, oxycodone, and
codeine, which differ in their binding affinities for each receptor subtype [14,15].

MORs and DORs are distributed in various brain regions, the dorsal horn of the
spinal cord, and peripheral tissues based on in situ hybridization mRNA analysis [16,17].
MORs and DORs share approximately 60% amino acid sequence homology in mice and,
therefore, their individual ligands often show a binding affinity for both receptors [18]. The
analgesic effect of opioids arises from the activation of MORs and, to a lesser extent, of
DORs in the dorsal horn of the spinal cord [19,20]. MORs and DORs are also abundantly
expressed in the mesolimbic and mesocortical pathways that are associated with reward.
The expression levels of MORs and DORs influence behavioral responses to drugs. Mice
with MOR deletion exhibit reduced morphine and cocaine self-administration, attenuated
alcohol drinking in two-bottle choice, and disrupted nicotine-induced conditioned place
preference [21–25]. Likewise, deletion of DOR in mice leads to disturbed conditioned place
preference for morphine, less motivation to acquire cocaine, and decreased nicotine self-
administration [26–28]. However, DOR knockout mice show increased alcohol drinking in
two-bottle choice [29,30], which is in contrast to the observation in MOR knockout mice.

KORs are the most abundant opioid receptor type in the brain [31] and play an impor-
tant role in the regulation of both reward and mood processes [32]. For example, mice with
KOR deletion show attenuated morphine withdrawal effect and reduced alcohol drinking
in two-bottle choice [29,33,34]. Mice with conditional KOR knockout in dopaminergic
neurons display enhanced sensitivity to cocaine-induced locomotor stimulation but re-
duced anxiety-like behavior [35]. Moreover, conditional knockout of KOR in the basolateral
amygdala blocks stress-induced conditioned place preference for nicotine [36]. These data
indicate that KORs may play an important role in comorbidity of substance use disorder
and anxiety-like behavior.

NOP receptors are distributed throughout the central and peripheral nervous systems
but are highly expressed in the mesocorticolimbic systems, where they modulate the trans-
mission of certain neurotransmitters including dopamine, glutamate, and GABA [37–39].
They have a distinct pharmacological profile from that of other opioid receptor subtypes,
which is characterized by a low affinity for classical opioid peptides and antagonists [11].
Activation of NOP receptors produces dichotomous responses to pain that are site-specific.
For example, administration of orphanin FQ induces anti-nociceptive responses, whereas
intracerebroventricular injection of OFQ blocks opioid-induced analgesia [40]. Moreover,
the expression of NOP receptors is implicated in drug reward. To illustrate, mice lacking
NOP receptors show enhanced cocaine-induced locomotor sensitization [41]. Further, ab-
sence of NOP receptors in rats results in decreased motivation to self-administer nicotine,
reduced nicotine intake, and attenuated cue-induced nicotine reinstatement [42]. Addition-
ally, NOP receptor knockout mice consume less alcohol in a binge-like alcohol drinking
paradigm [43].

To summarize, the expression level of each opioid receptor subtype influences the
responses to drug reward and analgesics. Importantly, prior studies have shown that the
gene expression of these opioid receptors is altered following chronic exposure to drugs of
abuse including cocaine [44], oxycodone [45], nicotine [46], and alcohol [47]. Therefore, it
is critical to understand how drugs of abuse alter the gene expression of opioid receptor
subtypes so that better pharmacotherapies could potentially be developed for the treatment
of SUD.
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3. Epigenetics and SUD

Epigenetics denote persistent changes in gene expression without an alteration in
DNA sequence. The epigenetic modification of gene expression can be continued even
after the initial causative stimuli have been removed or can be inherited for at least one
successive generation. Epigenetic mechanisms trigger conformational changes to chro-
matin, which controls the accessibility of the DNA template for transcription [48,49]. The
state of chromatin is regulated by biochemical processes, including DNA modifications,
post-translational modifications of histones, noncoding RNAs (ncRNAs), and chromatin
remodeling (Figure 1).
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Figure 1. Schematic mechanisms of epigenetic mechanisms. (A) DNA methylation typically occurs at
CpG dinucleotides (5mC), in which cytosines are methylated by DNA methyltransferases (DNMTs).
The added methyl group(s) can be converted to hydroxymethyl (5hmC) by TET family proteins. Both
5mC and 5hmC are abundant in the brain. (B) Histone modifications mark the transcriptionally active
or silenced chromatin states. Methylation and acetylation are two major studied histone modifications
in drugs of abuse. The silenced chromatin is enriched with histone H3 lysine 9 (H3K9me) and
27 (H3K27me) methylations, whereas the active chromatin is covered by hyperacetylated histones
and tri-methylated histone H3 lysine 4 (H3K4me3). (C) The long noncoding RNAs (lncRNAs) are
likely involved in recruiting histone modifying enzymes that add or remove histone marks that
control the local chromatin status, thereby, affecting transcription, either positively or negatively.
(D) microRNAs (miRNAs) down-regulate mRNA levels either by mediating the degradation of
mRNA or blocking translation. Circular RNAs (circRNAs) are a new class of ncRNA that may
antagonize the function of miRNA by sponging and may also have gene regulation potency.

SUD meets an essential criterion of epigenetic regulation: continued influence of drugs
long after the drug has been removed from the system. Repeated drug exposure may cause
a long-lasting alteration of the transcriptional program, leading to enduring transcriptional
changes of genes implicated in neurotransmission and, therefore, persistent drug-seeking
and taking behavior. Recent studies have shown that manipulation of various aspects of
epigenetic processes can impact behavioral responses to drugs. For instance, microinjection
of a DNA methyltransferase (DNMT) inhibitor into rat nucleus accumbens (NAc) to reduce
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DNA methylation suppresses cue-induced cocaine-seeking behavior, whereas microinjec-
tion of the methyl donor S-adenosylmethionine to increase DNA methylation produces the
opposite effect [50]. Systemic injection of a histone deacetylase inhibitor to increase histone
acetylation enhances rat striatal histone H3 hyperacetylation and the reinforcing effect
of cocaine, assessed by conditioned placed preference [51]. Furthermore, overexpression
of microRNA-495, a small ncRNA, in mouse NAc suppresses the motivation to seek and
take cocaine [52]. Notably, drug-induced transgenerational epigenetic inheritance has been
reported. A study of the male offspring of female rats that had repeated exposures to mor-
phine found that the males displayed increased anxiety-like behavior during adolescence,
increased sensitivity to the analgesic effects of morphine, and developed a greater tolerance
to chronic morphine treatment [53]. These findings indicate that exposure to drugs of abuse
can produce epigenetic changes through various mechanisms. These epigenetic changes
are associated with the reinforcing and rewarding properties of drugs and, hence, may
serve as potential targets for developing new therapeutic interventions.

4. Drugs of Abuse Modify Epigenetic Regulation
4.1. DNA Methylation

DNA methylation occurs via the addition of a methyl group to a cytosine residue
within a cytosine-phosphate-guanine (CpG) site on the 5′ carbon (5-mC) of the pyrimidine
ring. Regions with a high frequency of CpG sites, termed CpG islands, are heavily enriched
in the promoter regions of housekeeping genes [54,55]. The CpG-rich promoters contain an
elevated G/C content and often lack the core promoter elements, such as a TATA-box [56].
In mammals, CpG methylation (5-mC) at a promoter is commonly correlated with gene
silencing [57,58]. The methylation is catalyzed by DNA methyltransferases, including
DNMT1, DNMT3A, and DNMT3B (Figure 1A) [59]. Different forms of DNA modifications
are generated by removing 5-mC via Ten-Eleven Translocation (TET) family enzymes, which
are α-ketoglutarate (α-KG)/Fe(II)-dependent dioxygenases [60]. The 5-mC can be oxidized
to 5-hydroxymethyl (5-hmC), 5-formyl (5-fC), and 5-carboxyl (5-caC) [60]. Among the forms
of cytosine modifications, 5-hmC is most abundant in the brain and enriched in gene bodies,
suggesting that it may play a particular role in gene activation [61,62]. Moreover, oxidation
of 5-mC to 5-hmC is necessary for mammalian neuronal differentiation and function [63].
Accumulating evidence indicates that drugs of abuse influence DNA methylation in the
brain. For example, chronic morphine treatment (10 mg/kg, twice/day, 9 days) to rats
alters 5-mC and 5-hmC levels in a brain region-specific manner [64]. Further, global 5-mC
levels are increased in rat NAc following withdrawal from chronic cocaine treatment, and
this hypermethylation is associated with gene repression [50].

The TET family (TET1-3) proteins participate in the conversion of 5-mC to 5-hmC
(Figure 1A). They are highly expressed in the brain, with TET3 being most abundantly
expressed in the cerebellum, prefrontal cortex, and hippocampus compared to TET1 and
TET2 [65]. Drugs of abuse alter the expression of DNA modifying enzymes. For example,
acute cocaine treatment decreases DNMT1, DNMT3a, TET1, and TET2 transcript levels in
mouse NAc; however, the DNMT transcripts and enzyme activity levels are increased after
a 24 h withdrawal period from chronic cocaine treatment [66]. Further, cocaine-induced
behavioral sensitization is associated with increased expression and activity of DNMTs and
decreased expression and activity of TET1 and TET3 in mouse NAc [66]. These changes are
correlated with altered 5-mC and 5-hmC levels at the candidate gene promoter regions.

4.2. Histone Modifications

Post-translational modifications of histones regulate the structure and activity of
chromatin. The N-terminal histone tails are subject to modifications including, but not
limited to: acetylation, methylation, O-GlcNAcylation, ubiquitination, phosphorylation,
SUMOylation, and serotonylation [67,68]. Histone modifying enzymes, broadly defined as
writers or erasers, can add or remove modifications, respectively. Moreover, readers are
another class of proteins that recognize their cognate epigenetic marks and initiate changes
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in chromatin structure and the binding of TFs at specific loci [69]. The function of each
epigenetic mark can be dichotomously categorized into either gene activation or repression
(Figure 1B).

Histone acetylation via histone acetyltransferases (HATs) is often associated with tran-
scriptional activation, while deacetylation via histone deacetylases (HDACs) is associated
with transcriptional inhibition. Histone acetylation and deacetylation in the brain have
increasingly been reported following exposure to drugs [70,71]. For instance, analyses of
postmortem brains of human heroin users show hyperacetylation of lysine 27 of histone
H3 (H3K27ac) in the striatum [72]. Moreover, acetylated histone H3 levels positively cor-
relate with the length of drug use. Further investigation of chromatin accessibility using
transposase-accessible chromatin sequencing reveals that H3K27 acetylation (H3K27ac)
generates an open chromatin state. Since this modification is often found at enhancer
regions [73,74], H3K27ac may induce gene activation following chronic exposure to heroin,
as observed in human heroin users [72]. In addition, inhibition of HDAC activity using
sodium butyrate increases heroin reinstatement in rats [75]. Collectively, these data suggest
that chronic exposure to drugs increases transcriptional activities, which, in turn, may lead
to heightened drug-seeking and taking behavior [70,71,76].

Histones can also be methylated at multiple lysine or arginine residues. Unlike histone
acetylation, which is generally associated with gene activation, histone methylation is
involved in both transcriptional activation and silencing depending on the deposition
of the methyl group(s). For example, histone H3 lysine 4 trimethylation (H3K4me3) is
frequently found at the promoter regions of transcriptionally active genes [77]. However,
methylation of histone H3 lysine 9 (H3K9me) and lysine 27 (H3K27me) mark the pro-
moters of transcriptionally silent genes [78]. These repressive histone modifications lead
to chromatin compression and, thus, suppression of transcription at these loci. To date,
very few have studied how drugs of abuse alter histone methylation compared to histone
acetylation. Nonetheless, currently available studies implicate that chronic drug exposure
alters histone lysine or arginine methylations, which play essential roles in regulating gene
expression. For instance, repeated systemic injections of cocaine reduce global levels of
H3K9me2 in mouse NAc, leading to a more transcriptionally active state of chromatin [79].
In rodents and humans, repeated cocaine exposure significantly decreases Protein Arginine
Methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation
of R2 on histone H3 (H3R2me2a, a repressive mark) in the NAc. This histone mark has
been shown to protect against cocaine self-administration and conditioned place preference
for cocaine [80]. Consistent with enhanced transcriptional activity, chronic exposure to
drugs reduces transcriptional silencing of histone methylations, such as H3K9me and
H3R2me2a, whereas it enhances histone methylation marks that are associated with tran-
scriptional activation such as H3K4me3 [81–83]. Although ample progress has been made
toward understanding the influence of drugs of abuse on histone acetylation and methyla-
tion, it is worth noting that many other histone modifications, such as O-GlcNAcylation,
SUMOylation, ubiquitination, etc., have yet to be investigated in the context of SUD.

4.3. ncRNAs

ncRNAs play essential roles in chromatin remodeling and post-transcriptional gene
silencing. Unlike housekeeping ncRNAs, which are the products of RNA polymerase I & III,
the ncRNAs described here are transcribed by RNA polymerase II but are not translated
into proteins. Based on their length, ncRNAs are divided into two categories: long non-
coding RNAs (lncRNAs), when longer than 200 bp, and small non-coding RNAs (sncRNAs),
when shorter than 200 bp [84]. lncRNAs are produced from overlapping protein-coding
genes, fragments of introns, anti-sense transcripts, enhancers, 5′ or 3′ untranslated regions,
or repetitive DNA elements, including transposons and their remnants [85]. Over the
past decade, there have been intense debates regarding whether pervasive lncRNAs are
functional. The current view is that most lncRNAs generated from excess transcription are
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non-functional; however, a number of other lncRNAs do have specific functional roles, for
example, in chromatin remodeling (Figure 1C) [85].

Micro RNAs (miRNAs) are sncRNAs that are generally 22 nucleotides in length and
inhibit mRNA translation by degrading or destabilizing their mRNA targets [86]. Several
reports indicate that drugs of abuse alter the expression of certain sncRNAs (Figure 1D).
For instance, Argonaute 2 (Ago2) protein plays an essential role in miRNA generation
and miRNA-mediated gene silencing [87]. Ablation of Ago2 in mouse striatal dopamine
D2 receptor-containing neurons decreases the reinforcing effect of cocaine measured by
conditioned place preference and motivation to self-administer cocaine [87]. This study
suggests that Ago2-dependent miRNAs play an important role in regulating the rewarding
and reinforcing properties of cocaine. In recent years, more miRNAs responsive to drugs of
abuse have been identified. Morphine or fentanyl treatment increases microRNA 339-3p
(miR-339-3p) in cultured primary mouse hippocampal neurons [88]. Further, both acute
and chronic treatment of methamphetamine (METH) change the expression of specific
miRNAs in rat NAc [89]. Notably, the levels of several miRNAs, including miR-496-3p,
miR-194-5p, miR-200b-3p and miR-181a-5p are significantly altered in rats chronically, but
not acutely, treated with METH, suggesting that these miRNAs may be associated with
METH-induced persistent adaptations in the brain [89]. Analysis of blood samples from
abstinent METH-dependent patients shows an increase in miR-143 levels and this increase
is associated with METH-induced disruption of the blood-brain barrier [90]. Many other
miRNAs including miR-181, miR-212, miR-124, miR-9, and let-7 have also been identified
in animal models of SUD [91–94].

lncRNAs are also involved in gene expression, RNA stabilization, and chromatin
remodeling. Evidence from clinical data and animal models of SUD indicate that drugs
of abuse also change the expression of lncRNAs. For example, lncRNAs are upregulated
in patients with a history of cocaine or heroin use [95,96]. Chronic METH treatment (IP,
2 mg/kg, 5 days) alters the lncRNA profiles in mouse NAc [97]. Moreover, prolonged
cocaine exposure (10 µM, 24 h) to mouse hippocampal HT22 cells increases the expression
of Maternally Expressed Gene 3 (MEG3), which is a lncRNA; this upregulation is also
associated with morphine-induced autophagy [98]. In addition, several single nucleotide
polymorphisms (SNPs) located at lncRNA loci are associated with SUD. Genetic variants
within ANRIL (antisense non-coding RNA in the INK4 locus) are associated with an
increased risk of METH-dependence in humans [99]. A SNP in the 3′ untranslated region
(3’ UTR) of the circadian Vasoactive Intestinal Peptide Receptor 2 (VIPR2) gene (VIPR2 SNP
rs885863) is significantly noted in a pool of patients suffering from opioid dependence [100].
This SNP is an expression quantitative trait locus for VIPR2 and a long intergenic non-
coding RNA, lncRNA 689. Lastly, circular RNAs (circRNAs) represent a large class of
ncRNAs that have emerged as key regulators of gene expression in recent years. The
circRNAs can repress the activities of corresponding miRNAs through direct binding
and are significantly enriched in the brain [101]. It has been reported that cocaine self-
administration influences the striatal expression of ninety different circRNAs [102]. To
date, the role of circRNAs and the molecular mechanisms by which they modulate gene
expression in SUD remain largely unknown and warrant future investigation.

In summary, chronic drug exposure alters the expression of enzymes involved in
modifying DNA or histones in the brain [103]. These effects are associated with prominent
changes in the patterns and the amount of DNA or histone modifications on the promoters
or gene bodies. These epigenetic changes perhaps underlie the long-lasting neurochemical
and behavioral adaptations observed in human and animals following chronic exposure to
drugs of abuse.

5. Epigenetic Modulation of Opioid Receptor Gene Expression by Drugs of Abuse

In humans and rodents, each opioid receptor is encoded by a single gene [6]. The
coding regions for MOR, DOR, and KOR are remarkably conserved at the 7 transmem-
brane regions, not only at the DNA and amino acid sequence levels but also at their
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splicing junctions [6]. Nonetheless, their gene sequences and genomic structure outside the
transmembrane domains differ substantially, particularly at the 5′ and 3′ UTRs, thereby
producing multiple mRNA variants [104,105]. The promoters for opioid receptor subtype
genes are mostly TATA-less and can start transcription from multiple sites. They also
use common TFs for transcription. A large body of research on the epigenetic regulation
of opioid receptors has been conducted in cultured cells. Recent accumulating evidence
indicate that the gene expression of opioid receptors in the brain is impacted by a variety
of drugs of abuse (Table 1). This section primarily focuses on how opioid receptors are
epigenetically modulated based on currently available data from human drug users and
animal models of SUD.

5.1. Epigenetic Modulation of the MOR Gene
5.1.1. MOR Gene

The gene encoding MOR (OPRM or Oprm) can use both canonical and alternative
transcription and translation initiation sites from mRNA variants that differ in their
5′ UTR [106–109]. For instance, mouse Oprm1 is located in chromosome 10 [110], and
uses two promoters nearby: the distal promoter and the proximal promoter (Figure 2A).
The distal promoter guides the initiation of a major transcript, while the proximal promoter
drives the production of multiple transcripts with different translation initiation sites [6].
Additionally, the MOR transcript undergoes extensive alternative splicing to produce
numerous splice variants in a pattern that is conserved from rodents to humans. These
splice variants are classified into three categories: C-terminal splicing variants, 6 transmem-
brane (TM) domain variants, and single TM1 variants [111]. The variants resulting from
the C-terminal splicing are expressed in a brain region-specific manner. Notably, these
variants diverge in agonist-induced G protein coupling, phosphorylation, internalization,
recycling, degradation, and response with respect to morphine exposure [6]. Moreover, a
recently identified splice variant in mice that lacks the first TM domain appears to form a
heterodimer with the full-length MORs, resulting in enhanced expression of the full-length
receptors [112]. The truncated single-TM variants do not bind to any opioids; instead,
they promote morphine analgesia by working as molecular chaperones to stabilize the
non-truncated MOR [113]. It is important to note that the functions of these splice variants
in vivo are essentially unknown.
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Table 1. Effects of drugs of abuse on mRNA levels of brain opioid receptors in vivo unless otherwise indicated.

Drug Treatment MOR DOR KOR NOP Related Findings References

Cocaine

Acute treatment
(sample collection
within 20-120 min)

No change in
Oprm1 mRNA (rat) N/A No change in Oprk1

mRNA (rat)
No change in Oprl1

mRNA (rat)

↓ transcript levels of DNMT1,
DNMT3a, TET1, and TET2

(mouse)
↓miR-124 in NAc (mouse)

[66,114,115]

Chronic treatment
with short-term

withdrawal period
(30 min)

↑ Oprm1 mRNA in
NAc (rat)

No change in
Oprd1 mRNA (rat)

↓ Oprk1 mRNA in
SN, VTA, and NAc

(rat)
N/A ↑ NF-κB subunits in NAc

(mouse)
↑ ∆FosB in NAc (human)
↑MEG3 (mouse HT22 cels

in vitro)
↑ 5-mC levels in NAc (rat)
↑ DNMT transcripts and
enzyme activity (mouse)
↓ H3K9me2 in NAc (mouse)
↓ PRMT6 and H3R2me2a in

NAc (mouse)
↓ SOX2 (human NPCs)
↓miR-124 in NAc (mouse)

[98,116–122]

Chronic treatment
with long-term

withdrawal period
(≥24 h)

↑ Oprm1 mRNA in
frontal cortex (rat)
↑ Oprm1 mRNA in

NAc (rat)

↑ Oprd1 mRNA in
CPu (rat)

No change in Oprd1
mRNA in NAc (rat)

↑ Oprk1 mRNA in
CPu (rat)

No change in Oprk1
mRNA in NAc (rat)

↑ Oprl1 mRNA in
NAc (rat)

↓ Oprl1 mRNA in
lateral CPu (rat)

[66,79,80,115,123–127]

METH and
MDMA

Acute treatment
(sample collection

within 20–120 min)

No change in
Oprm1 mRNA (rat) N/A No change in Oprk1

mRNA (rat)

↓ Oprl1 mRNA in
NAc by MDMA

(rat)

↑miR-181a-5p in NAc (rat)
↓ c-Fos in brain (male mouse) [32,128,129]

Chronic treatment
with long-term

withdrawal period
(≥24 h)

↑ Oprm1 mRNA
(mouse)

No change in Oprd1
mRNA (mouse)

↑ Oprk1 mRNA in
NAc (rat)

No change in Oprk1
mRNA (mouse)

↓ Oprl1 mRNA in
NAc by MDMA

(rat)

↑miR-143 in blood (human)
↓miR-496-3p, miR-194-5p, and

miR-200-3p in NAc (rat)
↑ c-Fos in amygdala (mouse)
↓ CREB in hippocampus (rat)
↓ BDNF in hippocampus (rat)

[32,89,128,130–132]
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Table 1. Cont.

Drug Treatment MOR DOR KOR NOP Related Findings References

Alcohol

Chronic treatment
with long-term

withdrawal period
(≥24 h)

↑ Oprm1 mRNA in
striatum (mouse),

NAc and amygdala
(rat)

↑ Oprd1 mRNA in
VTA and NAc

(mouse)

↑ Oprk1 mRNA in
NAc (rat and

mouse)

↓ Oprl1 mRNA in
NAc (rat)

↑ USF, AP2, and Ets1 in CeA
(rat)

↑ DNMTs transcription and
activity in NAc (rat)

↑ Global 5-mC and 5-hmC in
NAc (rat)

↑ c-Fos in amygdala and
hippocampus (rat)

[133–140]

Opioids
Fentanyl

Chronic treatment
with long-term

withdrawal period
(≥24 h)

↑ Oprm1 mRNA in
PC12 cells (rat,

in vitro)

No change in Oprd1
mRNA in dorsal

horn (mouse)
N/A

No change in Oprl1
mRNA in SH-SY5Y

cells (human
in vitro)

↑miR-339-3p in hippocampal
neurons (mouse) [88,141–143]

Heroin

Chronic treatment
with long-term

withdrawal period
(≥24 h)

↓ Oprm1 mRNA in
NAc (rat) N/A N/A N/A

↑ association of SNPs: rs2236861,
rs2236857 and rs3766951) at
intron 1 of OPRD1 (human)
↑ H3K27ac in the striatum

(human)

[72,144,145]

Morphine

Chronic treatment
with a long-term

withdrawal period
(≥24 h)

No change in
Oprm1 mRNA in
PC12 cells (rat)
↓ Oprm1 mRNA in
PAG (rat in vitro)

↓ Oprm1 mRNA in
SH-SY5Y cells

(human in vitro)

↑ Oprd1 mRNA in
the spinal cord (rat)
↓ Oprd1 mRNA in

PAG (rat)

↑ Oprk1 mRNA in
the spinal cord (rat)

↓ Oprl1 mRNA in
SH-SY5Y cells

(human in vitro)

↑miR-339-3p in hippocampal
neurons (mouse)

↑miR-23b in N2A cells (mouse
in vitro)

↑MRAK159688 expression (rat)
↑ AP-2 in the hippocampal

postsynaptic density (mouse)
↑ H3K27ac in spinal dorsal horn

(mouse)
↑ ∆FosB binding at dynorphin

promoter in NAc (mouse)
↑ NF-κB expression in neuronal

cells (human in vitro)

[88,141,142,146–152]

Oxycodone
Acute treatment

(sample collection
within 20–120 min)

↑ Oprm1 mRNA in
the spinal cord (rat)

No change in
Oprd1 mRNA in

the spinal cord (rat)

No change in Oprk1
mRNA in the

spinal cord (rat)
N/A N/A [153]

Note: CPu, caudate putamen; NAc, nucleus accumbens; SN; substantia nigra; VTA, ventral tegmental area; CeA, central nucleus of the amygdala. ↑ indicates upregulation; ↓ indicates
downregulation.



Int. J. Mol. Sci. 2022, 23, 11804 10 of 32

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 32 
 

 

 

Figure 2. The regulatory DNA elements and corresponding TFs within the promoters of mouse 

Oprm (A), Oprd (B), Oprk (C), and human OPRL (D) genes. (A–C) Thick blue lines highlight vali-

dated promoters [6,154]. (D) Predicted regulatory elements and TF-binding sites at the human OPRL 

gene. Black arrows indicate reported transcription initiation sites from the promoters. (A–D) +1 

shows the initiation codon of the open reading frame. Purple boxes are exons. Numbers above each 

map indicate the relative ends of validated promoter regions, regulatory sequences, or TF-binding 

sites, with respect to the +1 codon. Abbreviations: AP1, activator protein 1; AP2, activator protein 2; 

CREB, cyclic adenosine monophosphate (cAMP) response element binding protein; NF-κB, nuclear 

factor κB; Ets, E-twenty six; Ik, Ikaros; NRSE, neurorestrictive silencer element; Oct-1, octamer-1; 

PARP1, poly(ADP-ribose) polymerase 1; PCBP, poly C binding protein; PU.1, PU box binding; Sox, 

Sry-like high-mobility group box gene; Sp1, specificity protein 1; Sp3, specificity protein 3; STAT, 

signal transducers and activators of transcription; USF, upstream stimulatory factor; c-Myc, cellular 

Myelocytomatosis; EGR, early growth response protein; ETF, electron transfer flavoprotein; CP1, 

CCAAT transcription factor. 

5.1.2. MOR Gene Expression, DNA Methylation, and Drugs of Abuse 

Mouse Oprm1 promoters are TATA-less but contain abundant GC-enriched CpG is-

lands that can be heavily methylated, which leads to gene silencing. For instance, the 

Oprm1 gene is completely suppressed in mouse embryonal carcinoma P19 cells; however, 

there is a robust increase in Oprm1 expression when the cells are differentiated by retinoic 

acid [155]. The elevated expression levels are correlated with the degree of hypo-methyl-

ation at the proximal promoter region of Oprm1. The rise and fall of Oprm1 expression 

during cell differentiation mirror the effect of treatment with either HDAC or DNA meth-

ylation inhibitors on Oprm1 expression [155]. DNA methylation at the Oprm1 promoter 

regions contributes to the low expression of MORs in the brain [156]. 

The human OPRM1 promoter is hypermethylated following acute and chronic expo-

sure to opiates. To illustrate, in a genome-wide DNA methylation study of saliva samples 

from opioid-naive dental surgery patients, nine out of ten selected CpG sites in the 

OPRM1 promoter show elevated methylation in patients approximately 40 days after the 

surgery following higher doses of morphine treatment [157]. Furthermore, patients with 

a prior history of heroin use and that were on methadone maintenance treatment show 

increased methylation at two CpG-rich islands in peripheral lymphocytes [158]. The meth-

ylated sites are located at the predicted Sp1 transcription factor-binding sites and may 

prevent Sp1 and other transcriptional activators from accessing the locus, resulting in a 

Figure 2. The regulatory DNA elements and corresponding TFs within the promoters of mouse Oprm
(A), Oprd (B), Oprk (C), and human OPRL (D) genes. (A–C) Thick blue lines highlight validated
promoters [6,154]. (D) Predicted regulatory elements and TF-binding sites at the human OPRL gene.
Black arrows indicate reported transcription initiation sites from the promoters. (A–D) +1 shows
the initiation codon of the open reading frame. Purple boxes are exons. Numbers above each map
indicate the relative ends of validated promoter regions, regulatory sequences, or TF-binding sites,
with respect to the +1 codon. Abbreviations: AP1, activator protein 1; AP2, activator protein 2;
CREB, cyclic adenosine monophosphate (cAMP) response element binding protein; NF-κB, nuclear
factor κB; Ets, E-twenty six; Ik, Ikaros; NRSE, neurorestrictive silencer element; Oct-1, octamer-1;
PARP1, poly(ADP-ribose) polymerase 1; PCBP, poly C binding protein; PU.1, PU box binding; Sox,
Sry-like high-mobility group box gene; Sp1, specificity protein 1; Sp3, specificity protein 3; STAT,
signal transducers and activators of transcription; USF, upstream stimulatory factor; c-Myc, cellular
Myelocytomatosis; EGR, early growth response protein; ETF, electron transfer flavoprotein; CP1,
CCAAT transcription factor.

5.1.2. MOR Gene Expression, DNA Methylation, and Drugs of Abuse

Mouse Oprm1 promoters are TATA-less but contain abundant GC-enriched CpG is-
lands that can be heavily methylated, which leads to gene silencing. For instance, the Oprm1
gene is completely suppressed in mouse embryonal carcinoma P19 cells; however, there is a
robust increase in Oprm1 expression when the cells are differentiated by retinoic acid [155].
The elevated expression levels are correlated with the degree of hypo-methylation at the
proximal promoter region of Oprm1. The rise and fall of Oprm1 expression during cell dif-
ferentiation mirror the effect of treatment with either HDAC or DNA methylation inhibitors
on Oprm1 expression [155]. DNA methylation at the Oprm1 promoter regions contributes
to the low expression of MORs in the brain [156].

The human OPRM1 promoter is hypermethylated following acute and chronic expo-
sure to opiates. To illustrate, in a genome-wide DNA methylation study of saliva samples
from opioid-naive dental surgery patients, nine out of ten selected CpG sites in the OPRM1
promoter show elevated methylation in patients approximately 40 days after the surgery
following higher doses of morphine treatment [157]. Furthermore, patients with a prior
history of heroin use and that were on methadone maintenance treatment show increased
methylation at two CpG-rich islands in peripheral lymphocytes [158]. The methylated sites
are located at the predicted Sp1 transcription factor-binding sites and may prevent Sp1 and
other transcriptional activators from accessing the locus, resulting in a low expression of
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OPRM1 as noted in the lymphocytes of these patients [158]. A functional genetic variant
N40D (OPRM1 118A>G, rs1799971) observed in chronic opiate users results in a new CpG-
methylation site within the OPRM1 locus, which enhances DNA methylation and leads to
gene silencing from this site forward [159]. The hypermethylation at this site is associated
with reduced OPRM1 mRNA transcription and receptor expression in the postmortem
brains of these opioid users. Increased DNA methylation is also reported at an additional
CpG-rich island of the OPRM1 promoter in leukocytes of prior opiate users; however, DNA
methylation at this site does not induce a change in the transcriptional level of OPRM1 [160].
In addition, there is an increase in methylation at the long interspersed nuclear elements
1 (LINE-1), a global methylation site, in leukocytes of these patients, and this increase is
strongly correlated with an increased pain experience [160]. Interestingly, elevated DNA
methylation at the OPRM1 promoter is also reported in the spermatozoa of humans with
a history of opioid use, suggesting an intergenerational epigenetic inheritance of chronic
opioid-induced DNA hypermethylation [161]. Furthermore, following opioid exposure,
hypermethylation within the OPRM1 promoter is repeatedly observed in infant’s cord
blood or saliva with neonatal abstinence syndrome, suggesting the likelihood of OPRM1
gene suppression in the offspring [162]. Collectively, these data suggest that drugs of abuse
can stimulate DNA methylation of the OPRM1 gene.

A potential mechanism underlying altered DNA methylation induced by drugs is
an upregulation of MeCP2, a nuclear protein that reads and binds to methylated CpG
dinucleotides and subsequently recruits HDACs to silence the gene (Figure 3A). A few
studies have suggested an association between MeCP2 function and Oprm1 expression. In
P19 cells, DNA methylation levels are positively associated with MeCP2 binding at the
Oprm1 promoter region [155]. Moreover, MeCP2 expression levels are inversely correlated
with Oprm1 levels in P19 cells [155]. Therefore, MeCP2 may control Oprm1 expression via
binding to the methylated CpG islands at the receptor promoter region. This notion is
further supported by a study showing that surgical injury to mouse DRG results in hyper-
methylation of the Oprm1 gene promoter, as well as increased expression of MeCP2 [163].
MeCP2 knockdown rescues the expression of Oprm1 and restores the analgesic effect of
morphine, suggesting a direct causal effect of MeCP2 on Oprm1 expression. Moreover,
MeCP2 can bind to and repress G9a, also known as Ehmt2, a histone methyltransferase that
writes the repressive mark H3K9me2 [164]. Thus, it appears that MeCP2 can epigenetically
modulate Oprm1 expression through both DNA methylation and histone modification.
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Figure 3. A hypothetical model of epigenetic suppression of Oprm1 by drugs of abuse. (A) Potential
cross-regulation between DNA methylation and histone modifications on Oprm1. The drugs of abuse
enhance MeCP2 and other methyl-CpG-binding domain (MBD) proteins, which recognize DNA
methylation and mark the promoter of Oprm1. This results in the recruitment of HDAC1, which
removes the acetyl groups from the locus. The process suppresses the promoter from transcriptional
activities; thus, Oprm1 expression level is dampened. (B) ncRNA mediated suppression of Oprm1.
Morphine treatment enhances the levels of MRAK159688 (lncRNA), miR-23b, miR-339 and Let-
7 family miRNAs [152,165]. All these ncRNAs can recruit transcriptional co-repressors to suppress
the transcription of Oprm1. Alternatively, they can limit Oprm1 mRNA translation by directly binding
to its 3′UTR or sequestering the mRNA at the processing body (P-body).

In addition to MeCP2, methyl-CpG-binding domain (MBD) proteins can silence genes
by binding to methylated CpG sites and recruiting other transcriptional corepressors (e.g.,
HDACs) to the promoter region of the targeted genes [166]. Among the MBD proteins,
MBD1 proteins repress Oprm1 gene expression by recruiting DNMT3a to the Oprm1 pro-
moter [167]. As a result, Mbd1 knockout mice exhibit reduced responses to acute noxious
stimuli and blunted neuropathic pain, which is rescued by overexpression of the Mbd1
gene [167]. Altogether, these data suggest that drugs of abuse may affect MOR gene expres-
sion by altering DNA methylation at its promoter regions or by affecting the binding of its
downstream effector proteins.

5.1.3. MOR Gene Expression, TFs, and Drugs of Abuse

Numerous TFs have been identified that work to regulate Oprm1 expression positively
or negatively to fine-tune its expression in various cell culture models. However, there
are only a few studies on TFs that modulate Oprm1 expression in the context of SUD.
The cAMP response element (CRE)-binding protein (CREB) positively regulates Oprm1
expression. At the 5′ UTR region, CRE is located at -106/-111 of Oprm1 [142]. In rat
PC-12 cells, Forskolin-stimulated activation of protein kinase A (PKA) leads to the binding
of CREB and CREB-binding protein (CBP) to the Oprm1 promoter and increases Oprm1
expression [142], suggesting a cAMP-mediated pathway for Oprm1 gene modulation.
Interestingly, fentanyl treatment (10 ng/mL) to PC-12 cells induces a time-dependent
(1–48 h) increase in Oprm1 expression, while morphine (1 µg/mL) has no effect [142]. The
fentanyl-mediated increase in Oprm1 expression is abolished by a PKA inhibitor, H89,
indicating that fentanyl may modulate Oprm1 expression by promoting the binding of
CREB and CBP to the promoter of Oprm1. Although both fentanyl and morphine are
opioid analgesics that bind to MORs, fentanyl shows a greater analgesic effect, a higher
abuse potential, and more severe respiratory depression than morphine does [168,169].
Moreover, fentanyl produces less tolerance than morphine [170] and has milder side effects
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of nausea and itching [171]. The upregulation of Oprm1 expression by fentanyl, but not
by morphine, may explain the observation that repeated exposure to fentanyl, but not to
morphine, produces minimal tolerance, as well as other effects.

A morAP-2-like element is present at the mouse Oprm1 promoter, around -450 to -400
bp upstream of the open reading frame [172]. Phosphorylated Sp1 and Sp3 proteins bind to
the morAP-2-like element to activate the Oprm1 promoter [172]. In human neuroblastoma
SK-N-SH and SH-SY5Y cells, chronic exposure to the selective MOR agonist, [D-Ala(2),
N-Me-Phe(4), Gly(5)-ol] enkephalin (DAMGO) (0.1–10 µM, 48 h) results in enhanced
binding of Sp1/Sp3 to the OPRM1 promoter, which is attenuated by the pretreatment with
the MOR antagonist, naloxone [173]. These data suggest that chronic opioid exposure may
modulate Sp1/Sp3 binding at the MOR gene promoter to regulate its transcription.

The distal promoter region of mouse Oprm1, around −700 to −750 bp upstream of the
open reading frame, contains multiple consensus binding sites of Sry-like high-mobility-
group-box (SOX) factors [174,175]. In particular, overexpression of Sox18 can stimulate
MOR gene transcription in human and murine neuroblastoma cells, suggesting that Oprm1
is a downstream target of Sox18 protein [174]. In a cell culture model of human fetal
brain-derived neural precursor cells (NPCs), prolonged cocaine treatment (1 µM, 3 days)
suppresses the expression of SOX2, which is critical in the maintenance of embryonic and
neural stem cells [127]. It is necessary in the future to investigate whether Sox proteins play
roles in modulating Oprm1 expression in animal models of SUD and identify which Sox
family members are critically involved.

Nuclear factor kappa B (NF-κB) is another TF involved in SUD. NF-κB comprises
an ubiquitous family of TFs that regulate various biological responses, such as immune
responses and inflammation [176]. Blockade of NF-κB activity in mouse NAc inhibits
cocaine reward [122]. The NF-κB binding sites are present in the promoter regions of both
human and rodent MOR genes [6,177]. It has been confirmed that NF-kB binds to the
promoter region of OPRM1 and regulates its transcription [178]. It has also been shown that
chronic cocaine treatment increases the protein levels of NF-κB subunits (e.g., p105/p50 and
p65/Rel-A) in mouse NAc through epigenetic modification [120,122]. Moreover, prolonged
treatment with morphine or DAMGO (1 nM–10 µM, 48 h) to human neuronal cells activates
the promoter of NF-kB and thereby induces the expression of NF-kB [148]. The direct
causal effect of NF-kB induction on Oprm1 transcription in animal models of SUD has yet
to be investigated.

∆FosB is a truncated splice variant of the FosB gene and heterodimerizes with Jun
family proteins to form activator protein-1 (AP1), a TF that regulates its target genes,
including Oprm1, via their promoters [179–181]. AP1 binding sites have also been identified
at the human OPRM1 promoter [182]. ∆FosB is induced in the striatum by virtually all
drugs of abuse in animal models [183–186]. Enhanced ∆FosB levels are also reported in
the NAc of human patients with a history of cocaine or opioid abuse [121]. Because ∆FosB
is very stable, induced accumulation of ∆FosB may produce long-lasting effects on gene
expression following drug withdrawal through AP1 binding to the promoters [187]. Of
note, temporal alterations of histone acetylation and methylation were observed in concert
with FosB gene induction [51,79,188,189], suggesting ∆FosB affects target gene expression
via recruiting histone modifiers, such as HDACs, to the promoters of the target genes.
In mice, the enrichment of H3K9me2 at the FosB promoter is sufficient to block ∆FosB
expression and subsequent behavioral responses to cocaine [190], indicating that blockade
of FosB gene expression using epigenetic approaches may have the potential to alleviate
drug-seeking and taking behavior.

In humans, additional activating TFs have been identified for the OPRM gene such as
PolyC-binding proteins [191], signal transducers and activators of transcription (STAT) [192],
GATA-binding protein (GATA) [193], nuclear factor of activated T cells (NFAT) [194],
Sp1/3 [195], yingyang-1 (YY1) [196] and PARP (poly-ADP ribose polymerase) [197]. As
most of these findings were obtained from immune cells using in vitro systems, whether
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these TFs are expressed in different brain regions and whether they are directly involved in
regulating OPRM expression in SUD merits further investigation.

There are also numerous repressive TFs for Oprm1 expression. For example, PARP-1,
an enzyme that repairs DNA and modifies a number of target proteins [198–200], binds to
the double-stranded poly(C) element at the Oprm1 promoter [201], and has been shown
to act as either a positive or negative regulator of Oprm1 expression [197,201]. A recent
study shows that both acute and chronic cocaine exposure downregulate miR-124, which
binds to the 3′UTR region of Parp-1 mRNA and inhibits Parp-1 expression in mouse
NAc, implicating its role in the effects of opioid administration [115]. Moreover, the 34-bp
repressive cis-element, neuron-restrictive silencer element (NRSE), has been identified in the
human OPRM1 and mouse Oprm1 genes, suggesting that conserved mechanisms mediated
by NRSE suppress MOR expression in humans and rodents [115,202]. Other repressive
TFs identified for MOR include: PU.1, a member of the ETS (E26 transformation-specific)
family of TFs, binds to a 34-bp cis-acting element at the distal promoter of Oprm1 [156];
octamer-1 (Oct-1) binds two sites at the proximal promoter (−121 to −100 and −42 to −22)
of Oprm1 [203]; two Sp3 isoforms bind to the 5′ UTR of Oprm1 [204]; neuron-restrictive
silencer factor (NRSF) binds to the NRSE of the Oprm1 promoter [204]. The repressive
effects of these TFs may be mediated by chromatin because treatment with Trichostatin A
(TSA), an HDAC inhibitor, reverses the downregulation of Oprm1 expression [156].

To date, most of the TFs that regulate Oprm1 expression have been identified using cell
lines or artificial gene reporter constructs. Therefore, the physiological relevance of most
of these TFs on Oprm1 expression remains to be validated in vivo and in different tissue
types. Additionally, it is of great interest to explore whether drugs of abuse modulate the
activities of these TFs, which ultimately change Oprm1 gene expression.

5.1.4. MOR Gene Expression, ncRNAs, and Drugs of Abuse

Multiple new reports indicate that ncRNAs are involved in Oprm1 gene expression
(Figure 3B). Oprm1 has a long 3′ UTR, suggesting that this region may be targeted by
miRNAs [205,206]. It has been shown that the binding of miR-339-3p or miR-23b to the
3′ UTR of Oprm1 mRNA prevents it from interacting with polysomes, resulting in termina-
tion of Oprm1 translation in mice [88,147]. In addition, both of these miRNAs inhibit murine
MOR gene expression in vivo [207]. Interestingly, morphine treatment (10 nM–10 µM, 24 h)
increases miR-339-3p and miR-23b expression in a concentration- and time-dependent
manner in mouse neuroblastoma 2a (N2A) cells that stably express MOR [147]. Morphine-
induced surges of these specific miRNAs repress mouse Oprm1 expression by binding
to the promoter. Moreover, Let-7 miRNAs bind to the 3′ UTR of the MOR gene and se-
quester OPRM1 mRNA to P-bodies, which leads to translational repression of MORs in
human SH-SY5Y cells [208]. Morphine treatment (24 or 48 h) to SH-SY5Y cells results in
increased expression of all three Let-7 miRNAs, and subsequent repression of OPRM1
expression [208]. These data suggest that drug exposure can alter the expression of the
MOR gene by modulating specific miRNAs, which may explain the observed tolerance to
morphine following prolonged or repeated exposure.

MRAK159688, a conserved lncRNA, is located in the nucleus and cytoplasm of neu-
rons [152]. It binds to Swi-independent 3 transcription regulator family member A (Sin3a)
and corepressor of REST (CoREST), both of which are key components of the repressor
element-1 silencing transcription factor (REST) complex [209,210]. In rats that developed
tolerance to repeated morphine treatment, MRAK159688 expression is markedly upregu-
lated [152,211]. Downregulation of MRAK159688 partially reduces morphine tolerance and
lessens morphine-induced hyperalgesia. This study supports the notion that MRAK159688
facilitates morphine tolerance by directly promoting REST-mediated repression of the
MOR gene.

Opioid receptor genes also produce circRNA isoforms using canonical splice sites [212].
The Oprm1 circRNAs (circOprm1) are conserved as they are present in the CNS of both
rodents and humans. Currently, circRNAs have been detected for all members of the
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opioid receptor gene family [212]. Within Oprm1 circRNA sequences, several miRNA
binding sites are predicted, suggesting a potential role of Oprm1 circRNA in sequestering
miRNAand thereby modulating Oprm1 levels. Of note, morphine treatment enhances
specific Oprm1 variant mRNAs in select brain regions [213]; however, it is unknown
whether circOprm1 contributes to these changes. Since circRNAs are more stable than
linear RNAs [214], circRNAs may potentially play a greater role in regulating Oprm1
transcription and receptor function. Therefore, it is of future interest to further explore how
chronic morphine treatment affects Oprm1 expression by distinguishing the role of Oprm1
circRNAs from that of mRNAs.

5.2. Epigenetic Modulation of the DOR Gene
5.2.1. DOR Gene

The epigenetic regulation of Oprd1 expression has not been extensively studied. A
potential reason may be because DORs are not the primary target of opioids. Nevertheless,
this receptor is involved in the reward pathway as well as anxiety-like behavior and
contextual learning [215–217]. The promoter of the Oprd1 gene is TATA-less and GC-rich.
Oprd1 has been mapped to mouse chromosome 4, contains two introns of 26 kb and 3 kb,
and spans about 32 kb of chromosomal DNA [10,218]. Although Oprd1 utilizes only one
promoter, it contains two putative transcription initiation sites, located between −390 and
−140 bp upstream from the open reading frame (Figure 2B) [10]. A single polyadenylation
site is located 1.24 kb downstream from the stop codon [10]. There has been no alternative
splicing reported for Oprd1 mRNAs. In the P19 system, the Oprd1 gene is constitutively
active in undifferentiated cells but is silenced during neuronal differentiation, which is in
stark contrast to the expression of Oprm1 [219].

5.2.2. OPRD1 SNPs and Drugs of Abuse

A promoter SNP rs569356, located 1968 bp upstream to the OPRD1 transcription start
site, has been identified as the only promotor SNP for the OPRD1 gene [220]. This SNP is
functional in cultured cells, as measured by luciferase reporter assays, and the substitute
of a G for an A allele enhances OPRD1 promoter activity, possibly through promoting
TF binding [221]. Therefore, deep sequencing of the OPRD1 promoter for rare variants
is warranted in the future. Further, two coding sequence SNPs have been reported for
the OPRD1 gene: the synonymous rs2234918 in exon 3 and nonsynonymous rs1042114
in exon 1. The frequency of rs2234918, but not of rs1042114, is significantly higher in
heroin-dependent patients, although this association is not consistently observed [222,223].
Moreover, the SNPs (rs2236861, rs2236857 and rs3766951) at intron 1 of OPRD1 are highly
associated in patients with heroin dependence [144]. To date, there is a lack of information
regarding the effects of many identified SNPs on OPRD1 transcriptional expression and
receptor function.

5.2.3. DOR Gene Expression and DNA Methylation

The GC-rich region of the mouse Oprd1 promoter is subject to DNA methylation [224].
In mouse N2A cells, methylated CpG islands promote the binding of MeCP2, which recruits
HDACs that remove histone acetylation in the Oprd1 promoter, thus downregulating Oprd1
expression [224,225]. The MeCp2-dependent repression of Oprd1 can be reversed by the
HDAC inhibitor TSA [225]. Conversely, when the promoter of Oprd1 is demethylated, the
promoter becomes more accessible to transcription factors and therefore Oprd1 expression
increases [225]. Human OPRD1 gene expression is also regulated by promoter methylation.
Hypermethylation at OPRD1 promoter CpG sites is reported in blood samples of patients
with Alzheimer’s disease [226]. To date, there is no study that focuses on the epigenetic
modulation of OPRD1/Oprd1 expression in animal models of SUD.
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5.2.4. DOR Gene Expression, Chromatin Modulating Factors, and Drugs of Abuse

Oprd1 expression is modulated by histone modifications, such as histone acetylation.
For example, treatment with nerve growth factor (NGF) to induce PC-12 cell differentiation
into neurons produces a time-dependent induction of Oprd1 expression [227,228]. It is
further demonstrated that the NGF-induced increase in Oprd1 expression is mediated by
the activation of NF-κB, which can directly bind to the Oprd1 promoter and stimulate
promoter activity and gene expression [227,228]. Moreover, histone H3 K9 acetylation also
contributes to an NGF-mediated increase in Oprd1 expression. It is known that H3K9 is
acetylated only when H3K9 is not methylated; NGF treatment leads to an approximately
40% reduction in the level of trimethylated H3K9 and a concomitant increase in acetylated
H3K9, resulting in increased Oprd1 expression [229].

Several other factors have been identified to activate Oprd1 using reporter constructs in
different cellular backgrounds. These factors are Ikaros [230,231], Sp1/Sp3 [232], E-twenty
six 1 (Ets1) [233], upstream stimulatory factor (USF) [231,234], and AP2 [235]. Both in vivo
and in vitro approaches demonstrated that increased binding activity of Ikaros (a zinc fin-
ger TF essential for immune cell development) at the Ikaros-binding site (−378 to −374) in
the Oprd1 promoter is required for transcription of the DOR gene in activated T cells [230].
Sp1 is ubiquitously expressed in mammalian cells and is essential for neuronal develop-
ment [236]. The binding activity of Sp1 to its cis-acting element within the core promoter
of Oprd1 is cell-cycle and cell-type specific [232]. The mouse Oprd1 promoter contains
an E-box [233]; the binding of USF to the E-box is essential for constitutive expression of
DOR in mouse neuronal NS20Y cells [234]. Further studies using NS20Y cells show that
the Ets-1 binding site overlaps with the E-box and trans-activates the Oprd1 promoter by
coordinating with USF in specific DNA binding [233]. Another important TF is AP-2, which
binds to the −157 bp region of the Oprd1 promoter and activates the transcription of the
DOR gene when mouse NG108-15 cells are differentiated [235].

There are only a few studies that investigate the modulation of Oprd1 expression by
TFs in the context of SUD. For instance, withdrawal from chronic alcohol consumption
results in altered expression of several TFs previously implicated in DOR expression in the
rat central nucleus of amygdala, including USF, AP2, and Ets1 [139]. Further, morphine
treatment enhances AP-2 protein levels in the hippocampal postsynaptic density [150].
These dysregulated TFs could bind to the Oprd1 promoter and modulate its expression.
Lastly, morphine treatment (10–40 mg/kg, 4 days) increases the H3K9ac levels in mouse
spinal dorsal horn [151]. Whether the increase in H3K9ac levels also occurs at the Oprd1
promoter region has yet to be investigated and is of future interest.

5.3. Epigenetic Modulations of the KOR Gene
5.3.1. KOR Gene

The KOR gene (Oprk1) has been mapped to mouse chromosome 1 [237–239]. Like
Oprm1, mouse Oprk1 utilizes two alternative promoters (P1 and P2) (Figure 2C). The P1 is
present in various cultured cell lines and appears to be the primary promoter in animal
tissues [240]. The P1 initiates transcription from a cluster of residues approximately 1kb
upstream of the open reading frame. Since the alternative splicing can occur in intron 1, the
P1 produces Oprk1 mRNAs with one of two types of the 5′ UTR, and the mRNAs can span
4 exons. In contrast to the P1, the P2 is only active in certain brain tissues and at the later
stages of differentiated neurons [241]. It is located within intron 1 and drives transcription
from a specific residue at the −93 position, resulting in an mRNA product that spans only
3 exons [242]. Both P1 and P2 are TATA-less and GC-rich, similar to the gene promoters of
other opioid receptors.

Molecular studies of Oprk1 mRNA variants reveal that extensive post-transcriptional
regulations occur throughout their UTRs, which control stability, location, and signaling
specificity of the KOR protein. The Oprk1 mRNA variants with distinct 5′ or 3′ UTRs have
divergent half-lives [243]. In the P19 system, the most stable KOR mRNA variant has a half-
life of 12 h, four hours longer than the second most stable variant under the same condition.
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Yet, the difference between these two variants is simply the insertion of 30 nucleotides
in the 5′ UTR, generated from alternative splicing [244]. In addition, the mouse Oprk1
gene can use two functional polyadenylating (PA) sites (PA1 and PA2) approximately
2 kb apart [245]. Oprk1 transcripts that use these different PA sites display distinct mRNA
stability, transcriptional and regulatory capacities demonstrated using in vitro reporter
system. In vivo, each site is utilized in both neuronal tissues and cultured P19 cells but is
differentially regulated depending on the stage of neuronal differentiation. This selective
usage of PA sites in response to differentiation is partially due to the differential utilization
of an adverse regulatory sequence adjacent to PA1 and/or an enhancer adjacent to PA2 [245].
Moreover, the stability of Oprk1 mRNAs using PA2 is significantly greater than that using
PA1, suggesting that the negative regulatory sequence adjacent to PA1 might be a regulatory
target for an unknown miRNA(s). The physiological functions of these variants resulting
from the alternative promoters, differential splicing, and distinct polyadenylation sites are
unknown and should be thoroughly examined in the future.

5.3.2. KOR Gene Expression, DNA Methylation, and Drugs of Abuse

DNA methylation contributes to the repression of the Oprk1 gene. In an animal model
of neuropathic pain, reduced Oprk1 mRNA is accompanied by increased expression of
DNMT3a (a de novo DNA methyltransferase) in rat DRG [246]. A blockade of DNMT3a
expression elevates Oprk1 levels in DRG cell culture, suggesting that Oprk1 expression
is modulated by DNA methylation. Chronic intermittent alcohol exposure increases the
transcription and activity of DNMTs and global methylation and hydroxymethlation in
rat NAc [133]. Interestingly, the mRNA levels of Oprk1 are markedly increased by alcohol
in the NAc of these animals, while the degree of methylation at the Oprk1 promoter is not
significantly reduced, suggesting that regulatory mechanisms other than DNA methylation
may be involved. Furthermore, acute treatment with U50488, a KOR agonist, increases
phosphorylation of MeCP2 protein at the serine residue 421 in mouse NAc but decreases
it in the infralimbic and basolateral amygdala regions [247]. Phosphorylation of MeCP2
prevents the interaction between MeCP2 with the nuclear receptor co-repressor complex,
thereby blocking its ability to repress transcription [248]. Therefore, altered phosphorylation
of MeCP2 following acute stimulation of KORs may affect the ability of MeCP2 to suppress
the transcription of Oprk1 in a brain region-specific manner.

5.3.3. KOR Gene Expression, Chromatin Modulating Factors, and Drugs of Abuse

The Oprk1 gene is highly expressed in undifferentiated P19 cells, which is in contrast to
the lower expression of the Oprm1 gene [6]. However, during the differentiation of P19 cells
into neurons, Oprk1 expression initially falls but rises later on. This temporal pattern of
Oprk1 expression is related to the dynamic chromatin status of the promoter during P19 cell
differentiation [249,250]. In undifferentiated P19 cells, the P1 promoter region is associated
with the open chromatin conformation as evidenced by a low or more dynamic nucleosome
occupancy, consistent with the constitutive activity of the P1 promoter [250]. Conversely,
a higher-ordered chromatin structure was identified at the P1 region in differentiated
P19 cells, which may block the accessibility of the P1 promoter and therefore decrease the
transcription levels of Oprk1.

It appears that external stimuli can differentially regulate the mechanisms of Oprk1
expression. For example, Oprk1 expression can be induced by NGF at the P2 promoter, but
not at the P1 promoter in P19 cells [249]. The activation of the NGF signaling pathway
activates the downstream effector, AP2, which binds and activates the P2 promoter. The
activated P2, during differentiation, is accompanied by increased H3K4 methylation, which
is contrary to the presence of H3K9 methylation in undifferentiated cells [249]. Notably,
exposure to stress has differential effects on the regulatory mechanisms of Oprk1 expression.
Repeated exposure to forced swimming, to induce stress in mice, increases Oprk1 transcripts,
preferentially controlled by the P1 promoter and terminated at polyadenylation site PA1,
in specific mouse brain regions, including: the medial-prefrontal cortex, hippocampus,
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brainstem and sensorimotor cortex, but not in the amygdala and hypothalamus [251]. It is
further demonstrated that the increased Oprk1 expression results from reduced HDAC1
recruitment, increased acetylation of histone H4 (H4Ac), slightly reduced H3K4me2, and
the recruitment of the transcription factor c-Myc on the P1 promoter. In contrast, there
was no change in the H4Ac and H3K4me2 on the P2 promoter. It is also noted in the same
study that the P2 promoter of Oprk1 gene is active in specific brain regions, including the
brainstem. These data indicate that stress stimuli can target different chromatin regions of
Oprk1 for transcriptional regulation, and this highlights the need to further investigate the
Oprk1 mRNA variants that result from these different regulatory mechanisms.

5.3.4. KOR Gene Expression, TFs, and Drugs of Abuse

Various TFs have been identified that regulate mouse Oprk1 expression. LMO4, a
newly identified TF for Oprk1 expression, can directly bind to the promoter of Oprk1;
of interest, Lmo4 gene knockout reduces Oprk1 mRNAs, suggesting a direct regulatory
relationship of Lmo4 in Oprk1 transcription [252]. The same study also shows that reducing
LMO4 proteins in rat basolateral amygdala suppresses alcohol drinking, which is likely,
in part, mediated by a decrease in Oprk1 gene expression as KORs in this brain region
promote alcohol consumption. Besides LMO4, ∆FosB can modulate the signaling of KORs
through the expression of dynorphin, a selective agonist for KORs. Direct binding of
∆FosB to the dynorphin promoter inhibits dynorphin expression in PC12 cells [253]. In
addition, chronic morphine treatment leads to increased binding of ∆FosB at the dynorphin
promoter in mouse NAc [149]. An epigenome-wide study of brain DNA methylation
patterns in patients who died from acute opioid intoxication observed an increase in DNA
methylation at a CpG site of the Netrin-1 gene [254]. Netrin-1 can stimulate the translation
of KOR through Grb7, which is an RNA binding protein of KORs [255]. Therefore, DNA
methylation at the Netrin-1 promoter likely leads to reduced translation of KORs.

There are several other TFs that are known to regulate Oprk1 expression. c-Myc, Sp1
and AP2 positively regulate Oprk1 transcription, while Ikaros (Ik) negatively regulates
Oprk1 transcription [249,256–259]. Nitric oxide (NO) is involved in transcriptional regula-
tion of Oprk1 via inactivating NF-κB [256]. NO downregulates c-Myc that binds and turns
on the P1 promoter of Oprk1 in P19 cells [257]. In a retinoic acid-induced P19 differentiation
model, retinoic acid enhances Ik-1 expression, which recruits HDAC to intron 1 of the Oprk1
promoter and represses its gene expression [259]. None of these TFs have been studied in
animal models of SUD.

5.4. Epigenetic Modulation of the NOP Receptor Gene
5.4.1. NOP Receptor Gene

NOP receptors are encoded by the opioid receptors like 1 gene (Oprl1). The human
NOP receptor gene is located on chromosome 20 [154]. Like the other opioid receptors, the
promoter of Oprl1 is TATA-less and GC-rich [11,154]. The Human OPRL1 gene is controlled
by two alternate promoters, located approximately 10 kb apart (Figure 2D). It produces
two transcripts with different start sites [154]. In contrast, rat Oprl1 has two alternatively
spliced isoforms, which are differentially expressed in tissues [260].

5.4.2. NOP Receptor Gene Expression and Drugs of Abuse

There are only a few studies that focus on epigenetic modulation of Oprl1. Genome-
wide methylation analysis of blood samples from monozygotic twins with or without
alcohol dependence reveals a strong association of alcohol dependence with a differentially
methylated site in the gene body of OPRL1 [261]. In a cohort of European Americans
that were alcohol-dependent with or without childhood adversity, analysis of blood DNA
methylation levels in the promoter regions of targeted genes further shows that the OPRL1
promoter is hypermethylated in patients regardless of childhood adversity experience [262].
In the same study, hypermethylation of the OPRL1 promoter is also noted in drug naive
patients that experienced childhood adversity, suggesting there was an epigenetic impact,
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due to the social stressors on the OPRL1 gene expression. Moreover, a recent study, analyz-
ing the methylation of two CpG sites located in the first intron of the OPRL1 gene using
blood samples from a pool of 14-year-old adolescent patients, reveals that low methylation
at the first intron of the OPRL1 gene in the blood is associated with early exposure to
psychosocial stress and a high frequency of alcohol binge drinking. It is important to
note that methylation at the promoter region is often associated with gene repression;
however, methylation in the gene body does not necessarily cause gene silencing [263].
The direct causal relationship between stress, hypomethylation of the Oprl1 gene body in
the brain, and Oprl1 expression is further validated in the brain of marchigian sardinian
alcohol-preferring rats exposed to various types of stressors, including acute restraining,
forced swimming, and sleep deprivation [264]. Stress notably induces hypomethylation of
the Oprl1 gene body in rat NAc, and a concomitant decrease in Oprl1 gene expression and
increased alcohol intake in these rats. Although there has been no study on the methylation
of the OPRL1 gene body and gene expression in the human brain, this type of epigenetic
modulation of the OPRL1 gene may contribute to the reduced OPRL1 mRNA observed in
the postmortem brain of patients with alcohol use disorder [137]. Collectively, these data
suggest that drugs of abuse and environmental stressors can epigenetically modulate the
expression of the NOP receptor gene.

Histone modifications also modulate Oprl1 gene expression. Continuous cocaine
administration via osmotic minipumps (50 mg/kg/day, 7 days) induces an increase in
Oprl1 expression in rat NAc but a decrease in the lateral caudate putamen [125]. Moreover,
these changes are consistent with spatial alterations of H3K4me3 (an activation mark) and
H3K27me3 (a repressive mark) in these two regions.

The human OPRL1 promoter region contains binding sites for transcription factors,
such as Sp1, AP2, EGR, Krox20, ETF, and CP1 or GCF (Figure 3) [11,154]. Multiple human
genetic studies have identified high frequencies of OPRL1 variants in patients with histories
of substance use including opioids, alcohol, and psychostimulants [265–267]. Two OPRL1
variants, rs6090041 and rs6090043, are significantly associated with a vulnerability to abuse
opioids in Caucasians [265]. SNP rs6010718, is related to the development of alcoholism in
a particular Scandinavian population [266]. These genetic variants of OPRL1 may lead to
altered epigenetic modulation of gene expression by changing the chromatin status and
disrupting recruitment of TFs to the promoter.

5.5. Summary and Perspective

Drugs of abuse exert differential effects on transcriptional expression of opioid recep-
tor genes, which may lead to changes in the function of opioid receptors and increased
vulnerability for drug-seeking and taking behavior and other comorbid mental disorders.
Although our knowledge of epigenetic modulation of opioid receptor genes has expanded
in the past 30 years, there are still a few critical and poorly understood aspects that have yet
to be studied. First, the expression of opioid receptor subtypes has been mostly measured
using either the steady-state mRNA levels that are not determined at the transcriptional
level or with reporter genes that lack regulatory 5′ or 3′ UTRs. It is important to note that
different isoforms of opioid genes likely display distinct stability, RNA transport efficiency,
local translation efficiency, and distribution patterns in the brain. Very little information
is available on the expression and physiological function of different isoforms of opioid
receptor genes in SUD. Second, most epigenetic mechanisms studied for opioid receptor
genes are limited to modifications of DNA, post-translational modifications of histones,
transcription factors, and ncRNAs. In addition to these mechanisms, different histone vari-
ants other than the canonical histones (H3, H4, H2A and H2B) and RNA modifications (e.g.,
N6-methyladenosine) may affect opioid receptor expression in SUD. N6-methyladenosine
(m6A) was identified on Ehmt2 mRNA, which codes for histone H3 K9 methyltransferase
G9a and is involved in opioid receptor expression [268]. It would be interesting in the
future to expand studies into these unexplored epigenetic mechanisms in the context of
SUD. Third, recent data indicate cell type-specific epigenetic modulation of gene expression
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by drugs of abuse and its impact on SUD-related behavior. For example, chronic cocaine
use increases Hdac3 expression in Drd1- but not Drd2-containing cells in mouse NAc [269].
Notably, manipulation of HDAC3 activity in Drd1-containing neurons selectively regulates
cocaine-associated memory formation and cocaine-seeking behavior. Future studies on
cell type-dependent epigenetic modulations of opioid receptor genes by drugs of abuse
are needed. Lastly, despite the fact that the promoters of all opioid receptors share some
common effector profiles, such as DNA methylation and histone acetylation, the genes of
the receptor subtypes undergo distinct forms of epigenetic regulation. Hence, it is critical
to understand how HDAC or DNA methylation inhibitors would differentially affect the
gene expression among the receptor subtypes.

6. Therapeutic Potentials of Drugs Epigenetically Targeting Opioid Receptor
Gene Expression

In recent years, therapies targeting epigenetic processes have rapidly emerged in the
management of human diseases. To date, small-molecular inhibitors targeting epigenetic
writers, erasers, and readers have become available. A few of them are approved for
clinical use. For example, the DNA methyltransferase (writer) inhibitors, 5-azaC (Vidaza)
and 5-aza-dC (Dacogen) are clinically used for the treatment of myelodysplastic syn-
drome when stem cell therapy is not applicable [270]. Moreover, SAHA (suberoylanilide
hydroxamic acid, known as Zolinza), was the first FDA-approved histone deacetylase
(eraser) inhibitor for treating cutaneous T cell lymphoma [271]. It is utilized to restore
sensitivity to chemotherapy in acute myeloid leukemia patients [272]. Bromodomain and
extraterminal (BET) proteins are readers that regulate transcription by binding to acety-
lated histone lysine residues [273]. Recently, several structurally diverse BET inhibitors
have been identified and are currently in clinical trials to treat cancer, diabetes, and other
diseases [274]. Although most of these FDA-approved epigenetic drugs are limited in their
intended use for hematological cancers [274], these drugs have been shown to be effective
in alleviating symptoms of neurological diseases in rodents. For instance, systemic adminis-
tration of 5-azaC produces a dose-dependent antidepressant-like effect, which is correlated
with decreased DNA methylation and increased BDNF levels in rat hippocampus [275].
Further, early-life adversity increases DNA methylation. Treatment of dams exposed to
maltreatment using zebularine, a DNA methylation inhibitor, reverses aberrant maternal
behavior [276]. Additionally, SAHA is in clinical trials for treating neurological diseases
such as Huntington’s disease and amyotrophic lateral sclerosis [274,277].

In animal models of SUD, manipulation of epigenetic modulators is effective in restor-
ing dysregulated opioid receptor transcription and attenuating drug reward-related be-
havior. Therefore, drugs targeting aberrant epigenetic processes in SUD could serve as
a new therapeutic avenue. Among all ORs, MORs are the target of most SUD-related re-
search [278]. Extensive studies have shown that with chronic activation, MOR signaling is
adapted in the brain with mostly upregulated MOR transcripts (Table 1). Such neuroadap-
tations weaken the drug effects and cause withdrawal symptoms to manifest [278]. Hence,
downregulation of MOR gene expression may reduce drug reward, the motivation for
drug seeking, and compulsive behavior. KORs also have well-recognized roles in driving
SUD, while the functions of DORs are not as clear-cut. Decreased expression of KORs
should restrict the dysphoric status related to stress and drug withdrawal, and prevent
stress-induced relapse, although it may also promote reward. The BET inhibitors could
block the reading of acetylated MOR and DOR promoters and reduce their gene expression,
thereby reversing maladaptive transcriptional and behavioral responses to drugs of abuse.
In fact, BET inhibitors have been shown to reduce cocaine- and opioid-seeking behaviors in
rodents [279]. In addition, HDAC inhibitors have well-established roles in animal models
of SUD [280–282].

Due to the complexity of epigenetic mechanisms in mammalian systems, there are
discrepancies between human and animal experiments regarding the epigenetic influence
on SUD [283]. Because drugs of abuse appear to affect multiple epigenetic targets, it is
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imperative to investigate whether it is beneficial to utilize combination drug therapy to
target multiple aspects of an epigenetic process to control the transcription of opioid recep-
tors. Future investigations are also necessary for validating the epigenetic modifications
in the human substance-response pathways, developing site-specific epigenetic modifiers,
and tracing patients’ drug-seeking and taking behavior after therapeutic interventions in a
longitudinal manner.
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