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Observational studies report some association between circulating bilirubin levels and
osteoporosis, but it is unknown if this association is causal or confounded. In this two-
sample Mendelian randomization (MR) study, we included a large genome-wide
association study (GWAS) associated with total bilirubin levels among 317,639 people,
a large meta-analysis to identify genetic variants associated with bone mineral density
(BMD) estimated by heel quantitative ultrasound (eBMD) among 426,824 individuals and
fracture among 1.2 million individuals. The results revealed that circulating bilirubin levels had
no causal influence on eBMD (beta-estimate: 0.004, 95% confidence interval [CI]: -0.019 to
0.028, SE:0.012, P-value=0.705) or the risk of fracture (beta-estimate: -0.009, 95%CI: -0.035
to 0.017, SE:0.013, P-value=0.488), which were both confirmed by multiple sensitivity
analyses. Our results confirm that circulating bilirubin levels have no causal role in eBMD or
the incidence of fracture, indicating that circulating bilirubin levels is unlikely to be a causal risk
factor for osteoporosis or fracture.
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INTRODUCTION

As one common and aging-related disease, osteoporosis is featured by decreased bone mineral
density (BMD) and increased risk of fracture (1–4). The treatment of osteoporosis remains a big
challenge and public health problem in the world (5–7). Osteoporosis is a common complication of
liver diseases such as chronic cholestasis and primary biliary cholangitis (8, 9). Bone loss is caused
by deficient osteoblast activity and increased bone resorption (10). High concentrations of
circulating bilirubin levels were documented to result in the abnormal osteoblast function and
serum bilirubin had detrimental effects on bone-forming cells (11). Emerging evidence suggested
that total bilirubin levels participated in multiple biological activities such as immunomodulatory
processes (12, 13).

The association between bilirubin levels and osteoporosis has not been well established, and several
studies have reported the conflicting results (8, 14–16). For instance, one observational study included
918 postmenopausal individuals without potential liver diseases, and revealed that total bilirubin level
was independently associated with BMD [beta-estimate=0.41, 95% CI (0.35–0.47), P<0.001 for lumbar
spine BMDand beta-estimate=0.44, 95%CI (0.36–0.48), P<0.001 for femur neck BMD] (16). However,
these observational studies may be subject to confounding factors and reverse causality.

Genome-wide association studies (GWASs) demonstrate that osteoporosis is one highly
polygenic trait (17–19). Mendelian randomization (MR) study is effective and powerful to
establish the causal relationship between exposure phenotype and exposure phenotype through
n.org August 2021 | Volume 12 | Article 7199201
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using the GWAS summary statistics (20–22). These genetic
variants are randomly allocated before birth and fixed at
conception, and benefit to prevent reverse causation and
potential confounding factors (23, 24).

The two-sample MR analysis has emerged as an important
approach to greatly increase the scope and statistical power of
MR based on the published summary data from GWASs (22, 25,
26). In this study, we use single nucleotide polymorphisms
(SNPs) strongly associated with circulating bilirubin levels as
the instrumental variables. To our knowledge, this is the first
two-sample MR study to explore the causal effect of total
bilirubin levels on BMD and fracture.
METHODS

Genetic Instrument for Circulating
Bilirubin Levels
A large-scale GWAS associated with circulating bilirubin levels
included 317,639 individuals of European ancestry (27). Total
bilirubin levels in serum was measured using a colorimetric assay
(2,4-dicholorani-line reaction). Each SNP was tested after
adjusting for age, sex, recruitment center, indicators of
socioeconomic status, the top 40 principal components for
population stratification, and potential technical confounders
(i.e. fasting time, sample dilution factor, blood and urine
sampling time) (27).

Initially, 115 SNPs with genome-wide significance
(P<5×10−8) were found to have robust association with total
bilirubin levels (Supplementary Table 1). Then, SNPs were
ideally expected to not be in linkage disequilibrium (LD),
because SNPs in strong LD may produce some bias. We
measured LD between selected SNPs using European samples
from the 1000 Genomes project. 27 SNPs were excluded due to
high LD (r2≥0.001). Finally, 88 SNPs associated with circulating
bilirubin levels were used as instrumental variables
(Supplementary Table 2). If SNPs were unavailable in the
outcome dataset, the proxy SNPs in linkage disequilibrium (LD,
r2>0.9) were used as the instrumental variables. Thus, rs72831372
was used as a proxy for rs7185774 among eBMD, but no proxy
SNPs were used for rs11601507 or rs157595 among eBMD
(Supplementary Table 2).

Data Sources of eBMD and Fracture
The large-scale GWAS summary data was calculated among
426,824 people of European decent for bone mineral density
(BMD) and up to 1.2 million individuals of European decent for
fracture. BMD was estimated by heel quantitative ultrasound
(eBMD, [g/cm2]), which was derived as a linear combination of
speed of sound (SOS) and bone ultrasound attenuation (BUA)
(i.e. eBMD = 0.002592 * (BUA + SOS) − 3.687). Fracture cases
were defined as any fracture apart from the fracture of skull, face,
hands, feet, pathological fractures due to malignancy, atypical
femoral fractures, periprosthetic and healed fracture. These
GWAS summary data were analyzed after adjusting for age,
sex and genotyping (1).
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Statistical Analyses
To determine MR estimates of total bilirubin levels on eBMD
and fracture, we conducted the inverse variance weighted (IVW)
meta-analysis of the Wald ratio. The weighted median and MR-
Egger regression methods were also applied to estimate the
effects. We evaluated the directional pleiotropy based on the
intercept obtained from MR-Egger analysis (28). MR pleiotropy
residual sum and outlier test (MR-PRESSO) was also used to
assess the presence of pleiotropy and the effect estimates were
recalculated after outlying SNPs were excluded (29).

The ethical approval for each study included in this investigation
canbe found in theoriginalpublications (including informedconsent
from each participant). The differences with P<0.05 were considered
statistically significant. All of these analyses were conducted in R
V.4.0.4 by using the R packages of ‘MendelianRandomization’ (30),
‘TwoSampleMR’ (31) and ‘MR-PRESSO’ (32).
RESULTS

Causal Effect of Circulating Bilirubin
Levels on eBMD
We evaluated the causal effect of circulating bilirubin levels on
eBMD in the MR analysis (Table 1). Circulating bilirubin levels
demonstrated no obvious MR association with eBMD according
to IVW analysis (beta-estimate: 0.004, 95% CI: -0.019 to 0.028,
SE:0.012, P-value=0.705) or weighted-median analysis (beta-
estimate: 0.002, 95% CI: -0.004 to 0.008, SE:0.003, P-
value=0.511), which was also confirmed by MR-Egger analysis
(beta-estimate: 0.009, 95% CI: -0.017 to 0.034, SE:0.013,
P-value=0.500, Table 1 and Figure 1).

Causal Effect of Circulating Bilirubin
Levels on Fracture
Circulating bilirubin levels showed no causal effect on the risk of
fracture according to the IVW analysis (beta-estimate: -0.009,
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95% CI: -0.035 to 0.017, SE:0.013, P-value=0.488), weighted-
median analysis (beta-estimate: -0.009, 95% CI: -0.031 to 0.013,
SE:0.011, P-value=0.436) or MR-Egger analysis (beta-estimate:
-0.007, 95% CI: -0.035 to 0.021, SE:0.014, P-value=0.618,
Table 1). MR association between circulating bilirubin levels
and fracture was presented in Figure 2.

Evaluation of Assumptions and Sensitivity
Analyses
There was little evidence of directional pleiotropy for all models
(MR-Egger intercept P-values >0.05) (Table 1). Significant
heterogeneity remained for eBMD and fracture based on
Cochran’s Q (Heterogeneity P-heterogeneity<0.05), and thus
MR-PRESSO test was conducted to identify 27 outliers
(rs2375279, rs17513135, rs556107, rs4671605, rs6431625,
rs2267846, rs1482852, rs61791066, rs151450, rs1126673,
rs6869704, rs12515233, rs853684, rs12210538, rs58699591,
rs3118753, rs2519093, rs34755157, rs174554, rs76895963,
rs4149056, rs4760682, rs61984409, rs17184256, rs4575545,
rs7222046, rs4820091) for eBMD and one outlier (rs174554)
for fracture among the 88 SNP instrumental variables.

After excluding these outlying SNP variants, circulating
bilirubin levels showed no MR association with eBMD
(beta-estimate: 0.035, 95% CI: -0.006 to 0.076, SE:0.021, P-
value=0.094, Table 2 and Figure 1) or fracture (beta-estimate:
-0.010, 95% CI: -0.035 to 0.014, SE:0.012, P-value=0.402, Table 2
and Figure 2).
DISCUSSION

Overall, our large multi-instrument approaches found no
causal effect of circulating bilirubin levels on eBMD or the
risk of fracture. This two-sample MR estimates had great
robustness to support no MR association between circulating
bilirubin levels and osteoporosis based on the results of various
FIGURE 1 | Mendelian randomization analysis for the association between circulating bilirubin levels and eBMD.
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MR methods and sensitivity analyses. These indicated that
circulating bilirubin levels is not the causal risk factor for
osteoporosis or fracture.

Circulating bilirubin level is one robust indicator of hepatic
dysfunction, and in vitro study reveals that bilirubin from
jaundiced patients can inhibit the proliferative capacity of
osteoblast (11, 33, 34). Total bilirubin has a detrimental effect
on cell viability, cell differentiation and mineralization of
primary human osteoblasts in a dose-dependent manner (11).
In addition, total bilirubin is an end metabolic product of heme
degradation and servers as a potent antioxidant to inhibit the
oxidization of lipids and lipoprotein (especially low density
lipoprotein) and eliminate radical oxygen species in the various
forms including free, albumin-bound, unconjugated and
conjugated forms (16, 35). Osteoporosis caused by oxidative
stress may be also associated with endothelial dysfunction and
Frontiers in Endocrinology | www.frontiersin.org 4
decreased blood flow for bone tissue (36, 37). These provide
strong theoretical support for the association between circulating
bilirubin levels and osteoporosis.

Several epidemiological studies have demonstrated the
significant inverse association between total bilirubin levels
and BMD in patients with underlying liver diseases, but
other studies reported conflicting association between them
(8, 14–16). This inconsistent association may be caused by the
methodological limitations (i.e. confounding, reverse causation
and measurement error) of traditional observational study and
small patient sample (38). Because total bilirubin level is a
highly informative indicator of hepatic dysfunction, it is
infeasible to identify whether bilirubin level is the direct
cause of osteoporosis (16, 33, 39). It remains uncertain
whether circulating bilirubin level has the casual effect on
osteoporosis or fracture.

Randomized controlled trial (RCT) is the gold standard in
causal inference, but it is not feasible to explore the association
between total bilirubin levels and osteoporosis due to the
unethical approaches of raising bilirubin levels. The MR study
is widely used to evaluate causal inferences between risk factors
and disease outcomes with the features of preventing
confounding and reverse causation (40). To date, our work is
the first two-sample MR study to explore the causal effect of
circulating bilirubin levels on eBMD and fracture.

Our study included the large GWAS for total bilirubin levels
among 317,639 individuals and the large meta-analysis to
identify genetic variants associated with BMD among 426,824
individuals and fracture among 1.2 million individuals. This two-
sample MR study confirmed no casual role of circulating
bilirubin levels in eBMD or the risk of fracture based on the
multiple MR methods and sensitivity analyses.

There are several important strengths in this study. This is the
first two-sample MR study to investigate the causal effect of
circulating bilirubin levels on BMD and fracture. This study
design can prevent some limitations (e.g. reverse causation and
FIGURE 2 | Mendelian randomization analysis for the association between circulating bilirubin levels and fracture.
TABLE 2 | Mendelian randomization estimates between bilirubin levels and
osteopross after excluding outliers detected by PRESSO.

Variables Estimate SE 95% CI P-
value

eBMD excluding 27 outliers
(rs2375279,
rs17513135, rs556107, rs4671605,
rs6431625, rs2267846, rs1482852,
rs61791066, rs151450, rs1126673,
rs6869704, rs12515233, rs853684,
rs12210538, rs58699591,
rs3118753,
rs2519093, rs34755157, rs174554,
rs76895963, rs4149056,
rs4760682,
rs61984409, rs17184256,
rs4575545,
rs7222046, rs4820091)

0.035 0.021 -0.006,0.076 0.094

Fracture excluding one outlier
(rs174554)

-0.01 0.012 -0.035,0.014 0.402
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potential confounding factors) of conventional observational
studies. Our study include large sample sizes of GWAS
summary data associated with circulating bilirubin levels, BMD
and fracture. The intercepts for the MR-Egger analyses suggest
that all causal associations are not affected by directional
pleiotropy. We also conduct multiple sensitivity analyses to test
the influence of pleiotropy on our causal estimates, and our results
are consistent and robust according to various MR tests and
sensitivity analyses.

Several limitations should be taken into consideration. Firstly,
all the included participants are of European decent, and more
studies are needed to explore whether our findings are
generalizable to other populations. Secondly, it is not feasible to
perform the MR analysis based on different age stratums because
of the limitation of GWAS summary statistics. Thirdly, significant
heterogeneity remains for the MR association between bilirubin
levels and BMD/fracture, which may be caused by different patient
populations and unknown confounding factors.
CONCLUSION

This two-sample MR provides strong evidence to confirm that
circulating bilirubin levels is unlikely to be a causal risk factor of
osteoporosis or fracture.
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