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Abstract: Tetrodotoxin (TTX), is a potent neurotoxin targeting sodium channels that has 

been identified in multiple marine and terrestrial organisms. It was recently detected in the 

Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from 

New Zealand. Knowledge on the distribution of TTX within these organisms is important 

to assist in elucidating the origin and ecological role of this toxin. Intracellular  

micro-distribution of TTX was investigated using a monoclonal antibody-based 

immunoenzymatic technique. Tetrodotoxin was strongly localized in neutral mucin cells 

and the basement membrane of the mantle, the oocytes and follicles of the gonad tissue, 

and in the digestive tissue of P. maculata. The ova and pharynx were the only two 

structures to contain TTX in Stylochoplana sp. Using liquid chromatography-mass 

spectrometry, TTX was identified in the larvae and eggs, but not the gelatinous egg cases 

of P. maculata. Tetrodotoxin was present in egg masses of Stylochoplana sp. These data 

suggest that TTX has a defensive function in adult P. maculata, who then invest this in 

their progeny for protection. Localization in the digestive tissue of P. maculata potentially 

indicates a dietary source of TTX. Stylochoplana sp. may use TTX in prey capture and for 

the protection of offspring. 
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1. Introduction 

Tetrodotoxin (TTX) is a potent non-protein neurotoxin that selectively targets and blocks  

voltage-gated sodium channels. It is most notably found in the tissues of pufferfish species from the 

Tetraodontidae family [1,2]. Tetrodotoxin is fatal to humans (wt. 50 kg) at levels of just 1–2 mg [3]. 

Tetrodotoxin was initially thought to only occur in pufferfish, but has since been discovered in a 

growing number of organisms including frogs, newts, gastropods, crabs, an algae species, arrow 

worms, and land planarians [2,4–6]. 

Numerous researchers have suggested that the incidence of TTX in so many genetically unrelated 

organisms is due to an exogenous source such as symbiotic bacterial production or bioaccumulation 

through diet [2,7–9]. Bioaccumulation of TTX has been implicated in several instances in which prey 

animals have also been shown to contain TTX, or during captive studies where organisms removed 

from their natural environments lose their toxicity [1,10–12]. In contrast, bacterial production of TTX 

has also been reported in marine organisms including the gastropod Niotha clathrata [13], the  

blue-ringed octopus Octopus maculosus (i.e., Hapalochlaena maculosa) [14], and the pufferfish Fugu 

vermicularis vermicularis [15]. However, concentrations of toxin produced by isolated bacterial strains 

are generally orders of magnitude lower than host organisms, suggesting bacterial production is 

unlikely to be the sole source of toxin [7,8,16]. In contrast, studies on terrestrial newts (Taricha 

granulosa) showed an increase in toxin concentrations when kept in captivity and the ability to 

regenerate TTX after the release of toxin through the skin, suggesting an endogenous source [17,18]. 

Currently the definitive origin of TTX remains debated, and strategies for acquisition most likely vary 

among species. 

Studies using chemical methods to detect TTX have shown sequestration of toxin varies among 

tissue types in many organisms [2]. For example, in the pufferfish Takifugu niphobles high 

concentrations of TTX were present in the liver, ovaries, and intestines, while skin and muscle tissues 

only had low concentrations [1]. Micro-distribution of TTX has been demonstrated using TTX specific 

monoclonal antibody (mAB) immunoenzymatic techniques in newts [19,20], ribbon and flat worms [21], 

pufferfish [22–24], and octopuses [25]. Understanding the accumulation and sequestration of TTX at 

the cellular level provides additional information regarding the ecological functions of TTX. For 

example, in predator-prey trials conducted by Williams et al. [26] using the rough-skinned newts, 

Taricha granulosa and their natural predator the garter snake Thamnophis sirtalis, it was shown that 

rejected newts possessed significantly higher concentrations of TTX in the skin compared to those that 

were consumed. 

In 2009, the opisthobranch Pleurobranchaea maculata was found to contain high concentrations of 

TTX when a number of dogs became ill after consuming beach-cast individuals in New Zealand [27]. 

Subsequent studies using liquid chromatography-mass spectrometry (LC-MS) revealed that only the 

TTX variant was present. The highest concentrations of TTX were in the mantle, gonad, and digestive 
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tissue, with total TTX concentrations (highest average (ave.) 369 mg·kg−1) varying significantly 

between individuals and season [12,28]. Using a series of aquaria based studies, the egg-laying season 

was shown to coincide with seasonal peaks in TTX concentrations (June–August) [28]. The high 

concentrations of TTX detected in egg masses, and the subsequent depuration of TTX from adults after 

spawning, suggest that TTX plays a protective role in offspring of P. maculata. In 2013, high 

concentrations (ave. 376 mg·kg−1) of TTX were detected in Stylochoplana sp. (a marine flatworm), 

collected from Tauranga, New Zealand [29]. Concentrations of TTX were less variable than in P. 

maculata, but also decreased from winter (June–August) to spring (September to November). The 

small size of Stylochoplana sp. (ca. 60 mg) prohibited dissection and LC-MS analysis of TTX 

concentrations in various tissues, thus to date there is no information on how TTX is distributed within 

this organism. In this study immunohistological techniques, in conjunction with the T20G10 anti-TTX 

monoclonal antibody (mAB) [30], were used to investigate the micro-distributions of TTX within each 

organism at the cellular level. These data may provide insights on ecological function and the source of 

TTX in these organisms. 

2. Results and Discussion 

2.1. Pleurobranchaea Maculata 

2.1.1. Mantle 

Species from the group Opisthobranchia have extremely reduced, or in some cases have completely 

lost, their protective shell, resulting in a diverse range of alternative defensive strategies [31–33].  

These include the acidification of the mantle [33–35], incorporation of nematocysts from cnidarian 

prey [31], development of spicules [36], secretion of ink [37], and acquisition of secondary  

metabolites [32,38]. The mantle, or dorsal body wall, of P. maculata consists of multiple folds or 

puckering of the epidermis which has previously been reported to be extremely acidic (pH = 1 to 2) [39]. 

In the immunostained section of the mantle TTX, visualized as brown color deposits, was most 

strongly localized in the basement membrane layer as well as in tear-shaped membrane bound cells 

(Figure 1A). This is similar to immunohistochemical studies on the pufferfish Tetraodon nigroviridis [22], 

Tetraodon steindachneri [24], and Takifugu niphobles [40] where TTX was shown to be sequestered in 

both basal cells and succiform cells of the epidermis. The pink color of the tear-shaped cells in both the 

Hematoxylin & Eosin (H&E) and the Alcian Blue–Periodic Acid Schiff (AB–PAS) stained sections 

reveal that these erythrophil cells secrete neutral mucin, suggesting that cells responsible for the acidity 

of the mantle and sequestration of TTX are separate. Sequestration of TTX in the skin has been 

reported in a number of other organisms including the pufferfish Takifugu vermicularis and 

Chelonodon patoca, [23], the California newt Taricha torosa [41], red-spotted newt, Notophthalmus 

viridescens [19], the Japanese newt Cynops pyrrhogaster [20], and the frog Brachycephalus  

ephippium [42], and a possible defensive mechanism is suggested. 
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Figure 1. Pleurobranchaea maculata mantle tissue sectioned at 10 μm. Red arrows 

indicate tetrodotoxin (TTX) containing cells. (A) TTX-specific monoclonal antibody 

(mAB) immunohistological staining (TTX identified by the brown color deposits);  

(B) Hematoxylin and Eosin staining; (C) Alcian Blue-Periodic Acid Schiff staining and; 

(D) mAB negative control. Black bars = 100 μm. 

2.1.2. Reproductive and Digestive Tissue 

Analysis of the mAB incubation of the gonad and digestive tissue from P. maculata showed the 

strongest antigen-antibody reaction was in the oocytes and their surrounding follicles (Figure 2A). 

Positive staining occurred to a lesser degree in the digestive gland (Figure 2A). Localization of TTX in 

the reproductive organs/tissues has been observed in other organisms including the oocytes of 

pufferfish Takifugu niphobles [40], Takifugu vermicularis and Chelonodon patoca [23], the ovaries, 

oviduct, and testis of the short-tailed newt Cynops ensicauda [43], and the ovaries of the blue ringed 

octopuses Hapalochlaena lunulata and Hapalochlaena fasciata [44]. Researchers have suggested that 

TTX plays a protective role in host organisms, and the localization of TTX in reproductive organs 

imparts the toxin onto offspring to increase their survival rates [44,45]. 

Previous reports addressing the origin of TTX in P. maculata have provided evidence suggesting 

that a dietary source is probable [12,29,46]. A dietary source was suggested by Wood et al. [12] due to 

the depuration of TTX in P. maculata when kept in captivity and fed a non-toxic diet. Khor et al. [46] 

demonstrated that non-toxic P. maculata have the ability to sequester TTX into their tissues when fed 

an artificial toxic food source. Further evidence was provided when real-time PCR assays revealed  



Mar. Drugs 2015, 13 760 

 

 

P. maculata ingested the co-existing TTX-containing Stylochoplana sp. [29]. Collectively these studies 

suggest that TTX in P. maculata is most likely obtained from a dietary source. The localization of 

TTX in the digestive gland tissue of P. maculata supports this proposed scenario (Figure 2A). 

 

Figure 2. Pleurobranchaea maculata gonad/digestive tissue sectioned at 10 μm.  

(A) Tetrodotoxin (TTX)-specific monoclonal antibody (mAB) immunohistological staining 

(TTX identified by the brown color deposits); (B) Hematoxylin and Eosin staining; and 

(C) mAB negative control. dg = digestive gland, oc = oocyte. Black bars = 200 μm. 

2.2. Stylochoplana sp. 

Stylochoplana sp. were fixed flat and sectioned dorsoventrally. Tetrodotoxin, identified by the 

brown color deposits, is contained in the ova as well as portions of the pharynx (Figure 3). The 

localization of TTX in the reproductive and digestive tissues has also been reported in other flatworm 

species. Tanu et al. [21] used immunohistological techniques to show that TTX was contained in the 

ovum of the flatworm Planocera reticulata. Miyazawa et al. [47] showed the oviduct and digestive 

organs to be the most toxic tissues in the flatworm Planocera multitentaculata via mouse bioassay. A 

study on a planocerid species found on a reef in Guam demonstrated the highest concentrations of 

TTX were in the pharynx and through a series of feeding studies the researchers suggested that TTX 



Mar. Drugs 2015, 13 761 

 

 

was utilized in prey capture [48]. The sequestration of TTX in the pharynx of Stylochoplana sp. 

suggests this species may also use it to capture prey. The detection of TTX in the ova corroborates the 

observation of TTX in reproductive structures of Pleurobranchaea maculata, as well as many  

TTX-containing organisms, and most likely acts as a protective mechanism in offspring (see  

earlier discussion). 

 

Figure 3. Stylochoplana sp. dorsoventral view sectioned at 7 μm. (A) Tetrodotoxin  

(TTX)-specific monoclonal antibody (mAB) immunohistological staining, (TTX identified 

by the brown color deposits) (B) Enlargement and 90° rotation of red box on A to show 

detailed view of ova, testes, and pharynx, (C) Alcian Blue-Periodic Acid Schiff staining, 

and, (D) mAB negative control. ph = pharynx, ov = ova, t = testes, mp = male pore,  

fp = female pore. Black bar = 1 mm (A), 500 μm (B–D). 
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2.3. Offspring 

The high water and mucopolysaccharide content of the gelatinous matrix of the egg masses 

prevented histological studies on these samples. However, the egg masses of both P. maculata and 

Stylochoplana sp., and hatched larvae of P. maculata, were tested for TTX utilizing liquid 

chromatography-mass spectrometry (LC-MS; Table 1). To ascertain where TTX is localized in the egg 

masses of P. maculata, the outer gelatinous matrix, with and without the eggs, was tested. No TTX 

was detected in the gelatinous matrix with the eggs removed, thus it is assumed that TTX is invested 

only into the eggs. While this would be beneficial for the larvae once hatched, the lack of TTX in the 

gelatinous coating surrounding the eggs is at odds with the suggestion that TTX provides a protective 

function for the egg masses [12]. This, in conjunction with the observation of the sea star Patiriella 

regularis consuming Pleurobranchaea maculata egg masses (L. Salvitti pers. obs.), suggests that TTX 

does not act as a predator deterrent at this life stage. 

Tetrodotoxin concentrations of egg masses from a Stylochoplana sp. kept in aquaria were higher 

than those P. maculata egg masses tested in this study, but still in the range of previously recorded 

TTX concentrations of P. maculata egg masses (max. 100 mg·kg−1) [12]. It was not possible to 

localize TTX in egg masses of Stylochoplana sp. as these were only ca. 75 mg making separation of 

the gelatinous matrix and eggs difficult. Tetrodotoxin has been shown to be sequestered in eggs and 

egg masses of other species including flatworms Planocera multitentaculata [47], California newts 

T. torosa [41], rough skin newts T. granulosa [49], horseshoe crabs Carcinoscorpius rotundicauda [50,51], 

blue ring octopuses H. maculosa [52] and H. lunulata [44], and frogs A. chiriquiensis [53]. The foremost 

ecological role suggested for TTX residing in the egg masses and offspring is for protection. A recent 

study by Itoi et al. [45] demonstrates this possibility by showing that several predatory fish species 

ingested toxic pufferfish (T. rubripes and T. niphobles) larvae, but promptly spat them out. 

Immunohistological techniques revealed the localization of TTX in the outer layer of larvae of both 

pufferfish species. Several other studies have also shown the presence of TTX in pufferfish eggs and 

gonads signaling a potential role for the toxin in progeny protection [54,55]. 

Table 1. Tetrodotoxin (TTX) concentrations of egg masses and hatched larvae of 

Pleurobranchaea maculata (P.M.) collected from Pilot Bay, New Zealand on 9 September 

2013 (n = 1) and average TTX concentrations in egg masses of Stylochoplana sp. (S.S.) 

kept in aquaria (n = 2). 

Sample TTX 

P.M egg mass (−eggs) ND 

P.M. egg mass (+eggs) 3.7 mg·kg−1 

P.M. larvae 48.3 pg·indivdual−1 

S.S. egg masses 108 ± 2 mg·kg−1 
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3. Experimental Section 

3.1. Specimen Collection 

Toxic P. maculata and Stylochoplana sp. specimens were collected from Pilot Bay, Tauranga,  

New Zealand (37°63′5″ S, 176°17′6″ E). Pleurobranchaea maculata individuals were collected on  

27 September 2012 and Stylochoplana sp. specimens on 12 September and 25 October 2013.  

Non-toxic P. maculata specimens were collected from Tasman Bay, New Zealand (41°05′ S,  

173°06′ E) on 7 August 2012. 

Egg masses from P. maculata were collected on 9 September 2013 from Pilot Bay and kept in an 

aerated aquarium for 3 days before freezing (−20 °C) sections for TTX analysis. Egg masses were 

tested in their entirety and small sections were carefully scraped clean of egg capsules leaving only the 

gelatinous casing for testing. The remaining egg masses were left in the aquarium until hatching  

(day 7). A sample of larvae (50 mL) was centrifuged (3000× g, 10 min), seawater removed, and frozen  

(−20 °C) for TTX analysis. Additional subsamples (50 mL) of larvae were collected, fixed with 

ethanol, and used for enumeration to determine the number of individuals in each sample. Counts were 

conducted using a 5 mL chamber and a dissecting microscope (Olympus SZ60). 

Twenty-three Stylochoplana sp. specimens were collected from Pilot Bay (7 June 2012) and 

transported to laboratory aquaria in individual small plastic containers with 50 mL of seawater. 

Specimens were maintained in aerated aquariums (19 L) with 14 L of filtered seawater (0.22 μm).  

One individual laid two egg masses fourteen days after collection. Egg masses were removed from 

tanks and frozen (−20 °C) for TTX analysis.  

3.2. Histochemistry 

Pleurobranchea maculata were aseptically dissected. Small sections of the mantle tissue from  

P. maculata were removed, while the gonad and digestive tissues were kept intact due to the fragility 

of these tissues. Stylochoplana sp. specimens were left whole because of their small size (ave. 60 mg) 

and fixed flat using the techniques described in Newman and Cannon [56]. Briefly, Stylochoplana sp. 

specimens were transferred using a small artist brush to a piece of filter paper dampened with ambient 

seawater in order to encourage them to lie flat. Filter paper was then transferred into a container with 

frozen fixative (2% glutaraldehyde/4% paraformaldehyde), which was left to melt. 

Tissues and specimens were fixed overnight in 2% glutaraldehyde/4% paraformaldehyde, 

dehydrated through increasing concentrations of ethanol to xylene, embedded in paraffin, and sectioned 

at 7 to 10 μm thickness on a microtome (Leica RM 2055, Leica Biosystems, Wetzlar, Germany). 

Immunohistological sections were deparaffinized and rehydrated in ethanol before treatment with 3% 

H2O2/10% methanol to remove endogenous peroxidase activity followed by incubation with normal 

goat serum (VectorLabs, Burlingame, CA, USA) to prevent non-specific binding. Both the 

H2O2/methanol mixture and normal goat serum were diluted with 1× phosphate buffered saline  

(1× PBS, pH 7.2). Slides were then incubated with a TTX-specific monoclonal antibody (mAb) 

T20G10 diluted to 0.5 µg·mL−1 [30] in concert with VECTASTAIN® ABC kit (VectorLabs, 

Burlingame, CA, USA) according to the manufacturer’s instructions (Table 2). Visualization of the 

antigen-antibody complex was conducted using 3,3′-diaminobenzidine (DAB) substrate solution 



Mar. Drugs 2015, 13 764 

 

 

resulting in a brown color deposit. Sections were counterstained with Gill’s II Hematoxylin 

(Surgipath®, Leica Biosystems, Wetzlar, Germany), mounted, and observed under a light microscope 

(Leica DMRE with plan fluorite lenses, Leica Biosystems, Wetzlar, Germany). 

Table 2. Immunohistological incubation scheme. Steps were undertaken at room 

temperature unless otherwise specified. PBS = phosphate buffered saline, mAB = monoclonal 

antibody, DAB = 3,3′-diaminobenzidine. 

Step Solution Time (min) 

1. 3% H2O2/10% methanol 10 

2. 1× PBS 10 × 3 

3. Normal Goat Serum (Vector Labs) 20 

4. 1× PBS 10 × 3 

5. mAB T20G10 * Overnight at 4 °C 

6. 1× PBS 10 × 3 

7. Biotinylated secondary antibody (anti-rabbit IgG) * 60 

8. 1× PBS 10 × 3 

9. VECTASTAIN® ABC reagent * 60 

10. 1× PBS 10 × 3 

11. DAB 2–5 

12. Deionized H2O 5 

13. Counterstain (Gill’s II Hematoxylin) 2 

* reagents diluted with 1× PBS, pH 7.2, modified with 0.5% Triton X-100 and 0.25% m/v type B gelatin. 

Some sections of Stylochoplana sp. and P. maculata mantle tissue were also stained with Gill’s II 

hematoxylin (Surgipath®; Leica Biosystems, Wetzlar, Germany) and eosin (Surgipath®; Leica 

Biosystems, Wetzlar, Germany), and the Alcian Blue-Periodic Acid-Schiff (AB-PAS) method to 

differentiate between neutral and acidic mucins [57]. For AB-PAS staining, paraffin sections were 

rehydrated, stained with alcian blue (5 min), rinsed with distilled water, flooded with 1% periodic acid 

(2 min) and rinsed again. Slides were then immersed in Schiff’s reagent (8 min) and washed in running 

water (10 min). Sections were lightly counterstained with Mayer’s hematoxylin (2 min) before a final 

rinse with water. Sections were then dehydrated in an ascending ethanol series, cleared in xylene, 

mounted in D.P.X (Merck Millipore, Billerica, MA, USA), and observed under a light microscope 

(Leica DMRE with plan fluorite lenses, Leica Biosystems, Wetzlar, Germany). 

3.3. Tetrodotoxin Analysis 

Entire egg masses of Stylochoplana sp., specimens and sub-samples of egg masses from P. maculata, 

both with and without eggs, and hatched larvae were extracted for TTX. Samples (ca. 0.1 g) were first 

diluted 1:10 (w:v) with Milli-Q containing 0.1% v/v acetic acid. Each sample was manually 

homogenized with a glass pestle and vortexed to ensure complete disruption of tissues. Samples were 

centrifuged (3000× g, 10 min) and an aliquot of the supernatant was removed. This was diluted 1:10 

with 100% methanol containing 0.1% v/v acetic acid and frozen (−20 °C) for at least 1 h. Samples 

were then centrifuged (3000× g, 10 min) and diluted 1:4 with 100% methanol containing 0.1% v/v 

acetic acid and analyzed for TTX using LC-MS as described in McNabb et al. [27]. 
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4. Conclusions 

Tetrodotoxin was found to be sequestered in the mantle, reproductive tissues, eggs, and larvae of  

P. maculata. Definitive characterization of the type of TTX-containing cells in the mantle of 

P. maculata is difficult to ascertain with paraffin techniques, and electron microscopy would greatly 

aid in identifying cell types and elucidating their potential functions. Tetrodotoxin localization in the 

digestive tissue could be indicative of a dietary source of TTX in this species. The de novo synthesis or 

sequestration of secondary metabolites from prey for use as a defense mechanism in Opisthobranchs is 

a well-known phenomenon (reviewed in [31]). The sequestration of TTX in the mantle, eggs, and 

larvae may be suggestive of a defensive role in P. maculata. 

Localization of TTX in the pharynx, ova, and egg masses of Stylochoplana sp. could be indicative  

of ecological roles including aiding in capturing prey and protection of offspring, and further studies  

are required. 

The methods by which P. maculata and Stylochoplana sp. sequester TTX are unknown. 

Immunohistologically-stained sections of P. maculata show that low concentrations of TTX are 

present throughout most tissues, while TTX is exclusively localized in the ova and pharynx of the 

Stylochoplana sp. This could be a product of differing anatomy (coelomate verses acoelomate) or that 

sequestration techniques differ between the two species. Tetrodotoxin-binding proteins have been 

isolated from a number of invertebrates including horseshoe crabs [58], xanthid crabs [59], and several 

gastropods [60]. Determining if these proteins are present in P. maculata or Stylochoplana sp. would 

assist in understanding the transfer and transport of TTX in these organisms. 
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