
Cognition and Behavior

Decoding Task-Specific Cognitive States with Slow,
Directed Functional Networks in the Human Brain
Shagun Ajmera,1 Hritik Jain,1 Mali Sundaresan,1 and Devarajan Sridharan1,2

https://doi.org/10.1523/ENEURO.0512-19.2019

1Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India and 2Department of Computer Science
and Automation, Indian Institute of Science, Bangalore 560012, India

Abstract

Flexible functional interactions among brain regions mediate critical cognitive functions. Such interactions can
be measured using functional magnetic resonance imaging (fMRI) data either with instantaneous (zero-lag) or
lag-based (time-lagged) functional connectivity. Because the fMRI hemodynamic response is slow, and is
sampled at a timescale (seconds) several orders of magnitude slower than the underlying neural dynamics (milli-
seconds), simulation studies have shown that lag-based fMRI functional connectivity, measured with approaches
like Granger–Geweke causality (GC), provides spurious and unreliable estimates of underlying neural interactions.
Experimental verification of this claim is challenging because neural ground truth connectivity is often unavailable
concurrently with fMRI recordings. Here we demonstrate that, despite these widely held caveats, GC networks
estimated from fMRI recordings contain useful information for classifying task-specific cognitive states. We esti-
mated instantaneous and lag-based GC functional connectivity networks using fMRI data from 1000 participants
(Human Connectome Project database). A linear classifier, trained on either instantaneous or lag-based GC, reli-
ably discriminated among seven different task and resting brain states, with .80% cross-validation accuracy.
With network simulations, we demonstrate that instantaneous and lag-based GC exploited interactions at fast
and slow timescales, respectively, to achieve robust classification. With human fMRI data, instantaneous and
lag-based GC identified complementary, task–core networks. Finally, variations in GC connectivity explained
inter-individual variations in a variety of cognitive scores. Our findings show that instantaneous and lag-based
methods reveal complementary aspects of functional connectivity in the brain, and suggest that slow, directed
functional interactions, estimated with fMRI, may provide useful markers of behaviorally relevant cognitive states.

Key words: cognitive score prediction; emergent dynamics; functional connectivity; Granger causality; partial
correlations; support vector machines

Significance Statement

Functional MRI (fMRI) is a leading noninvasive technique for mapping functionally connected networks in
the human brain. The fMRI hemodynamic response is slow and noisy, and is sampled far more slowly (sec-
onds) than the timescale of neuronal spikes (milliseconds). fMRI data are, therefore, considered unsuitable
for mapping directed, time-lagged functional connectivity among brain regions. Here, we apply machine
learning to fMRI data from 1000 human participants and show that directed connectivity, estimated with
Granger–Geweke causality from fMRI data, accurately predicts task-specific cognitive states, and individual
subjects’ behavioral scores. Moreover, directed connectivity robustly identifies network configurations that
may be challenging to identify with conventional correlation-based approaches. Directed functional connec-
tivity, as measured with fMRI, may be relevant for a complete understanding of brain function.
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Introduction
Mapping functional coupling among brain regions is

key to mapping brain function and for understanding how
the brain produces behavior (Fox et al., 2005). Human
functional magnetic resonance imaging (fMRI) studies
have commonly investigated such functional coupling
with correlation-based measures, including the Pearson
correlation coefficient (Vincent et al., 2008; Buckner et
al., 2009) and partial correlations (PCs) between pairs of
brain regions (Marrelec et al., 2006; Ryali et al., 2012).
Correlation-based measures characterize “instantane-
ous” functional interactions among brain regions that
occur at timescales faster than the sampling rate of the
measurement (Barnett and Seth, 2017). In contrast, com-
paratively few studies have characterized functional con-
nectivity with lag-based measures (Sridharan et al.,
2008; Ryali et al., 2011).
Measures of linear dependence and feedback, based

on Granger–Geweke causality (GC; Geweke, 1982, 1984)
represent a powerful approach for estimating both in-
stantaneous and lag-based functional connectivity.
These measures are firmly grounded in information
theory and statistical inferential frameworks (Geweke,
1982, 1984; Seth et al., 2015). GC measures have been
widely applied to estimate functional connectivity in
recordings of brain activity made with electroencephalog-
raphy (EEG; Dhamala et al., 2008), magnetoencephalogra-
phy (Ding and Wang, 2014), and electrocorticography
(Bastos et al., 2015). However, the application of GCmeas-
ures to brain recordings made with fMRI has provoked sig-
nificant controversy (Chang et al., 2008; Smith et al., 2011;
Friston et al., 2013; Wen et al., 2013). Because the hemo-
dynamic response is produced and sampled at a timescale
(seconds) several orders of magnitude slower than the
underlying neural processes (milliseconds), previous stud-
ies have argued that lag-based measures, particularly lag-
based GC, produce spurious and unreliable estimates of
functional connectivity, when applied to fMRI data (fMRI-
GC; Lin et al., 2009; Smith et al., 2011; Seth et al., 2013;
Solo et al., 2018).
Three primary confounds have been identified with in-

ferring connectivity with fMRI-GC. First, systematic differ-
ences in hemodynamic lags across regions could yield

spurious directionality of GC connections (Chang et al.,
2008; Friston, 2009; Smith et al., 2011). Second, in simu-
lations, measurement noise added to the signal during
fMRI acquisition significantly degrades GC functional
connectivity estimates (Nolte et al., 2008; Smith et al.,
2012; Seth et al., 2013). Finally, downsampling recordings
to the typical fMRI sampling rate (seconds), three orders
of magnitude slower than the timescale of neural spiking
(milliseconds), effectively eliminates all traces of function-
al connectivity inferred by GC (Seth et al., 2013).
The controversy regarding the application of GC to

fMRI data continues to date. On the one hand, claims re-
garding the efficacy of GC estimates are primarily based
on simulations (Seth et al., 2015; Solo, 2016) and are only
as valid as the underlying model of neural activity and he-
modynamic responses. Because the precise mechanism
by which neural responses generate hemodynamic re-
sponses is an active area of research, strong conclusions
cannot be drawn based on fMRI simulations alone. On the
other hand, establishing ground truth validity for fMRI
functional connectivity requires invasive neurophysio-
logical recordings across many brain regions, concur-
rently during fMRI scans, a challenging enterprise. For
example, David et al. (2008) addressed this technical
challenge, and showed that, in a rodent model, fMRI-GC
functional connectivity estimates matched connectivity
estimates from intracerebral EEG only when confound-
ing hemodynamic effects were explicitly removed from
the former.
Here, we seek to examine the empirical relevance of

fMRI-GC functional connectivity networks in human
subjects for identifying task-specific cognitive states,
and for predicting behavior, by applying machine learn-
ing (Arbabshirani et al., 2017) to fMRI-GC networks. We
estimated instantaneous GC (iGC) and lag-based GC
connectivity with fMRI data drawn from 1000 human
subjects, recorded under seven different task conditions
and in the resting state [Human Connectome Project
(HCP) database; Glasser et al., 2013]. We trained a linear
classifier, based on GC connectivity features, to discrim-
inate among the different task and resting conditions,
and assessed classifier accuracy with cross-validation.
Instantaneous and lag-based fMRI GC connectivity
could decode task-specific cognitive states with super-
lative accuracies. Next, with simulations, we show that
slow interactions at the timescale of seconds emerge in
networks with sparse, random connectivity (Ganguli et
al., 2008), despite individual neurons operating at fast,
millisecond, timescales. We further show that such inter-
actions can be recovered with GC sampled at slow fMRI
timescales, providing a putative explanation for the suc-
cess of GC with classifying task states (Sundaresan et
al., 2017). Finally, we demonstrate that GC connectivity
features can be used as predictors (Liégeois et al., 2019)
to explain interindividual variations in behavioral scores
across a variety of cognitive tests. In summary, fMRI-GC
may be relevant for understanding slow, emergent, and
behaviorally relevant functional interactions in the human
brain.
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Materials and Methods
Ethics statement
The scanning protocol for the HCP was approved by the

Human Research Protection Office at Washington University
at St. Louis (institutional review board #201204036). Only dei-
dentified, publicly released data were used in this study.
Secondary data analysis procedures were approved by the
Institutional Human Ethics Committee at the Indian Institute
of Science (Bangalore, India).

fMRI data, parcellation, and time series extraction
We analyzed minimally preprocessed brain scans of

1000 subjects, drawn from the HCP database (S1200 re-
lease; age range, 22–35 years; 527 females); fMRI acquisi-
tion and preprocessing details have been described
previously (Van Essen et al., 2012; Glasser et al., 2013).
Briefly, in this preprocessing pipeline, a subject’s data are
first aligned to MNI space, volumes are segmented based
on predefined subcortical parcels, and white matter and
pial (cortical) surfaces are registered to the respective sur-
face atlas. This is followed by gradient distortion correc-
tion, motion correction, image distortion correction, spline
resampling, intensity normalization, and brain masking.
Next, cortical and subcortical gray matter voxels are
mapped onto standard cortical surface vertices and sub-
cortical parcels, respectively. Extended Data Figure 1-3
shows the identifiers of the subjects from whom data
were analyzed. Data were analyzed from resting state and
seven other task conditions (Extended Data Fig. 1-1), as
follows: emotion processing, gambling, language, motor,
relational processing, social cognition and working mem-
ory. In most figures, these tasks are referred to with their
initial letters. fMRI scans for the relational task were not
available for 9 of 1000 subjects; therefore, we analyzed a
total of 7991 scans across all tasks and subjects.
We used five different brain parcellations based on ana-

tomic atlas and four functional atlases (Extended Data
Fig. 1-4). For the tasks versus resting-state classification
based on GC connectivity (first section of Results), all five
parcellations were used. Based on the classification
performance in this analysis, we picked the three parcella-
tions with the highest accuracies (90-node and 14-net-
work parcellations of Shirer et al., 2012, and 96-network
parcellation of Thomas Yeo et al., 2011), and these were
used for the pairwise classification analysis of each task
versus the other as well as the N-way task classification
analyses. Analysis with averaging GC features across
subjects (Fig. 1D) was performed with a 90-node parcella-
tion (Shirer et al., 2012). Classification analyses with data
purged of instantaneous correlations and unweighted di-
graph representations (second section of Results) were
performed with the Shirer et al. (2012) 14-network parcel-
lation. Analyses involving identifying task-generic and
task-discriminative networks, as well as behavioral score
predictions, based on GC features (last section of the
Results) were performed with the Shirer et al. (2012) 14-
network parcellation. Voxel time series were extracted
using MATLAB and SPM 8 (Penny et al., 2007), and re-
gional and network time series were computed by

averaging the time series across all voxels in the respec-
tive region or network.
We used parcellations with fewer, more coarse-grained

regions, rather than fine-grained parcellations because
Granger causality estimates were more reliable when the
number of regions was fewer than the number of time-
points. Both task and resting scans were of sufficient
duration (;200–300 volumes) to permit robust GC esti-
mation. Finally, we noticed that in some parcellations,
there were overlapping voxels between some of the re-
gions. To avoid mixing of signals, we assigned each over-
lapping voxel to the region to whose centroid it was
closest, based on Euclidean distance.

Estimating functional connectivity with GC
We modeled instantaneous and lag-based functional

connectivity between brain regions using conditional
Granger–Geweke causality (Geweke, 1984). The linear re-
lationship between two multivariate signals, x and y, con-
ditioned on a third multivariate signal, z, can be measured
as the sum of linear feedback from x to y (Fx ! y|z), linear
feedback from y to x (Fy ! x|z), and instantaneous linear
feedback (Fx8y|z; Geweke, 1984; Roebroeck et al., 2005).
To quantify these linear relationships, we model the future
of each time series in terms of their past values, using
multivariate autoregressive (MVAR) modeling (Extended
Data 1 Mathematical Note, Section S1, Eq. 1). MVAR
model order was determined with the Akaike information
criterion for each subject, and was typically 1. The MVAR
model fit was used to estimate both an instantaneous
connectivity matrix using iGC (Fx8y|z) and a lag-based
connectivity matrix using directed GC (dGC; Fx ! y|z).
Details are provided in Extended Data 1 Mathematical
Note, Section S1. Because the minimum number of scans
across datasets (176) exceeded the number of nodes in
all parcellations used (90 nodes in the Shirer et al., 2012,
parcellation), the GC estimation was well posed.
Briefly, Fx ! y|z is a measure of the improvement in the

ability to predict the future values of y given the past val-
ues of x, over and above what can be predicted from the
past values of z and y, itself (and vice versa for Fy ! x|z).
Fx8y|z, on the other hand, measures the instantaneous in-
fluence between x and y conditioned on z (Extended Data
1 Mathematical Note, Section S1). We refer to Fx8y|z, as
iGC, and Fx ! y|z and Fy ! x|z as lag-based GC or dGC,
with the direction of the influence (x to y or vice versa)
being indicated by the arrow. The “full” measure of linear
dependence and feedback Fx,y|z is given by the following:
Fx,y|z = Fx! y|z1 Fy! x|z1 Fx8y|z. Fx,y|z measures the
complete conditional linear dependence between two time
series. If, at a given instant, no aspect of one time series
can be explained by a linear model containing all the values
(past and present) of the other, Fx,y|z will evaluate to zero
(Roebroeck et al., 2005).

Classification with linear Support Vector Machines
based on GC connectivity
The connection strengths of the estimated GC function-

al connectivity matrices were used as feature vectors with
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a linear classifier based on Support Vector Machines
(SVMs) for high-dimensional predictor data. For a parcel-
lation with n ROIs, the number of features for iGC-based
classification was nðn - 1Þ=2 (upper triangular portion of
the symmetric n� n iGC matrix) and for dGC-based clas-
sification it was n2 � n (all entries of the n� n dGC matrix,
excluding self-connections on the main diagonal). Based
on these functional connectivity features, we asked
whether we could reliably distinguish each task condition
from resting state (e.g., language vs resting) or each task
condition from the other.
For pairwise classification of resting state scans versus

each task, we used the MATLAB fitclinear function, opti-
mizing hyperparameters using a fivefold approach, as fol-
lows: by estimating hyperparameters with five sets of 200
subjects in turn, and by measuring classification accura-
cies with the remaining 800 subjects. Classification per-
formance was assessed with leave-one-out and 10-fold
cross-validation. We also assessed the significance of the
classification accuracy with permutation testing (see
Materials and Methods). In simulations, we observed that

the magnitude of GC estimates varied based on the num-
ber of timepoints used in the estimation. To prevent this
difference in the number of timepoints from biasing clas-
sification performance, each scan was truncated to a
common minimum number of time samples across the
respective scans being classified (task, resting) before
estimating GC. For each subject, GC connectivity was
estimated independently for the two scan runs (left-to-
right and right-to-left phase-encoding runs) and was aver-
aged across the runs. The hyperparameters optimized in-
cluded the regularization parameter, regularization method
(ridge/lasso), and the learner (linear regression model, svm/
logistic) using the OptimizeHyperparameters option to the
fitclinear function. Hyperparameter optimization was per-
formed only for task versus rest classifications, but not for
subject feature averaging, task versus task, or N-way clas-
sification analyses.
For pairwise classification of each vs the other, default

hyperparameters were used in the fitclinear function and
classification performance was assessed with leave-one-
out cross-validation. For N-way classification, we used
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Figure 1. Discriminating between task and resting state with instantaneous GC and directed GC networks. A, Schematic of task
state classification based on iGC and dGC with fMRI data from 1000 subjects (see text for details; IDs in Extended Data Fig. 1-3).
B, Two-way classification accuracies (leave-one-out) for each of seven tasks versus resting state based on GC. Red unfilled bars
and blue filled bars: accuracies based on dGC and iGC features, respectively (Extended Data Fig. 1-1, task key). Error-bars,
Clopper–Pearson binomial confidence intervals. Chance accuracy, 0.5 (data not shown). C, Two-way task versus resting-state clas-
sification accuracies based on dGC (red dots) and iGC (blue dots), as a function of the number of task scan timepoints (volumes).
Dashed lines, Linear fits. D, Two-way task versus resting-state classification accuracies based on dGC after averaging dGC matri-
ces over different numbers of subjects (x-axis). Each task is represented with a different color. Colored dashed lines, Biexponential
fits; black dashed horizontal and vertical lines, 95% accuracy and n=5 subjects’ average, respectively. E, Two-way classification
accuracies across each pair of tasks. Cells, Classification accuracies for each pair of tasks based on dGC (lower triangular matrix)
or iGC (upper triangular matrix); diagonal cells, number of task scan timepoints; highlighted cells, lowest (dashed-line border) and
highest (solid-line border) accuracies achieved with dGC (red) and iGC (blue). F, N-way classification accuracies among all seven
tasks. Dashed line, Chance accuracy (14.3%). Other conventions are the same as in B. G, Two-way subtask classification accuracies
(Extended Data Fig. 1-2, descriptions) based on GC. ns, Accuracy not significantly above chance. Other conventions are the same as
in B. H, Left, Two-way task versus resting-state classification accuracies obtained with regional time series subsampled at 2� (filled
symbols) and 3� (open symbols) of the TR (720ms; y-axis) plotted against accuracies obtained with the original data (1�, x-axis) for
each of seven tasks. Red, dGC; blue, iGC; dashed diagonal line, Line of equality (x= y). Right, N-way classification accuracies among
all seven tasks with data sampled at 1�, 2�, and 3� of the original TR. Other conventions are the same as in F. For B, E, and F, accu-
racies correspond to highest values across all parcellations tested, and hyperparameter optimization was performed for B. For C, G,
and H, accuracies correspond to Shirer et al. (2012) 14-network parcellation. For D, accuracies correspond to Shirer et al. (2012) 90-
node parcellation. Further details and control analyses are presented in Extended Data Figure 1-4, 1-5, 1-6, 1-7.
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the MATLAB fitcecoc function, which is based on error-
correcting output codes, and fits multiclass models for
SVMs. Briefly, the function implemented a one-versus-all
coding design, for which seven (number of classes in mul-
ticlass classification) binary learners were trained. For
each binary learner, one class was assigned a positive
label and the rest were assigned negative labels. This de-
sign exhausts all combinations of positive class assign-
ments. Classification performance in N-way classification
was assessed with leave-one-out cross-validation. For
each classification analysis mentioned above, task scans
were truncated to the common minimum number of time
samples across each set of scans, before estimating GC.

Classification based on GC connectivity across
subtasks and with subsampled data
Tasks in the HCP data were run as a block design, alter-

nating between various conditions (subtasks). We tested
whether GC connectivity would be able to classify among
subtasks within each task (Extended Data Fig. 1-2). fMRI
time series corresponding to each subtask was obtained
by concatenating blocks of fMRI task time series pertain-
ing to the respective subtask; the temporal order across
blocks was preserved while concatenating the data. We
also ensured that data at the conjunction of two succes-
sive blocks, which represented noncontiguous timepoints,
were not used for GC estimation. The two subtasks to be
classified were then truncated to have the same number
of timepoints. GC estimation and pairwise classification
across subtasks were performed with the procedure de-
scribed in the previous section. The Shirer et al. (2012) 14-
network parcellation was used for these analyses. For
the motor task, time series for the left and right finger
movement blocks were combined into a “hand”movement
subtask, and left and right toe movement blocks were
combined into a “foot”movement subtask.
We also tested whether GC on fMRI data sampled at

slower rates would suffice to classify among task and rest-
ing states. We obtained time series downsampled at 2� the
original sampling interval by removing data at even-num-
bered sample points and retaining data at odd-numbered
sample points (k=1, 3, 5...). The even-sample point data
were appended the end of odd-sample data series, thereby
retaining the overall number of data points in the original
time series. Again, we ensured that data at the conjunction
of the odd- and even-sampled data series (last odd-
sampled point and first even-sampled point), which repre-
sented noncontiguous data points, were not used for GC
estimation. Similarly, we obtained time series downsampled
at 3� the original sampling interval by removing every third
data point, starting with the second or third data point, and
concatenating these time series to retain the overall number
of data points in the original time series. As before, GC esti-
mation and pairwise classification was performed with the
procedure described in the previous section

Permutation testing of classifier accuracies
We performed permutation tests for evaluating the sta-

tistical significance of classifier performance, using the

method outlined in the study by Ojala and Garriga (2010).
The test involved permuting task labels independently for
each subject and computing a null distribution of 10-fold
cross-validation accuracy. We used 1000 surrogates and
assessed the significance of each empirically estimated
10-fold cross-validation accuracy values for dGC and iGC,
based on the proportion of samples in the null distribution,
which were greater than the cross-validation accuracy esti-
mated from the data. We conducted these analyses for the
tasks versus resting-state classifications, N-way task clas-
sification, classification analyses after purging instantane-
ous correlations, and classifications based on digraph
features, separately for the two metrics (dGC and iGC).

Testing for data stationarity and goodness of MVAR
model fit
Computing GC based on VAR modeling assumes that

the time series represent a stationary process. Four differ-
ent tests were performed to test whether the MVAR
model provided a valid and adequate fit to the data
(Extended Data Fig. 1-7). We performed these tests for
parcellated time series using scripts provided in the multi-
variate Granger causality (MVGC) toolbox (Barnett and
Seth, 2014). First, we checked for the stability of the
MVAR model fit by computing the logarithm of the spec-
tral radius using the var_specrad() function. A negative
value was taken to indicate a stable fit. Second, we as-
sessed the consistency of the model fit, which quantifies
what proportion of the correlation structure in data are ac-
counted for by the VAR model, using the consistency()
function. We adopted a threshold of 80% (or above) for
both task and resting time series to consider the data to
have passed the test for consistency (Barnett and Seth,
2014). Third, we evaluated the whiteness of residuals
based on the Durbin–Watson test for the absence of serial
correlation of VAR residuals, using thewhiteness() function.
Values of the Durbin–Watson statistic ,1 or .3 signify a
strong positive or negative correlation, respectively, among
the residuals (Barnett and Seth, 2014). Subjects for whom
the Durbin–Watson statistic lay between 1 and 3 for.90%
of the regional time series, for both task and resting-state
data, were considered to have passed the test. Fourth, we
checked for stationarity based on the augmented Dicky–
Fuller unit-root test (ADF), using the mvgc_adf() function.
As in the previous case, subjects for whom the ADF test
statistic was less than its critical value for .90% of the re-
gional time series, for both task and resting-state data,
were considered to have passed the test.

Control for motion artifacts
We checked whether systematic differences in motion

artifacts could contribute to the superlative classification
accuracies observed with GC. For this, we calculated
framewise displacement (FD; Power et al., 2012) as the
sum of temporal derivatives of translational and rotational
displacement along the three (x, y, and z) axes in milli-
meters, with the estimated motion parameters provided
by HCP. Frames with FD. 0.5 mmwere considered “mis-
aligned” and were discarded (“scrubbed”) while

Research Article: Theory/New Concepts 5 of 23

July/August 2020, 7(4) ENEURO.0512-19.2019 eNeuro.org

http://dx.doi.org/10.1523/ENEURO.0512-19.2019.f1-2
http://dx.doi.org/10.1523/ENEURO.0512-19.2019.f1-7


estimating GC values. Because dGC is estimated based
on lagged correlations, we also discarded one frame be-
fore and after every misaligned frame (the AR model order
was typically 1 for these data). We then repeated the
SVM-based two-way classification of resting state from
the seven different task states, with GC features esti-
mated on the “motion scrubbed” data; we also repeated
N-way classification among the seven tasks. Comparison
of classification (cross-validated) accuracies with and
without motion scrubbing, across all 1000 subjects, is
shown in Extended Data Figure 1-6C.

Classification based on BOLD series
We tested how well the BOLD signal itself would clas-

sify among tasks, based on the mean and SD of fMRI time
series of each region, based on the Shirer et al. (2012)
parcellation. Regional time series were truncated to a
common minimum number of timepoints for a pair of task
and resting-state scans. LR (left-to-right) and RL (right-to-
left) phase-encoded data time series were concatenated,
and the mean and SD were computed, for each of the 14
ROIs, providing 28 features for classification. Similarly, for
N-way classification, time series of all tasks were trun-
cated to the common minimum available number of time-
points across tasks, before computing the mean and SD.
Based on these 28 features, we sought to classify, as be-
fore, the resting state from each task (two-way classifica-
tion) and also among tasks (N-way classification).

Functional connectivity estimation and classification
with partial correlations
We compared the performance of classification based

on GC measures with that based on PCs. Partial correla-
tions were computed based on the inverse of the

covariance matrix, as outlined previously (Marrelec et al.,
2006; Ryali et al., 2012). Like iGC, the PC connectivity ma-
trix is undirected and symmetric. Therefore, only the
upper triangular portion of the matrix, including (n p

(n� 1)/2) PC weights, was used as features in the classifi-
cation analyses. Classification and cross-validation analy-
ses followed the procedures described in the Materials
and Methods section Classification with linear support
vector machines based on GC connectivity.
PC connectivity performed consistently better than GC

connectivity for classifying task from resting state (Fig. 2A).
We propose the following analytical explanation for this ob-
servation: PC, an estimator based on instantaneous covari-
ance, is less susceptible to noise than GC, which is based
on lagged covariance. This is due to the fact that the esti-
mation of lagged covariance is susceptible to errors from
noise at multiple timepoints. For illustration, consider a
time series generated by a VAR(1) model as follows:
xðtÞ¼Axðt - 1Þ1eðtÞ. The lagged (lag-1) covariance ma-
trix (R1) is estimated from the data as follows:

E ½xðtÞ xðt - 1ÞT� ¼E ½ðAxðt - 1Þ1eðtÞÞ xðt - 1ÞT�
¼ AE½xðt - 1Þ xðt - 1ÞT�1E ½eðtÞ xðt - 1ÞT�

Thus, when estimating the lagged covariance, the variance
of the interaction term E ½eðtÞ xðt - 1ÞT� (second term on the
right-hand side) contributes to the variance of R1 in addition
to the variance in computing the instantaneous covariance
E½xðt - 1Þ xðt - 1ÞT� (first term on the right-hand side).

Classification based on GC connectivity in zero-lag
correlation purged data
To test the complementarity of information conveyed

by GC functional versus functional connectivity based on
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Figure 2. Classification accuracies with GC purged of instantaneous correlations. A, Two-way task versus resting-state classifica-
tion accuracies, based on PCs (gray unfilled bars). Numbers reported correspond to highest leave-one-out classification accuracies
across parcellations, obtained with hyperparameter optimization. Corresponding accuracies for dGC (red dots) and iGC (blue dots)
are shown for comparison. Other conventions are as in Figure 1B. B, Schematic illustrating procedure for purging data of instanta-
neous correlations. fMRI regional time series were purged of instantaneous correlations by either whitening the data with ZCA, sep-
arately for each task and resting-state scan, or by projecting data into a space spanned by the GEVs, common to both task and
resting-state scans. GC and PC were then estimated with the ZCA or GEV projections of the time series data, followed by classifica-
tion analysis based on GC or PC connection strengths as features. C, Top, Two-way task versus resting-state classification accura-
cies following ZCA-based decorrelation. Gray circles, Classification accuracies based on PC. Other conventions are as in Figure 1B;
dashed line, chance accuracy (50%). Bottom, Same as in top panel, but for classification following GEV-based decorrelation. D,
Top, Schematic showing unweighted directed graph obtained from dGC; this digraph representation encodes only the dominant di-
rection of connectivity, and not its magnitude. Bottom, Two-way task versus resting-state classification accuracies based on dGC
digraph representations. Secondary ordinate (y-axis on the right), Number of scan timepoints for each task. C, D, GC features were
estimated with the Shirer et al. (2012) 14-network parcellation.
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instantaneous correlations, we decorrelated the regional
time series data to purge them of instantaneous correla-
tions. We adopted the following two approaches for this
purpose: (1) zero-phase component analysis (ZCA) and
(2) generalized eigenvalue (GEV) decomposition.

ZCA
Consider the demeaned t� r data matrix X of regional

time series with t timepoints and r regions, with covari-
ance matrix C. Decorrelating the data, to remove correla-
tions among the columns of X, is achieved with a
whitening transformation. A common whitening transfor-
mation is based on principal component analysis (PCA),
as follows: Y = WPCAX, with WPCA = D21/2E>, where D is
a diagonal matrix, with the eigenvalues of C on its diago-
nals, and the columns of E contain the eigenvectors of C.
While the PCA transformation effectively decorrelates
regional time series, there is no way to ensure one-to-
one correspondence of the whitened dimensions across
subjects, rendering subsequent classification analysis
challenging. Consequently, here we chose a different whit-
ening transformation based on ZCA, also known as the
Mahalanobis transformation. Based on this transformation,
whitening is achieved as: Y = WZCAX, with WZCA = ED21/2

E> = C21/2. A particular advantage of the ZCA transforma-
tion is that it yields whitened data that are as close as pos-
sible to the original data, in a least-squares sense (Kessy et
al., 2018). Therefore, each subject’s data are projected on
to a set of dimensions that are most closely aligned with
the underlying regional time series dimensions. Because
the regions exhibit spatial correspondence across subjects
(due to fMRI spatial normalization), the ZCA dimensions
possess a natural, one-to-one correspondence across
subjects, permitting subsequent classification. Before clas-
sification analysis, ZCA dimensions were identified for
each subject, separately for task and resting datasets.
Regional time series for task and resting data were inde-
pendently decorrelated by projecting onto their respective
ZCA dimensions. GC (and PC) functional connectivity was
estimated based on these decorrelated time series, fol-
lowed by classification analysis, as described previously
(Classification with linear support vector machines based
on GC connectivity, in Materials and Methods). As proof
that the ZCA transformation was working effectively, clas-
sification accuracy based on PC (an instantaneous correla-
tion measure) computed from ZCA components was at
chance across all tasks (Fig. 2C, top).

GEV
Although ZCA effectively purged correlations from the

data, for the subsequent classification analyses task and
resting-state data were projected onto different, respec-
tive ZCA dimensions. Thus, the above-chance versus
resting-state classification accuracy with GC features de-
rived from ZCA components (Fig. 2C, top) could perhaps
be explained by, for example, systematic differences with
how reliably ZCA dimensions were estimated across task
and resting-state scans. We therefore sought an ap-
proach that could project both task and resting data into
the same dimension while simultaneously decorrelating
both. Such joint decorrelation may be achieved by

projecting the data on to the generalized eigenvectors of
the covariance matrices of the two datasets
(Karampatziakis and Mineiro, 2014). Let CT and CR de-
note the covariance matrices of the task and resting da-
tasets, respectively. The generalized eigenvectors of
these two symmetric matrices are given by the columns
of G = ET DT

21/2 ER, where, as before, DT is a diagonal
matrix, with the eigenvalues of CT on its diagonals, and
the columns of ER and ET contain the eigenvectors of CR

and CT, respectively. It can be readily verified that
GTCTG and GTCRG are both diagonal matrices.
Therefore, G is a matrix that jointly diagonalizes both CT

and CR and projecting either task or resting-state data
into the columns of G decorrelates the respective time
series. So, for these analyses, the regional time series for
the task and resting-state conditions for each subject
were jointly decorrelated by projecting them onto a sin-
gle space spanned by the generalized eigenvectors. This
was followed by classification analysis with GC features
obtained from the decorrelated time series. As before,
we confirmed the effectiveness of the decorrelation by
computing classification accuracy based on PC from
GEV components, which was at chance across all tasks
(Fig. 2C, bottom).

Classification based on unweighted digraph
representations of GC connectivity
An unweighted directed graph (digraph) network rep-

resentation shows the dominant direction (but not mag-
nitude) of functional connectivity among brain regions.
Obtaining significant directed connections with dGC is
challenging due to the number of multiple comparisons
required for testing n2 � n connections. To identify sig-
nificant directed connections, overcoming the multiple
comparisons problem, we first subtracted the dGC con-
nectivity matrix from its transpose and then applied the
following two-stage procedure. In the first stage, the
1000 subjects were divided into five folds. For each two-
way task versus resting-state classification, recursive
feature elimination (RFE; described in GC feature selec-
tion based on recursive feature elimination) was per-
formed based on dGC features of subjects from one fold
(i.e., with 200 subjects). A minimal set of connection fea-
tures identified by RFE and their corresponding symmet-
ric counterparts were then used in the subsequent
analyses; we term these connections K; the cardinality of
K (the number of significant connections) was typically in
the range of 2–86 (2.5th to 97.5th percentile). In the sec-
ond stage, we identified statistically significant connec-
tions among these K features alone. For each of the
subjects in the four remaining folds (i.e., 800 subjects), a
null distribution for the dGC values of the features in K
was obtained by estimating dGC following phase scram-
bling of the time series (Ryali et al., 2011). Next, we iden-
tified significant connections based on dGC values that
occurred at the tail of the null distribution; the threshold
for significant connections was determined based on a p
value of 0.05 with a Bonferroni correction for multiple
comparisons. Classification performance based on
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digraph features was assessed with leave-one-out
cross-validation.

GC connectivity in simulated fMRI time series
To test the ability of GC measures to reliably recover

functional interactions at different timescales, we simu-
lated fMRI time series for model networks. Simulated
fMRI time series were generated using a two-stage
model. The first stage involved modeling latent neural dy-
namics with a stochastic, linear vector differential equa-
tion given by the following:

tdr=dt¼ -r1Wr1 e;

where r is the multivariate neural state variable represent-
ing the state of each neuron (or node) in the network (an
N� 1 vector, with N being the number of neurons), dr/dt
is its temporal derivative, W is the neural (“ground truth”)
connectivity matrix (dimension N�N), t is the time con-
stant of each neuron (or node), and e is independent and
identically distributed Gaussian noise (N(0, R)), with R = IN
(N�N identity matrix). Although this model does not ex-
plicitly incorporate signal propagation delays, such vector
Ornstein–Uhlenbeck models rank, arguably, among the
most common models used for simulating neural and
fMRI time series, in many previous studies (Smith et al.,
2011; Seth et al., 2013; Barnett and Seth, 2017).The multi-
variate time series r(t), sampled at discrete timepoints r
(kD) with a sampling rate of D, were generated based on
the discrete time (1-lag) connectivity matrix A(D) and a re-
sidual noise intensity R(D), as shown here:

AðDÞ¼ eDA; RðDÞ¼ ð1=DÞ ðCð0Þ - eDACð0Þ eDA9Þ;
where A¼ð1=tÞ ðW - INÞ, eA denotes the matrix exponen-
tial, A9 is the transpose of A, and C(0) is the zero lag auto-
covariance that satisfies the continuous time Lyapunov
equation ACð0Þ1Cð0ÞA91R¼ 0 (Seth et al., 2013). In the
second stage, the latent neural dynamics were convolved
with the hemodynamic response function (HRF) to obtain
the simulated fMRI time series: y=H �x, where H is the
canonical hemodynamic response function (hrf; simulated
with spm_hrf in SPM8), � is the convolution operation,
and y is the simulated fMRI time series. Finally, following
convolution with the hrf, the data were downsampled to
750ms to mimic the repeat time (TR) of the HCP fMRI
scans used in this study. The same model was used for
the different simulations used in the manuscript (third sec-
tion of the Results). The parameters for the two-node sim-
ulations and for the nine-node (100 neurons per node)
simulations are described in Extended Data Figure 3-1.
For the two-node simulations (Fig. 3A), iGC and dGC

values were estimated by simulating the network for 200
timepoints, averaged across 25 repetitions. The nine-
node simulations (Fig. 3B,C) were performed with a 900-
neuron network, with 100 neurons per node. Each node
had sparse, random excitatory/inhibitory connectivity
among its neurons (Extended Data Fig. 3-1, parameters),
whereas only 5% of neurons in each node were involved
in internode connections, to mimic sparse, long-range
connectivity in the neocortex (Knösche and Tittgemeyer,

2011). The network was simulated for 200 timepoints, and
time series from all (100) neurons in each node were aver-
aged to generate nine-node time series. iGC and dGC val-
ues were estimated from the node time series and
averaged across 10 independent repetitions. Significance
was assessed with a bootstrap approach that involved
generating 1000 surrogates by phase scrambling the
node time series to yield a null distribution of GC values
(Ryali et al., 2011), followed by a Benjamini–Hochberg
correction for multiple comparisons.
Simulations comparing PC and iGC connectivity

(Extended Data Fig. 3-2B,C) were performed as follows:
we simulated a seven-node network with a 1-lag VAR
model of the form Xk = A Xk�1 1 �k, where Xk is the state
of the discrete time process at discrete timestep k, A is
the connectivity matrix, and � is Gaussian noise with co-
variance matrix Rd. A was chosen to be a random matrix
with spectral radius ,1 to ensure stability. R was chosen
such that the covariance between every pair of residuals
was zero (independent residuals) except for the first two
residuals. The correlation between these residuals, e1 and
e2, was parametrically varied between �1.0 and 1.0 to
systematically vary the strength of iGC connectivity. Note
that, under this model, iGC between X1 and X2 vanishes
only if e1 and e2 are uncorrelated (Geweke, 1984).

GC feature selection based on RFE
We performed features selection for analyses reported

in Figures 2D, and 4, B and C, Extended Data Figure 4-
2B, and Extended Data Figure 1-4E, based on RFE. RFE
identifies a minimal set of features, which provide maxi-
mal cross-validation accuracy (Guyon and Elisseeff,
2003). Here, we implemented a two-level algorithm, de-
scribed previously (De Martino et al., 2008). First, the data
were divided into N1 (here, 10) folds. Of these, N1 � 1
folds were used as “training” data, and one fold was re-
served as “test” data for quantifying the generalization
performance of the classifier. Training data were pooled
and further divided into N2 (here, 5) folds. The SVM classi-
fier was then trained on N2 � 1 folds (leaving out one fold),
and discriminative weights were obtained. The above pro-
cedure was repeated N2 times by leaving out each fold,
in turn. Average weights were then computed by averag-
ing the absolute values of the discriminative weights
across the N2 runs. Next, 10% of the features (connec-
tions) contributing the lowest average weights were dis-
carded, and the classifier was trained again with only the
retained set of features. This procedure of feature selec-
tion and training was repeated until no more features re-
mained. At this stage, the generalization performance for
every set of retained features (each “RFE level”) was as-
sessed using the left out test data. The entire procedure
was repeated N1 times by leaving out each fold of the
original data, in turn, as test data. Final generalization per-
formances and discriminative weights of each RFE level
were obtained as the average over N1 folds. We selected
the set of connections at the RFE level at which the gener-
alization performance reached an “elbow”: a minimal set
of connections at which generalization performance
dipped dramatically below its maximal level. To identify
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this elbow (e), we used a custom elbow-fitting procedure,
requiring a piecewise linear fit to the RFE curve, based on
two lines, one for “x. e” and another for “x � e,” with the
first line required to have a higher slope than the second.

The first point in each RFE curve was excluded from the
higher slope line fit (Fig. 4C,E, Extended Data Fig. 4-2B).
RFE was typically repeated five times before determining
peak accuracy and corresponding features.
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Figure 3. Robustness of GC estimates depends on network timescales in simulated hemodynamic data. A, Top, Two-node net-
works with fast (50ms; left) or slow (1000ms; right) decay timescales of individual nodes (Extended Data Fig. 3-1A, parameters).
Each subpanel shows ground truth connectivity either as a schematic (left) or a connectivity matrix (right). In the matrix, a nonzero
entry at cell (i, j) corresponds to a connection from node j (source) to node i (destination). Bottom, dGC (red), iGC (blue), and PC
(black) connection strengths as a function of sampling intervals. Filled circles and solid lines, Strengths of true connections and
curve (biexponential) fits, respectively; open circles and dashed lines, strengths of spurious connections and curve fits, respec-
tively; dashed vertical line, sampling interval of 750ms, mimicking the TR of the fMRI data. Matrices to the right of each plot show
GC connection strengths estimated at a sampling interval of 750ms. Black squares surrounding matrix cells denote significant
connections (Materials and Methods). For iGC and PC (symmetric connectivity), only the lower triangular matrix is shown, for
clarity. B, Top left, Schematic showing a cluster of neurons, each with a timescale of 50ms, connected with sparse, random, net
excitatory connectivity. Matrix, Connectivity among the 100 neurons in a representative cluster; red, excitatory connections; blue,
inhibitory connections. Each such cluster forms one of the nine nodes in the simulated network. Top right, Connectivity among
the nine nodes in the network (Extended Data Fig. 3-1B, parameters). Bottom left, Eigenspectrum (top) of a representative 100
neuron cluster, showing one slow emergent timescale corresponding to the real part of one eigenvalue close to zero. Histogram
(bottom) showing timescales of all eigenmodes, with the slowest eigenmode at .2000 ms. Bottom right, Eigenspectrum (top) of
subnetwork DEF exhibits multiple slow emergent timescales. Histogram (bottom) showing timescales of all eigenmodes, with
three slow eigenmodes at ;1000–6000ms. C, Same as in A, but for simulated nine-node networks (Extended Data Fig. 3-1B, pa-
rameters). Left, Subnetwork ABC. Middle, Subnetwork DEF (see also Extended Data Fig. 3-2). Right, Subnetwork GHI. Other con-
ventions are as in A.
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Simulating hemodynamic lag variations across nodes
We simulated systematic differences in hemodynamic

lags across nodes by varying the onset parameter of the
spm_hrf function (SPM8; Penny et al., 2007). For network
configurations A and B described in Figure 4A, we simu-
lated the following four scenarios: (1) same mean HRF
onset (mL = 3 s) across nodes; (2) source node HRF onset
lagging the destination node by 1 s (mL�src .mL�dst); (3)
source node HRF onset leading destination node by 1 s
(mL�src .mL�dst); and (4) mixed latencies of lead and lag

across source and destination nodes (see next section).
GC was estimated for 100 simulated participants by sam-
pling onset latencies for each of the six nodes (A–F) from
normal distributions (truncated to have only positive la-
tency values), over a range of different SDs (sL = 0–1 s, in
steps of 0.2 s). Onset latencies were sampled independ-
ently across participants, but were sampled such that the
relative latency between each pair of source and destina-
tion nodes, across corresponding network configurations,
remained the same for each participant. For example, if
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Figure 4. RFE identifies task-generic and task-discriminative networks based on GC connectivity. A, Schematic showing two simu-
lated networks each with fast (50ms; ABC) and slow (1000ms; DEF) subnetworks, with distinct connectivity patterns. Network activ-
ity was simulated for 375 s with a sampling interval of 5ms, convolved with the hemodynamic response function and subsampled
at 750ms to yield 500 simulated timepoints. B, Top, RFE curves, with classification accuracy as a function of the remaining fea-
tures, for classification based on dGC (left) and iGC (right). Bottom, Maximally discriminative features following RFE based on dGC
(left) and iGC (right). Entries denote average b weights across RFE iterations. C, RFE curve for two-way classification of each of six
tasks (all tasks except motor) versus rest, based on dGC (top) and iGC (bottom). Color conventions are as in Figure 1D. Data points,
RFE accuracies; solid lines, piecewise linear fits; vertical dashed line, location of the elbow for each RFE curve. D, Task–generic
connections following task-versus-resting RFE, based on dGC (left) and iGC (right) features, using Shirer et al. (2012) 14-network
parcellation (Extended Data Fig. 4-1, details); each network is indicated with a different color and a label. Directed dGC connections
are shown as tapered links, broad at the source node and narrow at the destination node. Undirected iGC connections are shown
as bidirectional links between the respective pair of nodes. Colors of the connections represent the color of the destination node. E,
Same as in C, but for N-way classification across the six tasks. Color conventions are as in B. F, Same as in D, but for task-discrim-
inative connections (see also Extended Data Fig. 4-2), which maximally discriminated each task from the five others, following N-
way RFE, based on dGC features (left) and iGC features (right). Other conventions are the same as in C.
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the onset latency difference between nodes A and B was
0.7 s (mL�B -mL�A ¼ 0:7 s) for a particular subject, the same
difference in onset latency was also maintained between
nodes B and C (mL�C -mL�B ¼ 0:7 s). For simulations with
mixed latencies (case 4), 50% of simulated participants
had onset latencies drawn from distributions with the
source node lagging the destination node (case 2) and the
remaining 50% with the source node leading the destina-
tion node (case 3). GC values were averaged over five runs
for each simulated participant. Finally, we performed RFE
to identify key connections that distinguished the two net-
work configurations (same procedure as in Fig. 4B).
Connections weights of the most discriminative connec-
tions following RFE are shown in Extended Data Figure 3-
2E (for sL ¼ 0:4 s). Difference of dGC connection strengths,
as well as iGC connection strengths, for various values of
sL, are shown in Extended Data Figure 3-2D.

Identifying task-generic and task-discriminative GC
connections
To identify a minimal set of connections that occurred

consistently across tasks (“task-generic” connections),
we adopted the following approach. We performed RFE
analysis for task versus resting-state classification for
each of the six tasks (all tasks except motor); we expected
each of these tasks to recruit common cognitive control
mechanisms. We then performed a binomial test to iden-
tify connections that were consistently activated across
tasks. Briefly, the presence or absence of a connection in
the set of RFE features for a given task versus resting-
state classification was considered as a Bernoulli trial,
with probability of success (its presence), p being the
mean number of RFE features identified across all six
classifications. The number of trials n was the number of
task versus resting-state classifications (here n=6). The
probability of a randomly picked connection being pres-
ent in more than k such RFE sets is given by the cumula-
tive distribution function for the binomial distribution F(k;
n, p). Significant connections were identified as those that
occurred in k or more tasks, with threshold at the p=0.05
level.
To identify a minimal set of connections that maximally

differed across tasks (“task-discriminative” connections),
we used RFE with an N-way classifier to classify among
all six tasks (again, except the motor task). The N-way
classifier is based on training n (here, 6) one-versus-all bi-
nary learners. At the second level of the RFE procedure
described above, average weights were computed for
each of these n binary learners by averaging the absolute
values of the discriminative weights across the N2 runs.
Next, a set of features obtained by taking a union of 1% of
the features (connections) contributing the lowest average
weights in each learner was discarded, and the classifier
was trained again with only the retained set of features.
While quantifying the overlap between task-generic and

task-discriminating connections identified separately for
dGC, iGC and PC, we converted the dGC matrix to a
lower triangular matrix by reflecting all connections about
the main diagonal. The degree of overlap between PC and
GC connections was quantified as the number of

overlapping connections as proportion of the total num-
ber of connections identified by PC. We then computed a
null distribution of the degree of overlap by randomly per-
muting the connection identities within each matrix, while
preserving the overall number of connections in each
matrix, and generating 1000 surrogate samples. The
significance of the overlap of task-generic or task-
discriminating connections between each pair of metrics
(PC-dGC or PC-iGC) was quantified as the fraction of
overlapping connections in the data that exceeded this
null distribution.

Predicting behavioral scores based on GC
connectivity
We asked whether interindividual differences in GC

connectivity would be relevant for predicting interindivid-
ual differences in behavioral scores. HCP provides a well
validated battery of behavioral scores assessed with a
wide range of cognitive tasks. The task battery is based
on the NIH Toolbox for Assessment of Neurologic and
Behavioral function (Gershon et al., 2013), which was de-
veloped to create a uniform set of measures for rapid data
collection in large cohorts. The toolbox includes assess-
ments of cognitive, emotional, motor, and sensory proc-
essing scores in healthy individuals. We preselected,
based on domain knowledge, a specific subset of 51
scores for these analyses, using age-adjusted scores,
wherever available (Extended Data Fig. 5-1). Next, we
sought to predict subjects’ behavioral scores based on
GC connectivity with an established leave-one-out ap-
proach (Tavor et al., 2016). Briefly, we used linear regres-
sion to predict behavioral scores using, as features, GC
estimates of functional connectivity, separately for iGC
(91 features or connections) and dGC (182 features). The
leave-one-out analysis was performed such that the sup-
port vector regressor was fit on all but one subject, and
the learned b weights were used to obtain predictions of
the left-out subject’s behavioral score, using that sub-
ject’s own GC connectivity weights. Predicted scores
were correlated with the actual scores using robust corre-
lations (“percentage-bend” correlations; Wilcox, 1994).
Next, we asked whether GC connectivity could identify

an individual based on a composite marker of her/his be-
havioral scores. Because 40 subjects did not have a full
complement of behavioral scores, data from the remain-
ing 960 subjects were included in this analysis. The 51
behavioral scores were each z-scored across subjects
and formatted into a “composite behavioral score” vec-
tor. This vector served as an individual specific compos-
ite marker of behavioral scores, as revealed in the weak
off-diagonal values in the covariance matrix of this vec-
tor across subjects (Fig. 5D, top). dGC and iGC features
of individual tasks, as well as a combination of tasks (re-
lational and working memory), were used to then predict
the composite score marker for individual subjects,
using the same leave-one-out procedure as described
above. The observed and predicted set of composite
scores was correlated across subjects. The distribution
of observed versus predicted correlation values for each

Research Article: Theory/New Concepts 11 of 23

July/August 2020, 7(4) ENEURO.0512-19.2019 eNeuro.org

http://dx.doi.org/10.1523/ENEURO.0512-19.2019.f3-2
http://dx.doi.org/10.1523/ENEURO.0512-19.2019.f3-2
http://dx.doi.org/10.1523/ENEURO.0512-19.2019.f3-2
http://dx.doi.org/10.1523/ENEURO.0512-19.2019.f5-1


subject (Fig. 5D, values on main diagonal, bottom, yel-
low) were compared against between-subject correla-
tion values (Fig. 5D, off-diagonal values, bottom, gray)
using a Kolmogorov–Smirnov test.

Data availability
Data used in the study are available in the public do-

main at the Human Connectome Project database
(https://db.humanconnectome.org/). Data-sharing per-
missions can be found at the HCP website. The code re-
quired to replicate results described in the article was
developed at the Indian Institute of Science, Bangalore,
India, and is freely available online at https://figshare.
com/s/9d9131a6780fc8197cf1.

Results
GC estimated from slowly sampled fMRI data suffices
to distinguish task and resting states
We asked whether iGC and dGC (Extended Data 1

Mathematical Note, Section S1) connectivity would flexi-
bly reconfigure with task demand, by testing whether GC
connectivity sufficed to accurately classify among seven
different task states or the resting state (Extended Data
Fig. 1-1; Materials and Methods; Geweke, 1982, 1984).
Data were obtained from 1000 participants from the HCP
database (Van Essen et al., 2012). We used connection
weights among brain regions in each network (iGC or
dGC) as feature vectors in a linear classifier based on
SVMs for high-dimensional predictor data. Accuracies for
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Figure 5. GC connectivity explains interindividual variations in behavioral scores. A, Left, Schematic of behavioral score prediction
analysis. GC connectivity strengths for each task were used as independent factors to predict behavioral scores using linear regres-
sion with a leave-one-out approach. Fifty-one different behavioral scores (Extended Data Fig. 5-1, descriptions) were predicted and
compared against observed scores (top right), and their correlation values were plotted as a matrix (bottom right). B, Exemplar
score predictions based on dGC (left panels) and iGC (right panels). In order (from left to right): list sorting score predicted from
working memory task dGC connectivity; picture vocabulary score from language task dGC connectivity; endurance score from
motor task iGC connectivity; and reading score from language task iGC connectivity. C, Top, Prediction statistics for selected
scores based on dGC connectivity (all scores are shown in Extended Data Fig. 5-2). Correlation coefficients (r values) between the
predicted and observed scores are plotted in the top half of each stem plot, and significance (p values) is plotted in the bottom half.
Each score is denoted by a different color, and each subpanel shows predictions based on GC connectivity for a different task;
stems with open symbols represent nonsignificant correlation coefficients, whose corresponding p values are not shown. p Values
are floored at 10�4 for ease of visualization. Bottom, Same as in top panel, but predictions are based on iGC connectivity. D, Top,
Intersubject correlation matrix of composite behavioral scores. Row and column indices, subjects. Bottom, Cumulative distributions
(solid lines) and density function estimates (filled area) of correlation coefficients between observed and predicted composite
scores, for the same subject (yellow) or across different subjects (gray). Predictions were based on GC estimates from the relational
and working memory tasks. p Value, Kolmogorov–Smirnov test.
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classifying resting state from a working memory task are
described first; accuracies for other tasks are presented
subsequently.
Both iGC and dGC connectivity were able to distinguish

the working memory task from resting state significantly
above chance (Fig. 1B; p, 0.001, permutation test).
Maximum median accuracy was 97.3% [95% confidence
interval (CI), 96.3–98.0%] with iGC and 92.0% (95% CI,
90.5–93.2%) with dGC (Extended Data Fig. 1-5B, Yeo
Parcellation; Table 1, a, b; iGC: precision = 97.2, recall =
97.4; dGC: precision = 90.9; recall = 93.2). k-fold (k = 10)
cross-validation accuracy was comparable [iGC: median,
97.1% (95% CI, 96.2–97.9%); dGC: median, 91.7% (95%
CI, 90.3–93.0%)]. These numbers correspond to maxi-
mum cross-validation accuracy across all five parcella-
tions tested (Extended Data Fig. 1-4, Extended Data Fig.
1-5A); accuracies with each parcellation are shown in
Extended Data Fig. 1-5B. Nonlinear classifiers, such as
SVMs based on radial basis function kernels produced
similar results, with comparably above chance classifica-
tion accuracy for both iGC and dGC connectivity
(Extended Data Fig. 1-5C).
We repeated these analyses by classifying the six other

tasks (Extended Data Fig. 1-1) versus resting state. iGC
and dGC connectivity could accurately classify each task

from resting state significantly above chance. For iGC,
maximum classification accuracies ranged from 90.1%,
for emotion versus resting-state classification, to 97.1%,
for language versus resting-state classification. Similarly,
for dGC, accuracies ranged from 78.1%, for emotion ver-
sus resting-state classification, to 92.8%, for language
versus resting-state classification (Fig. 1B; Table 1, c). In
general, classification accuracy increased with more scan
timepoints for each task versus resting-state classifica-
tion (Fig. 1C), consistent with GC being an information
theoretic measure; we confirmed this result with simula-
tions also (Extended Data Fig. 1-5D).
In these analyses, classification accuracies based on

dGC were systematically lower than those based on iGC.
We asked whether dGC accuracies were poorer due to
noise corrupting the fit of the autoregressive model, and
whether a more consistent estimate could be obtained by
averaging dGC connectivity features, to remove uncorre-
lated noise, across subjects. We addressed this question
by partitioning the data into two groups—a training (T)
group and a test (S) groups—with 500 subjects each. We
trained the classifier on group T and tested the classifier
prediction by averaging GC matrices across several folds
of S of size m, each fold containing a few (m=2, 4, 5, 10, 25,
or 50) subjects; the procedure was repeated by exchanging

Table 1: Statistical table

Figure Comparison Type of test Statistic
Confidence in-
terval or power

a 1B Rest vs working memory best iGC classification ac-
curacy value

Binomial test Clopper–Pearson
confidence intervals

96.3–98.0%

b Rest vs working memory best dGC classification ac-
curacy value

90.5–93.2%

c Rest vs task maximum classification accuracy (each
bar) vs chance

Permutation test p value p , 0.001

d 1F N-way task classification maximum iGC accuracy
value

Binomial test Clopper–Pearson
confidence intervals

73.3–75.4%

e N-way task classification maximum dGC accuracy
value

46.4–48.7%

f N-way task classification maximum accuracy values
(each bar) vs chance

Permutation test p value p , 0.001

g 1G Subtask classification maximum accuracies (each
bar) vs chance

Permutation test p value p , 0.05

h 1H (left) Rest vs task dGC classification accuracies with 2�,
and 3� sampling rate (vs 1�)

Wilcoxon one-tailed
signed-rank

p value 2�: p = 0.02;
3�: p = 0.06

i Rest vs task iGC classification accuracies with 2�,
and 3� sampling rate (vs 1�)

2�: p = 0.01;
3�: p = 0.01

j 2C ZCA, GEV classification accuracy values with dGC
and iGC vs chance

Permutation test p value p , 0.001

k 2D Rest vs task unweighted dGC classification accu-
racy value (each bar) vs chance

Permutation test p value p , 0.001

l 3A Each dGC, iGC, PC matrix connectivity value bound
with black square vs corresponding null
distribution

Phase scrambling p value p , 0.05

m 3C Each dGC, iGC, PC matrix connectivity value bound
with black square vs corresponding null distribu-
tion of phase-scrambled surrogates

Benjamini–Hochberg
correction

p value p , 0.05

n 5C Each prediction corr value with filled circle in stem
plot

Benjamini–Yekutieli
correction

p value p , 0.05

o 5D Correlation coefficients between observed and pre-
dicted composite scores, for the same subject vs
across different subjects

Kolmogorov–Smirnov
test

p value p , 0.001
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training and test datasets (see Materials and Methods). For
the vast majority of tasks (six of seven), the classification ac-
curacy of dGC was .95% with as few as m=5 subjects
within each fold of the test set (Fig. 1D). These results sug-
gest that averaging dGC matrices across a few subjects,
yielded reliable estimates of dGC connectivity.
We considered other factors that, in addition to intrinsic

connectivity differences, could have produced these
superior classification accuracies. First, GC-based accu-
racies for classifying task versus resting-state scans
might arise from differences in brain regions activated
during each of these scans. In addition to task-relevant
sensory input, overt motor responses always occurred
during task scans but were absent during resting-state
scans (Barch et al., 2013; Glasser et al., 2013). Could GC
features discriminate among more subtle connectivity
variations across/within tasks? Second, scan data from
the HCP database were sampled at a TR of 720ms, which
is considerably faster than the TR for conventional fMRI
scans. Would GC accuracies degrade if the data were
sampled at a much slower sampling rate (;2000ms),
which is in line with conventional fMRI TR?
We addressed the first question in two stages. First, we

asked whether GC connectivity features would be able to
classify which of the seven tasks each subject was per-
forming in the scanner. First, we performed a pairwise
classification of each task from the other. Maximum clas-
sification accuracies for iGC (dGC) ranged from 87%
(67%), for the emotion versus gambling task classifica-
tion, to 98% (91%), for the language versus social task
classification. Again, the number of timepoints for each
task proved to be a strong indicator of classification accu-
racies (Fig. 1E): the average intertask classification accu-
racies were highest for the language task (iGC, 97%;
dGC, 88%; n=316 timepoints) and lowest for the emotion
task (iGC, 91%; dGC, 77%; n=176 timepoints). Next, we
performed an N-way classification analysis across all
seven tasks, again using linear SVMs (Materials and
Methods). Accuracies were significantly above chance
(14.3% for 1-in-7 classification) for classifying among the
seven tasks [Fig. 1F; maximum accuracy: iGC, 74.4%
(73.3� 75.4%); dGC, 47.6% (46.4� 48.7%); p, 0.001,
permutation test; Table 1, d, e, f]. These results indicate
that functional connectivity was consistently estimated
with GC and reliably different across tasks.
Second, each of the different tasks in the HCP database

comprised blocks of contiguous trials, with each block
corresponding to one of (at least) two different subtasks
(Barch et al., 2013; Extended Data Fig. 1-2). For example,
the motor task was composed of blocks of trials involving
movements of the right or left hand interleaved with
blocks of trials involving movements of the right or left foot.
Similarly, the working memory task comprised interleaved
blocks of 0-back and 2-back tasks. We asked, therefore,
whether GC connectivity could distinguish among subtler
variations in brain states across subtasks within each task.
We sought to classify across two subtasks for each of six
tasks (Extended Data Fig. 1-2). In all cases, except one,
both iGC and dGC connectivity discriminated between
each pair of subtasks with higher than chance accuracies

[Fig. 1G; maximum accuracy: iGC, 89.2% (95% CI, 87.6–
90.7%); dGC, 80.1% (95% CI, 78.9–82.9%); p, 0.05, per-
mutation test; Table 1, g]. These results indicate that GC
functional connectivity could accurately distinguish among
subtasks within each task as well.
Next, we tested whether GC connectivity estimated from

slowly sampled fMRI data could accurately classify task
and resting states. We downsampled the data to either
one-half (2� TR=1440ms) or one-third (3� TR=2160ms)
of its original sampling rate, by decimation, while also con-
catenating the decimated data to the end of the sub-
sampled time series to preserve the overall number of
timepoints (Materials and Methods). We repeated both of
the previous classification analyses—pairwise task versus
resting-state classification (Fig. 1H, left), as well as N-way
intertask classification (Fig. 1H, right). Following downsam-
pling, we observed that classification accuracies were mar-
ginally higher than accuracies in the original data, in the
case of dGC (2�, p=0.02; 3�, p=0.06, Wilcoxon one-
tailed signed-rank test; Table 1, h) and were even higher
than those in the original data, in the case of iGC (2�,
p=0.01; 3�, p=0.01; Table 1, i), across tasks. These re-
sults indicate that the superlative sampling rate of the HCP
fMRI data was not the primary reason for these high classi-
fication accuracies for GC-based classification.
We performed additional control analyses to confirm

that these results were not due to data non-stationarity,
biases in GC estimation, or head motion artifacts.
As a first control analysis, we repeated the classification

analyses including only subjects for whom the data
passed tests of stationarity (Materials and Methods;
Extended Data Fig. 1-7); typically, data from .99% of
subjects passed three of four tests of stationarity (except
for the consistency test) across all tasks. Mean GC matri-
ces for each task and resting scan closely resembled
those of the population for subjects whose data passed
all four tests of stationarity across all tasks (n=141;
Extended Data Fig. 1-6A). Statistical tests revealed that
dGC connectivity was only marginally different for this
subset of subjects (proportion of significantly different
connections: 6.3 6 0.9%, mean 6 SE, across tasks;
Kolmogorov–Smirnov test with Benjamini–Hochberg cor-
rection for multiple comparisons), whereas iGC connec-
tivity was substantially different (80.6 6 8.0%, mean 6
SE). Nevertheless, accuracies for classifying task versus
resting state, as well as for classifying among tasks, were
very similar and, in fact, marginally higher for the subjects
who passed tests of stationarity compared with the popu-
lation (Extended Data Fig. 1-6B).
As a second control, we repeated the same analyses by

deriving GC estimates with a single full regression (one-
stage GC), instead of with separate full and reduced re-
gressions (two-stage GC; Materials and Methods); this
analysis was necessary due to recent observations that
the two-stage GC model can produce biased estimates,
especially with incorrectly specified model orders (Stokes
and Purdon, 2017; Barnett et al., 2018). Empirically, GC
estimates for each of these methods were numerically
different, but tightly correlated across subjects (Extended
Data Fig. 1-6E) and tasks (Extended Data Fig. 1-6F):
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correlation values range from 0.94 to 0.97 for dGC (p,
0.001; Extended Data Fig. 1-6D). As before, we observed
a very similar pattern of classification accuracies with the
single full regression model (N-way classification accu-
racy among seven tasks computed with the Shirer et al.
(2012) 14-network parcellation: 48.3% based on dGC,
56.4% based on iGC) versus when GC was estimated
with separate full and reduced regressions (47.6% based
on dGC, 56.2% based on iGC; chance accuracy, 14.3%
for 1-of-7 classification).
As a third control, we sought to remove the contribution

of motion artifacts to these superlative classification ac-
curacies. The minimally preprocessed fMRI data of the
HCP are already motion corrected, based on the FSL
MCFLIRT algorithm (Van Essen et al., 2012). We further
controlled for motion artifacts using “motion scrubbing”
(Power et al., 2012) by discarding frames with FD values
.0.5 mm (see Materials and Methods). Overall, across all
task and resting-state scans ,2% of frames were dis-
carded with this approach (Extended Data Fig. 1-6G). We
recomputed GC values on the motion-scrubbed data, for
each of the 1000 subjects (Materials and Methods), and
repeated the task-versus-rest and N-way task classifica-
tion analyses. Classification accuracies following motion
scrubbing were closely similar and marginally (albeit sig-
nificantly) higher than accuracies obtained with the origi-
nal data (Extended Data Fig. 1-6C; p, 0.01, one-tailed
signed-rank test).
As a fourth control, we sought to test how well the

BOLD signal itself would classify among tasks, based on
the mean and SD of fMRI time series parcellated with the
Shirer et al. (2012) 14-network parcellation (see Materials
and Methods). Accuracies for classifying a task state from
rest were significantly lower [range, 62.7–67.7%; median,
65.9%) compared with both dGC- and iGC-based classi-
fication accuracies (p,0.01, one-tailed signed-rank test).
In fact, N-way classification accuracy was 15.7%, only
marginally above chance of 14.3%
These results demonstrate that both iGC and dGC

yielded task-specific signatures of functional connectivity
even with slowly sampled fMRI data (TR,;2000ms): these
estimates were consistent across subjects and reliably dif-
ferent across tasks to permit successful classification.
Furthermore, these superlative classification accuracies
were obtained despite widely held caveats concerning the
application of GC to fMRI data (Stokes and Purdon, 2017),
suggesting that even if individual fMRI-GC network con-
nections are unreliably estimated for a given task, the dif-
ference in fMRI-GC network connectivity across tasks was
sufficiently reliable and informative to permit accurate clas-
sification among them.

Correlation-purged GC connectivity suffices for
accurate task-state classification
Correlation-based (zero-lag) connectivity measures (e.

g., PCs) have been widely applied to estimate functional
connectivity from fMRI data (Liang et al., 2012; Ryali et al.,
2012). In fact, several previous studies (Smith et al., 2011;
Seth et al., 2013) have argued that correlation-based
measures are more reliable and should be preferred to

lag-based measures like GC (Seth et al., 2015), for esti-
mating functional connectivity with fMRI data. We tested
this claim here with a threefold analysis approach.
First, we asked how classification accuracies based on

PC connectivity would compare with those reported
above, based on GC connectivity. Maximum classification
accuracies with PC connectivity ranged from 96% to 99%
for task versus resting-state classification and were con-
sistently higher than accuracies with GC connectivity (Fig.
2A). These results are along the following expected lines:
estimators based on same-time covariance, such as
PC, are less susceptible to noise than those based on
lagged covariance, such as GC (derived analytically in the
Materials and Methods section Functional connectivity
estimation and classification with partial correlations). In
addition, as mentioned previously, GC is an information
theoretic measure: classification accuracy with iGC and
dGC increased systematically with more scan timepoints,
asymptotically matching PC accuracies (Extended Data
Fig. 1-5D).
Second, we asked whether lag-based connectivity

could accurately classify task from resting state, once the
data were purged of all instantaneous correlations. To ac-
complish this, we adopted the following two approaches:
(1) ZCA and (2) GEV decomposition (Materials and
Methods). Briefly, ZCA (or the Mahalanobis transforma-
tion) produces whitened time series data that are closest,
in a least-squares sense, to the original regional time se-
ries data. As an alternative approach, we decorrelated
both task and resting-state time series jointly by projec-
ting them onto a single set of GEVs. These approaches
provided empirical upper and lower bounds on the GC
performance on correlation-purged data (Materials and
Methods).
GC connectivity features sufficed to successfully clas-

sify all tasks from resting state, even in correlation-purged
data. With ZCA, iGC accuracies ranged from 84% to
96%, whereas dGC accuracies ranged from 82% to 96%
across tasks. With GEVs, iGC accuracies ranged from
60% to 71%, whereas dGC accuracies ranged from 56%
to 76% across tasks; in each case, classification accura-
cies were significantly above chance (p,0.001, permuta-
tion test; Table 1, j). We confirmed that performance in
each case was not an artifact of the decorrelation proce-
dure (ZCA/GEV) by randomly interchanging task and rest-
ing-state labels for each pair of datasets across subjects
(Materials and Methods); shuffling labels reduced classifi-
cation accuracy to chance. Note that in every case, classi-
fication performance based on PC connectivity was at
chance (Fig. 2C), a direct consequence of removing in-
stantaneous correlations from the data. Despite this, clas-
sification accuracies based on iGC connectivity were not
at chance; in the next section, we discuss potential rea-
sons for these differences between iGC and PC classifica-
tion accuracies.
Third, we asked whether an unweighted directed graph

(digraph) network representation—whose edges indicated
the dominant direction, but not the magnitude, of connec-
tivity (Fig. 2D)—would suffice to distinguish task from rest-
ing brain states (Materials and Methods). Again, dGC
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directed graphs successfully distinguished each task
from resting state well above chance. Classification accu-
racies ranged from 56% for the motor task versus resting-
state classification to 68% for the relational task versus
resting state; for each task, classification accuracies were
significantly above chance (p, 0.001; permutation test;
Table 1, k). Interestingly, we did not see a strong influence
of the number of data points on classification accuracy in
this case (Fig. 2D, purple dots). For instance, the emotion
task (n=176 timepoints) was classified with an accuracy
of 62% from resting state, which was comparable to the
classification accuracy of working memory (n=405 time-
points) from resting state (64%). Both iGC and PC, which
are symmetric connectivity measures, could provide no
directed connectivity information.
These results demonstrate that lag-based connectivity

contained sufficient information to classify task from rest-
ing state even when instantaneous correlations were
entirely purged from the data. Moreover, unweighted di-
rected connectivity graphs alone, indicating the direction,
but not scalar magnitude, of GC connectivity, sufficed to
accurately classify task from resting brain states. These
findings indicate that directed functional connectivity
measures, like dGC, provide connectivity information that
is distinct from, and complementary to, what can be ob-
tained with undirected functional connectivity measures,
like PC.

Instantaneous and directed GC identify
complementary aspects of functional connectivity
What characteristics of functional connectivity are re-

spectively identified by instantaneous and lag-based con-
nectivity? And how can lag-based connectivity be reliably
estimated with fMRI data, which is sampled at timescales
that are orders of magnitude slower than neural timescales?
We addressed both of these questions, first, with simula-
tions (this section) and then, with real data (next section).
First, we tested the ability of GC to reliably recover func-

tional interactions in simple, two-node feedforward net-
works operating at different timescales (Fig. 3A). We
simulated fMRI data using a two-stage model (Materials
and Methods), as follows: (1) a latent variable model that
describes the dynamics of the nodes (vector Ornstein–
Uhlenbeck process; Ganguli et al., 2008); and (2) a convo-
lution of these neural dynamics with a hemodynamic re-
sponse function to obtain the simulated fMRI time series
(Smith et al., 2011; Seth et al., 2013). Based on this
model, we simulated activity in two two-node networks.
In the first network, individual node decay timescales
were set to 50ms, whereas in the second network, these
were set to 1000ms (Extended Data Fig. 3-1A, parame-
ters). For convenience, we refer to these two network
timescales as “fast” (50ms) and “slow” (1000ms). We
then varied the sampling interval (Ts) of the simulated data
from 50 to 1450ms in steps of 100ms. Connections at
both fast and slow timescales were generally discovered
by iGC regardless of sampling interval, although connec-
tions at slow timescales were less robustly detected than
those at fast timescales (Fig. 3A). On the other hand, the
connection in the fast timescale network was not

discovered by dGC when the sampling interval was
.50ms, which is in line with the results of Smith et al.
(2011). However, the connection in the slow timescale
network was reliably discovered by dGC across a wide
range of sampling intervals, up to and exceeding 1000ms
(Table 1, l). In each case, dGC failed to discover the
underlying interaction when the sampling interval was
much higher than the slowest timescale in each network,
consistent with recent theoretical results (Barnett and
Seth, 2017). These findings suggest that dGC can detect
slow neural processes, which operate at a timescale
slower than TR, in fMRI data.
How might such slow timescales, orders of magnitude

slower than spike times and membrane time constants,
arise in fMRI data? To answer this question, we availed
ourselves of established results in random matrix theory.
Connectivity in randomly connected excitatory-inhibitory
(E-I) networks of neurons can produce slow timescales,
without fine-tuning of network parameters (Rajan and
Abbott, 2006; Ganguli et al., 2008; Friston et al., 2014).
We modeled sparse, random, net excitatory connectivity
in a small network of (N=100) neurons with connection
parameters drawn from previous studies (Extended Data
Fig. 3-1B; Gupta et al., 2000; Holmgren et al., 2003;
Ganguli et al., 2008). The eigen spectrum of the network
revealed that each network exhibited one eigenvalue
close to zero, corresponding to a slow timescale (approxi-
mately �1000ms; Fig. 3B, bottom left); the latter consti-
tutes an emergent timescale associated with the
dominant eigenmode that is a property of network con-
nectivity (Materials and Methods).
We modeled nine such networks, organized into three

noninteracting clusters (Fig. 3B, top right), as follows: (1) a
cluster with a purely feedforward connection across two
networks; (2) a cluster with recurrent excitatory (E-E) feed-
back connections among two networks; and (3) a cluster
with recurrent E-I feedback connections among two net-
works. In each case, connectivity across networks was
mediated by a small proportion (5%) of neurons in each
network (Extended Data Fig. 3-1B, parameters). This con-
figuration mimics “small-world” connectivity in brain net-
works (Bassett and Bullmore, 2006), with locally
connected brain regions interacting through sparse, long-
range connections (Sporns et al., 2004). The eigenspectra
revealed that dynamics in all clusters operated at time-
scales of ;6000ms, comparable to or slower than the in-
dividual network timescales (Fig. 3B, bottom right). To
simulate fMRI data, we averaged the activity across all
100 neurons in each network and convolved it with a ca-
nonical HRF. As before, these nine time series were then
sampled at various sampling intervals, including a 750ms
interval mimicking the scan TR, and analyzed with GC to
detect significant connections. iGC and dGC identified
complementary aspects of connectivity with these simu-
lated data (Fig. 3C; Table 1, m). iGC robustly identified
feedforward and E-E feedback connections. dGC also es-
timated these connections, albeit with the following differ-
ences. First, in the feedforward network dGC occasionally
identified a spurious connection, albeit much weaker in
magnitude, in the direction opposite to the true
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connection (Fig. 3C, left column, red dashed line).
Second, when the E-E feedback connections were pre-
cisely balanced in strength (symmetric), dGC also failed
to identify the connection reliably (Extended Data Fig. 3-
2A). Yet, when these connections were of different
strengths, dGC reliably identified both connections and
their relative strengths (Fig. 3C, middle column, red). In
contrast, when the connections were of different signs (E-
I feedback), dGC robustly identified both connections,
whereas iGC failed to reliably detect this connection (Fig.
3C, right column, blue). Yet, together, iGC and dGC iden-
tified all three connection types reliably.
Next, we compared the efficacy of connectivity estima-

tion with PCs. While PC robustly identified both feedfor-
ward and feedback E-E connections (Fig. 3C, left and
middle columns, black), it, surprisingly, failed to estimate
feedback E-I connections, particularly when these were
balanced in strength (Fig. 3C, right column, black). When
the E and I connection strengths were not balanced, but
were strongly biased in favor of the E or the I connection,
PC estimates varied with the sign of the more dominant
connection (Extended Data Fig. 3-2B, right top). These re-
sults generalize beyond these particular simulations; in
the Extended Data 1 Mathematical Note, Sections S2 and
S3, we identify, analytically, network configurations for
which PC estimates systematically deviate from ground
truth connectivity. We generated data with a seven-node
network, whose dynamics were described by a multivari-
ate, autoregressive process. We systematically varied the
covariance of the residuals of nodes 1 and 2 in the MVAR
model (Y), which is a key factor in determining iGC magni-
tude (Extended Data 1 Mathematical Note, Section S3,
Eqs. 11 and 21). Next, we computed the covariance be-
tween the residuals (K) in the regression of activities of
nodes 1 and 2 against all other nodes (controlling varia-
bles), which is a key factor in determining PC magnitude.
Although connectivity estimates based on iGC and PC
were highly correlated, PC estimates systematically devi-
ated from iGC estimates in value (Extended Data Fig. 3-
2C, left). In fact, for iGC covariance (Y) values ranging
from �0.3 to 0.0, indicating weak inhibitory functional
connectivity, PC covariance (K) values were positive,
ranging from 0 to 0.3, indicating excitatory functional con-
nectivity (Extended Data 1 Fig. 3-2C, right, open squares).
For these configurations, therefore, PC connectivity devi-
ated systematically from ground truth. The analytical rela-
tionship between PC connectivity and iGC connectivity
explains this pattern of systematic deviations (Extended
Data 1 Mathematical Note, Section S3, Eq. 23). Briefly,
the relationship indicates that PC reflects a mixture of in-
stantaneous and lagged connectivity rather than solely in-
stantaneous interactions. Removing lagged interactions
restores the identity between iGC and PC (Extended Data
Fig 3-2C, right, open circles), as evidenced by setting the
coefficients of the AR matrix to zero (Extended Data
Mathematical Note, Section S3, Eq. 11). These results
highlight caveats with using zero-lag correlation meas-
ures, like partial correlations, compared with lag-based
measures, like GC, for estimating connectivity with neural
time series.

Together, these results indicate that instantaneous and
lag-based connectivity measures can reveal complemen-
tary aspects of brain connectivity. In addition, the results
challenge the notion that correlation-based measures,
like PC, should be favored over lag-based measures, like
dGC for measuring functional connectivity in the brain
(Smith et al., 2011). Rather, the strengths and weaknesses
of each measure (GC and PC) must be recognized when
seeking to apply these to brain-imaging data.

Identifying a cognitive core system based on GC
connectivity
Our classification analyses and simulations suggested

that iGC and dGC reliably recover task-specific brain net-
works, the latter when slow-timescale processes occur
within the network. We asked whether iGC and dGC con-
nectivity merely reflected reliable statistical patterns of
brain activity or whether it would be relevant for under-
standing the nature of information flow in the brain and its
relationship to behavior. To answer this question, we in-
vestigated whether each measure would identify brain
networks with consistent outflow and inflow hubs across
tasks.
Before the analysis of real data, we validated RFE by

applying it to estimate connectivity differences in two si-
mulated networks (Fig. 4A,B). RFE accurately identified
connections that differed in simulation ground truth:
specifically, differences in fast timescale connections
were reliably identified by iGC, and in slow timescale con-
nections by dGC (Fig. 4B, bottom). We also tested
whether dGC and iGC would be able to accurately identify
differences in directed information flow among network
configurations, even with systematic differences in hemo-
dynamic lags among network nodes. For this, we esti-
mated GC for 100 simulated participants with the same
two ground truth network configurations (as shown in Fig.
4A), except with the following four different scenarios of
hemodynamic lag differences (Materials and Methods): (1)
same mean HRF onset (ml = 3 s) across all nodes; (2)
source node HRF onset lagging the destination node by 1
s (mL�src .mL�dst); (3) source node HRF onset leading des-
tination node by 1 s (mL�src .mL�dst); and (4) mixed laten-
cies of lead and lag such that 50% of simulated
participants had the source node lagging the destination
node and vice versa for the remaining 50% simulated par-
ticipants. We performed these simulations by sampling
the onset latency for each participant from a normal distri-
bution, with SDs (sL) ranging from 0 to 1 s (in steps of 0.2
s) across simulations (Extended Data Fig. 3-2D,E). The
relative magnitudes of these HRF onset latency differen-
ces, and their SDs, are comparable to their magnitudes
observed in human data (Chang et al., 2008). RFE was
then used to identify the most discriminative connections
between the two networks.
First, we observed that across the different onset la-

tency scenarios, GC connection strength magnitude gen-
erally decreased with increasing sL values (Extended
Data Fig. 3-2D); an interesting exception was iGC con-
nection strengths when source HRF onset led the destina-
tion HRF (case 3, above; Extended Data Fig. 3-2D,
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bottom row, dark blue curves). For subnetwork ABC, with
fast (50ms) timescales, dGC revealed the correct direc-
tionality of connectivity (positive DdGC; Extended Data
Fig. 3-2D, bottom row) consistently in only one of the four
cases (case 3), when the source node onset systemati-
cally led the destination node (Extended Data Fig. 3-2D,
top row, odd columns, dark blue curves). On the other
hand, for subnetwork DEF, with slow (1000ms) time-
scales, dGC revealed the correct directionality of connec-
tivity in three of the four cases (Extended Data Fig. 3-2D,
top row, even columns: dark blue, light blue, and black
curves); all except case 2, where the source node onset
systematically lagged the destination node (Extended
Data Fig. 3-2D, top row, red).
In line with these results, RFE with dGC features cor-

rectly identified the directionality of the most discriminative
connections in no case for the fast subnetwork (Extended
Data Fig. 3-2E, rows 1–2, ABC subnetwork), but correctly
identified the directionality of these connections in three of
four cases for the slow subnetwork (Extended Data Fig. 3-
2E, rows 1–2, DEF subnetwork). RFE with iGC features
identified maximally discriminative connections (albeit not
their directionality) in all cases (Extended Data Fig. 3-2E,
rows 3–4). Thus, RFE based on dGC and iGC accurately
identified the relevant connections, but not always their di-
rectionality, even when systematic variations in hemody-
namic lag occurred across regions. Together, these results
indicate that fMRI-GC can identify differences in connectiv-
ity at slow timescales despite systematic differences and
heterogeneity in HRF onset latencies across brain regions.
Next, with the real fMRI (HCP) data, we sought to iden-

tify a common core of task-generic connections across
cognitive tasks. For this, we applied a feature selection
approach—recursive feature elimination (Materials and
Methods)—a technique that identifies a minimal set of fea-
tures that provide maximal cross-validation accuracy
(generalization performance; Guyon and Elisseeff, 2003).
We applied RFE to classify tasks versus resting state; we
chose these six tasks (all tasks except the motor task) as
being the most likely to engage common cognitive control
mechanisms (Fig. 4C). For these RFE analyses, we used a
14-network functional parcellation (Shirer et al., 2012), as
it consistently gave good classification accuracies with
both iGC and dGC connectivity (Extended Data Fig. 1-
5B). Following RFE, we applied a binomial test across
tasks (Materials and Methods) to identify a common core
of task-generic connections, separately for iGC and dGC.
RFE identified distinct task-generic networks with iGC

and dGC, which comprised of connections that distin-
guished a majority of tasks from resting state. The iGC
task-generic network revealed a visuospatial network
hub, which connected with the anterior salience, dorsal
default mode network (DMN), and higher visual and pos-
terior salience networks (Fig. 4D, right). The dGC task-ge-
neric network confirmed the hub-like connectivity of the
visuospatial network but, in addition, revealed consistent
directed information outflow from the visuospatial net-
work to the other networks (Fig. 4D, left). In addition, dGC
revealed consistent inflow into the higher visual network
across tasks, including from the visuospatial, right

executive control, and auditory networks, consistent with
the ability of top-down inputs from these networks to
strongly modulate sensory encoding in higher visual cortex
(Gilbert and Li, 2013). Finally, the higher visual network pro-
jected consistently to the sensorimotor network, suggesting
a final common pathway across these tasks for influencing
behavior. Interestingly, the only network providing inflow
into the visuospatial network hub was the anterior salience
network, which is in line with the findings of a previous
study that indicated a role for the salience network in con-
trolling other task-positive networks (Sridharan et al., 2008).
Similarly, we asked whether iGC and dGC could identify

connections that were maximally discriminative across
tasks (task-discriminative networks). Because some net-
work connections may not be present for any task, task-dis-
criminative connections are not simply the complement of
the task-generic connections. As before, we repeated the
RFE analysis, but this time based on an N-way classification
across the six tasks (all except the motor task, Materials and
Methods), seeking to identify connections that discriminated
each task, from each of the other five tasks (Fig. 4E).
This analysis identified iGC and dGC connections

among the vast majority of networks as being important
for discriminating among tasks. Specifically, with iGC,
basal ganglia connectivity was the most task-discrimina-
tive, whereas for dGC visuospatial network inflow and
language network outflow were among the most discrimi-
native (Fig. 4F). Connections with the precuneus were
strongly discriminative across both iGC and dGC net-
works. Notable exceptions to these trends were the sen-
sorimotor network and ventral DMN (vDMN). The
sensorimotor network exhibited very few task-discrimina-
tive connections based on iGC (1 of 13) and dGC (3 of 26),
whereas the vDMN exhibited only 1 of 13 task-discrimina-
tive connections based on iGC. We further observed that
each task recruited a distributed pattern of connectivity
across networks (Materials and Methods), which was suf-
ficiently characteristic of each task to permit accurate
classification (Extended Data Fig. 4-2A). We also corre-
lated the b weights of the 11 overlapping connections
across iGC and dGC and found no significant correlations
(r = �0.18, p=0.59). The results indicate that the task-dis-
criminative information flow patterns, as measured by iGC
or dGC connectivity, arise from distinct, distributed net-
works across the entire brain.
We also tested whether PC would identify task-generic

and task-discriminative connections that were more in
line with those identified by iGC or dGC or both (Extended
Data Fig. 4-2B–D). Both task-generic and task-discrimi-
native connections identified with PC revealed significant
overlap with both iGC (task-generic, 75% overlap; task-
discriminative, 65.2% overlap; p, 0.05, randomization
test) and dGC (task-generic, 100% overlap; task-discrimi-
native, 78.3% overlap; p, 0.05). These findings are con-
sistent with our theoretical result that PC connectivity
reflects a mixture of iGC and dGC connectivity.

Predicting behavioral scores with GC connectivity
To address the relevance of GC for understanding

brain–behavior relationships, we tested whether the
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strength of functional connections estimated with iGC
and dGC could predict interindividual variations in behav-
ioral scores as measured by a standard cognitive battery
(Materials and Methods; Extended Data Fig. 5-1).We used
a leave-one-out prediction analysis based on multilinear
regression followed by robust correlations of predicted
and observed scores [Fig. 5A; p, 0.05 with Benjamini–
Yekutieli (BY) correction; Materials and Methods].
Both iGC and dGC predicted key behavioral scores

(Fig. 5C; Table 1, n). Several scores were predicted uni-
formly well by iGC across tasks (Fig. 5B, right, Fig. 5C,
bottom, Extended Data Fig. 5-2B). Scores of fluid intelli-
gence (Penn progressive matrices), spatial orientation
(Penn line orientation test), grip strength, endurance, and
language (picture-vocabulary and reading; Fig. 5B, right),
were all well predicted by iGC (Extended Data Fig. 5-2B; r
= 0.104–0.363; p, 0.01). On the other hand, dGC-based
predictions were more selective, in that several behavioral
scores were best predicted by dGC based on specific
tasks alone (Fig. 5B, left, Fig. 5C, top, Extended Data Fig.
5-2A). For instance, dGC in the gambling task alone pre-
dicted self-reported scores of fear (r=0.139, p, 0.001),
and dGC in the motor task alone predicted median reaction
time in the fluid intelligence test (r=0.123, p, 0.001) and
self-reported scores of perceived emotional support
(r=0.113, p,0.001). In addition, dGC in the working mem-
ory task predicted a range of scores in the “cognition” cat-
egory, including list sorting (Fig. 5B, left, pink; r=0.119,
p=0.000), fluid intelligence, and picture discrimination
speed (Fig. 5C, top, Extended Data Fig. 5-2A).
Similarly, we used PC functional connection strengths as

features for predicting interindividual differences in behav-
ioral scores. We observed that 129 behavioral scores were
successfully predicted based on PC connectivity (Extended
Data Fig. 5-2C, following BY correction for multiple com-
parisons), comparedwith 39 scores based on dGC connec-
tivity (Extended Data Fig. 5-2A) and 92 scores based in iGC
connectivity (Extended Data Fig. 5-2B). Approximately 54%
of the scores predicted well by PC (70 of 129) were also
predicted well by either dGC or iGC. On the other hand, be-
havioral scores that were predicted well by PC, but not by
GC, included reaction times in the Penn word memory test
and Penn emotion recognition test, as well as several
scores of the language task (Extended Data Fig. 5-2C).
Next, we compared the connection features that led to

successful predictions based on GC and PC. For this, we
z-scored the connection strengths (individually) and re-
peated the prediction process (Materials and Methods)
separately with dGC features, iGC features, and PC fea-
tures derived from each of the seven tasks. Seventeen of
these predictions were significant (following BY correc-
tion) across all three connectivity features (Extended Data
Fig. 5-2A–C). We then correlated the b weights for each
entry of the iGC matrix with those of the PC matrix across
these 17 predictions. For dGC, the upper and lower trian-
gular portions of the matrix were correlated separately,
with the corresponding PC connection weights. We then
computed the mean correlation (r) values across all 91
features (iGC vs PC) and 182 features (dGC lower and
upper matrix vs PC).

We observed an interesting dissociation among PC,
iGC, and dGC. Connection features that were relevant for
behavioral predictions with PC overlapped highly with
iGC features, but not with dGC features (PC vs iGC:
r=0.396 0.02, mean 6 SD; PC vs dGC: r=0.036 0.02;
p, 0.001, rank sum test). The results provide further em-
pirical evidence for a clear distinction between connectiv-
ity computed with instantaneous (PC, iGC) and lag-based
(dGC) measures.
Finally, we tested whether GC connectivity could pre-

dict a combined set of behavioral scores unique to each
subject. For this, we created a vector of all independent
behavioral scores (composite score; Materials and
Methods) and confirmed that this composite behavioral
score uniquely identified each subject in the database, as
evidenced by the highest values along the main diagonal
of the intersubject correlation matrix (Fig. 5D, top).
Following this, we performed the leave-one-out predic-
tion, as before, except that we used dGC and iGC con-
nectivity features from two of the tasks alone (working
memory and relational; also see Extended Data Fig. 5-
2D). We then tested whether each subject’s predicted
composite score would correlate best with her/his own ob-
served composite scores. Although we did not observe the
highest correlation values consistently along the main diag-
onal, the distribution of correlation coefficients along the
diagonal were significantly different (and higher) than the
distribution of off-diagonal correlation coefficients (Fig. 5D,
bottom; p, 10�15, Kolmogorov–Smirnov test; Table 1, o).
Interindividual variation GC connectivity, therefore, con-
tained sufficient information to accurately identify subject-
specific behavioral scores in this cohort of subjects.
In summary, the ability to successfully predict subject-

specific behavioral scores suggests that GC functional
connectivity is relevant for understanding brain–behavior
relationships. Moreover, connection features that were
relevant for behavioral predictions with PC overlapped
highly with iGC, but not with dGC, thereby validating our
simulation results regarding the complementarity of iGC
and dGC connectivity estimates.

Discussion
Neural processes in the brain range from timescales of

milliseconds, for extremely rapid processes (e.g., sound
localization), to timescales of several seconds to minutes,
for processes that require coordination across diverse
brain networks (e.g., when having a conversation), and to
timescales of hours to days for processes that involve
large-scale neuroplastic changes (e.g., when learning a
new language). Coordinated activity among brain regions
that mediate each of these cognitive processes should
manifest in the form of functional connectivity among
these regions at the corresponding timescales. Our re-
sults indicate that applying GC with fMRI data permits es-
timating behaviorally relevant functional connectivity at a
timescale corresponding to the sampling rate of fMRI
data (seconds).
The application of GC to neuroscience is a contentious

topic, for a variety of reasons (Chang et al., 2008; Friston
et al., 2013; Seth et al., 2013; Wen et al., 2013; Stokes
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and Purdon, 2017). One particular challenge stems from
the use of the word “causality”: the notion of causality in
GC is different from the notion of interventional causality
(Pearl, 2011). Our use of the term Granger causality here
purely reflects its application as a marker of information
flow among brain networks (Roebroeck et al., 2005; Seth
et al., 2013) and is not meant to indicate causality in a
physical, interventional sense.
With this understanding, our results contain three key

insights. First, we show that either iGC or dGC connectiv-
ity suffices to reliably classify task-specific cognitive
states with superlative accuracy (Fig. 1B). Instantaneous
GC and directed GC—both measures of conditional linear
dependence and feedback (Geweke, 1984)—were able to
robustly estimate task-specific functional interactions
even with slowly sampled fMRI data. Our simulations sug-
gest that GC connectivity is relevant for estimating slow,
emergent interactions among brain networks (Chang et
al., 2008; Smith et al., 2011; Friston et al., 2013; Seth et
al., 2013; Wen et al., 2013).
Second, we show that functional connections identified

by iGC and dGC carry complementary information, both
in simulated and in real fMRI recordings, and we demon-
strate key caveats with using correlation-based measures
of functional connectivity like partial correlations, despite
superior classification accuracies with these latter meas-
ures. First, PC fails to correctly infer reciprocal excitatory–
inhibitory interactions, which can be accurately inferred
with lag-based methods like dGC. Second, PC may yield
incorrect estimates of functional connectivity that do not
match ground truth (Extended Data Fig. 3-2C). In particu-
lar, when the data are well described by an autoregressive
model framework, our results suggest that instantaneous
connectivity measures, like iGC, provide more accurate
descriptions of functional connectivity than PC. Third,
even with data completely purged of partial correlations,
dGC connectivity was sufficient to classify task-specific
cognitive states (Fig. 2C). In fact, unweighted directed
connectivity alone sufficed to produce accurate classifi-
cation at accuracies significantly above chance (Fig. 2D).
These results indicate that information flow mapped by
GC connectivity can be complementary to that of PC, and
highlights the need for examining diverse measures, both
instantaneous and lag based, to obtain a complete picture
of functional connectivity in the brain.
Finally, differences in interindividual iGC and dGC con-

nectivity were able to explain interindividual variation in be-
havioral scores on various cognitive tasks and to identify an
individual-specific composite marker of behavioral scores
with high accuracy. Perhaps because these behavioral
scores were acquired in a separate testing session outside
the scanning session (Barch et al., 2013), the effect sizes
were small (albeit significant) and were comparable to effect
sizes in previous studies using large, heterogeneous sub-
ject cohorts (Smith and Nichols, 2018). Nevertheless, the
results suggest that GC connectivity was both individual
specific and stable over timescales exceeding the scan
session to permit accurate prediction. Moreover, in our
analysis, each subject’s behavioral score was predicted
based on GC connectivity, whereas the regression b

weights—representing the relationship between GC con-
nectivity and behavior—were computed from the population
of all subjects excluding that subject (Fig. 5A). Successful
predictions, therefore, indicate a consistent mapping be-
tween GC connectivity and behavioral scores across the
population of subjects. These findings complement recent
results showing that dynamic resting-state functional con-
nectivity, based on correlations, can explain significant var-
iance in human behavioral data (Liégeois et al., 2019) and
indicate the relevance of lag-based connectivity measures
for understanding brain–behavior relationships.
Does the GC discriminatory power rely on directed

functional connectivity in the underlying neural response
or on systematic distortions of this connectivity induced
by subsampling (Seth et al., 2013) and hemodynamic fil-
tering (Lin et al., 2009; Solo et al., 2018)? While our find-
ings cannot completely rule out the latter hypothesis, we
next address three key caveats raised by previous studies
for estimating functional connectivity with fMRI-GC and
argue why our results support the former hypothesis.
First, several studies have shown that subsampling of

neural time series, at the scale of fMRI TR, renders func-
tional connections undetectable with GC (Lin et al., 2009;
Smith et al., 2011; Seth et al., 2013, 2015). In these stud-
ies, GC was estimated with simulated fMRI time series,
sampled at an interval (TR) of seconds, and failed to re-
cover underlying neural interactions, which occur at milli-
second timescales (Smith et al., 2011). However, these
claims depended strongly on the nature and timescale of
the connectivity in the networks used in these simulations.
For instance, a widely cited study (Smith et al., 2011) used
purely feedforward connectivity matrices with a 50ms
neural timescale in their simulations, and argued that
functional connections are not reliably inferred with GC
applied to simulated fMRI data. In addition to being neu-
rally implausible, such purely feedforward network config-
urations yield eigenmodes whose slowest timescales are
identical to the timescales of individual nodes
(Sundaresan et al., 2017). Therefore, such a configuration
rendered lag-based measures, like GC, irrelevant for esti-
mating neural interactions from slowly sampled fMRI data
(Smith et al., 2011; Seth et al., 2013). Furthermore, such
connectivity precludes the occurrence of slower, behavior-
ally relevant timescales of seconds, which readily emerge in
the presence of feedback connections, both in simulations
(Rajan and Abbott, 2006; Ganguli et al., 2008) and in the
real brain (Friston et al., 2014; Runyan et al., 2017; Vidaurre
et al., 2017). Our simulations show that slow-timescale
interactions emerge in networks with sparse, random,
net excitatory connectivity, mimicking connectivity in the
neocortex (Gupta et al., 2000; Holmgren et al., 2003;
Ganguli et al., 2008). While earlier studies have used
large-scale, biologically plausible models (Deco et al.,
2009; Krishnan et al., 2018) to demonstrate the emer-
gence of slow (,0.1Hz) emergent functional interactions
among brain networks, our results build on these previ-
ous findings and show that such emergent, functional in-
teractions at slow timescales can be readily inferred
from simulated fMRI data with GC. In fact, GC connectiv-
ity continued to robustly classify distinct task states
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even when data were sampled at 2� or 3� the original
sampling interval of the fMRI data. Thus, while it is likely
that GC applied to fMRI data is unable to detect connec-
tions at timescales faster than TR, our results show that
sufficient distinguishing information occurs in slow-time-
scale connections to enable accurate intertask classifica-
tion with fMRI-GC. Subsampling alone may also produce
spurious GC causality. The precise conditions under which
spurious GC arises for continuous time vector autoregres-
sive processes, possibly with time delay in between the
nodes, is an area of active research, and must be ad-
dressed in future studies (Lin et al., 2009; Barnett and Seth,
2017).
Second, previous studies have shown that systematic

differences in hemodynamic (HRF) lags (e.g., time to onset
or time to peak) among brain regions may produce spurious
dGC estimates (Friston, 2009; Seth et al., 2013; Solo et al.,
2018). With simulations, we demonstrated that fMRI-GC
could identify differences in slow-timescale network con-
nectivity, despite systematic differences and heterogeneity
in HRF onset latencies across nodes (Extended Data Fig. 3-
2D,E). In all cases, applying recursive feature elimination
with either dGC or iGC features identified the precise sub-
set of connections that distinguished distinct network con-
figurations. In a majority of cases, dGC also correctly
identified the directionality of these connections. In our sim-
ulations, the only scenario in which dGC features failed to
identify the directionality of connections correctly was when
the onset latency in the “destination” nodes was biased to
be systematically earlier than those in the “source” nodes.
Nevertheless, in the real data it is unlikely that systematic
inter-regional HRF differences contributed to the observed
superior classification accuracies. Variations in HRF delays
would indeed confound dGC connectivity estimates—if they
occurred consistently between brain regions across sub-
jects and tasks (Extended Data Fig. 3-2D, red curves). Yet,
such a scenario cannot account for the high classification
accuracies among tasks and subtasks based on dGC con-
nectivity alone. In other words, even if HRF latency differen-
ces did systematically bias dGC connectivity estimates,
these estimates were sufficiently and reliably different
across task cognitive states to permit accurate classification
among them. To our knowledge, our study provides the first
direct experimental validation of the ability of GC networks
to distinguish cognitive states as a marker of their potential
utility for identifying these states. Moreover, network proper-
ties of key regions identified with fMRI-GC were consist-
ent with their known functional properties of these
regions. For instance, dGC identified the visuospatial
network as an information outflow hub across all six cog-
nitive tasks (Fig. 4D, left). The visuospatial network com-
prises frontal cortex regions, including the frontal eye
field as well as the posterior parietal cortex, which are
both widely implicated in visuospatial attention control
(Corbetta et al., 1998; Behrmann et al., 2004; Schall,
2004; Thompson and Bichot, 2004). In addition, the only
network that provided task-generic incoming connec-
tions to the visuospatial network was the anterior sali-
ence network comprising the anterior frontoinsular
cortex and the anterior cingulate cortex (Dosenbach et

al., 2008; Chen et al., 2013), regions implicated in fea-
ture-based attention and the suppression of distractors
(Li et al., 2018). Information outflow from these key net-
works identified by dGC is consistent with their role in at-
tention and executive control.
Third, simulations and theoretical results indicate that

scanner noise can degrade or even obliterate GC con-
nectivity estimates (Seth et al., 2013). On the other hand,
our classification accuracies suggest that GC estimates
were sufficiently robust to scanner noise to permit accu-
rate task and subtask classification in these data. In fact,
we show that averaging dGC connectivity across the
data of as few as five subjects improves classification
accuracy to .95% for nearly all tasks (Fig. 1D). Such su-
perlative classification accuracies are unlikely to have
occurred if scanner noise were to significantly degrade
GC estimates.
In sum, these results suggest that lag-based methods

like GC, applied to fMRI data, can be used infer slow func-
tional interactions in the brain. While the directionality of
interactions measured by GC may need to be interpreted
with care (Seth et al., 2015; Solo et al., 2018), our results
suggest that fMRI-GC may be useful for formulating hy-
pothesis about the role of particular brain regions in pro-
viding “top-down” control signals, for modulating activity
in other brain regions (Sridharan et al., 2008; Ryali et al.,
2011), as well as for investigating the nature of information
flow in cortical microcircuits with slow sampling rate
techniques, such as calcium imaging (Fallani et al.,
2015).The causal role of these brain regions in behavior
can then be directly tested with interventional ap-
proaches such as transcranial magnetic stimulation or
optogenetic inactivation, or by examining patient popu-
lations with lesions in specific brain regions (Gaillard et
al., 2006). Such a systematic analysis will pave the way
for a mechanistic understanding of how flexible function-
al interactions among brain regions mediate complex
cognitive behaviors.

References

Arbabshirani MR, Plis S, Sui J, Calhoun VD (2017) Single subject pre-
diction of brain disorders in neuroimaging: promises and pitfalls.
Neuroimage 145:137–165.

Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL,
Corbetta M, Glasser MF, Curtiss S, Dixit S, Feldt C, Nolan D,
Bryant E, Hartley T, Footer O, Bjork JM, Poldrack R, Smith S,
Johansen-Berg H, Snyder AZ, Van Essen DC (2013) Function in
the human connectome: task-fMRI and individual differences in
behavior. Neuroimage 80:169–189.

Barnett L, Seth AK (2014) The MVGC multivariate Granger causality
toolbox: a new approach to Granger-causal inference. J Neurosci
Methods 223:50–68.

Barnett L, Seth AK (2017) Detectability of Granger causality for sub-
sampled continuous-time neurophysiological processes. J
Neurosci Methods 275:93–121.

Barnett L, Barrett AB, Seth AK (2018) Misunderstandings regarding
the application of Granger causality in neuroscience. Proc Natl
Acad Sci U S A 115:E6676–E6677.

Bassett DS, Bullmore E (2006) Small-world brain networks.
Neuroscientist 12:512–523.

Bastos AM, Vezoli J, Bosman CA, Schoffelen J-M, Oostenveld R,
Dowdall JR, De Weerd P, Kennedy H, Fries P (2015) Visual areas

Research Article: Theory/New Concepts 21 of 23

July/August 2020, 7(4) ENEURO.0512-19.2019 eNeuro.org

http://dx.doi.org/10.1523/ENEURO.0512-19.2019.f3-2
http://dx.doi.org/10.1523/ENEURO.0512-19.2019.f3-2
http://dx.doi.org/10.1523/ENEURO.0512-19.2019.f3-2
http://dx.doi.org/10.1016/j.neuroimage.2016.02.079
https://www.ncbi.nlm.nih.gov/pubmed/27012503
http://dx.doi.org/10.1016/j.neuroimage.2013.05.033
https://www.ncbi.nlm.nih.gov/pubmed/23684877
http://dx.doi.org/10.1016/j.jneumeth.2013.10.018
https://www.ncbi.nlm.nih.gov/pubmed/24200508
http://dx.doi.org/10.1016/j.jneumeth.2016.10.016
https://www.ncbi.nlm.nih.gov/pubmed/27826091
http://dx.doi.org/10.1073/pnas.1714497115
http://dx.doi.org/10.1177/1073858406293182


exert feedforward and feedback influences through distinct fre-
quency channels. Neuron 85:390–401.

Behrmann M, Geng JJ, Shomstein S (2004) Parietal cortex and atten-
tion. Curr Opin Neurobiol 14:212–217.

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T,
Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical
hubs revealed by intrinsic functional connectivity: mapping, as-
sessment of stability, and relation to Alzheimer’s disease. J
Neurosci 29:1860–1873.

Chang C, Thomason ME, Glover GH (2008) Mapping and correction
of vascular hemodynamic latency in the BOLD signal. Neuroimage
43:90–102.

Chen AC, Oathes DJ, Chang C, Bradley T, Zhou Z-W, Williams LM,
Glover GH, Deisseroth K, Etkin A (2013) Causal interactions be-
tween fronto-parietal central executive and default-mode net-
works in humans. Proc Natl Acad Sci U S A 110:19944–19949.

Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury
HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC,
Shulman GL (1998) A common network of functional areas for at-
tention and eye movements. Neuron 21:761–773.

David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C,
Depaulis A (2008) Identifying neural drivers with functional MRI: an
electrophysiological validation. PLoS Biol 6:2683–2697.

Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R (2009) Key role of
coupling, delay, and noise in resting brain fluctuations. Proc Natl
Acad Sci U S A 106:10302–10307.

De Martino F, Valente G, Staeren N, Ashburner J, Goebel R,
Formisano E (2008) Combining multivariate voxel selection and
support vector machines for mapping and classification of fMRI
spatial patterns. Neuroimage 43:44–58.

Dhamala M, Rangarajan G, Ding M (2008) Analyzing information flow in
brain networks with nonparametric Granger causality. NeuroImage
41:354–362.

Ding M, Wang C (2014) Analyzing MEG data with Granger causality:
promises and pitfalls. In: Magnetoencephalography: from signals
to dynamic cortical networks (Supek S, Aine CJ, eds), pp 309–318.
Berlin, Heidelberg: Springer.

Dosenbach NUF, Fair DA, Cohen AL, Schlaggar BL, Petersen SE
(2008) A dual-networks architecture of top-down control. Trends
Cogn Sci 12:99–105.

Fallani FDV, Corazzol M, Sternberg JR, Wyart C, Chavez M (2015)
Hierarchy of neural organization in the embryonic spinal cord:
Granger-causality graph analysis of in vivo calcium imaging data.
IEEE Trans Neural Syst Rehabil Eng 23:333–341.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle
ME (2005) From the cover: the human brain is intrinsically organ-
ized into dynamic, anticorrelated functional networks. Proc Natl
Acad Sci U S A 102:9673–9678.

Friston K (2009) Causal modelling and brain connectivity in functional
magnetic resonance imaging. PLoS Biol 7:e1000033.

Friston K, Moran R, Seth AK (2013) Analysing connectivity with
Granger causality and dynamic causal modelling. Curr Opin
Neurobiol 23:172–178.

Friston KJ, Kahan J, Razi A, Stephan KE, Sporns O (2014) On nodes
and modes in resting state fMRI. Neuroimage 99:533–547.

Gaillard R, Naccache L, Pinel P, Clémenceau S, Volle E, Hasboun D,
Dupont S, Baulac M, Dehaene S, Adam C, Cohen L (2006) Direct
intracranial, fMRI, and lesion evidence for the causal role of left in-
ferotemporal cortex in reading. Neuron 50:191–204.

Ganguli S, Bisley JW, Roitman JD, Shadlen MN, Goldberg ME, Miller
KD (2008) One-dimensional dynamics of attention and decision
making in LIP. Neuron 58:15–25.

Gershon RC, Wagster MV, Hendrie HC, Fox NA, Cook KF, Nowinski
CJ (2013) NIH toolbox for assessment of neurological and behav-
ioral function. Neurology 80 [11 Suppl 3]:S2–S6.

Geweke J (1982) Measurement of linear dependence and feedback
between multiple time series. J Am Stat Assoc 77:304–313.

Geweke JF (1984) Measures of conditional linear dependence and
feedback between time series. J Am Stat Assoc 79:907–915.

Gilbert CD, Li W (2013) Top-down influences on visual processing.
Nat Rev Neurosci 14:350–363.

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B,
Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen
DC, Jenkinson M (2013) The minimal preprocessing pipelines for
the Human Connectome Project. Neuroimage 80:105–124.

Gupta A, Wang Y, Markram H (2000) Organizing principles for a di-
versity of GABAergic interneurons and synapses in the neocortex.
Science 287:273–278.

Guyon I, Elisseeff A (2003) An introduction to variable and feature se-
lection. J Mach Learn Res 3:1157–1182.

Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal
cell communication within local networks in layer 2/3 of rat neocor-
tex. J Physiol 551:139–153.

Karampatziakis N, Mineiro P (2014) Discriminative features via gener-
alized eigenvectors. In: Proceedings of the 31st International
Conference on Machine Learning. PMLR 32:494–502.

Kessy A, Lewin A, Strimmer K (2018) Optimal whitening and decorre-
lation. Am Stat 72:309–314.

Knösche T, Tittgemeyer M (2011) The role of long-range connectivity
for the characterization of the functional–anatomical organization
of the cortex. Front Syst Neurosci 5:58.

Krishnan GP, González OC, Bazhenov M (2018) Origin of slow spon-
taneous resting-state neuronal fluctuations in brain networks. Proc
Natl Acad Sci U S A 115:6858–6863.

Li V, Michael E, Balaguer J, Castañón SH, Summerfield C (2018)
Gain control explains the effect of distraction in human perceptual,
cognitive, and economic decision making. Proc Natl Acad Sci U S
A 115:E8825–E8834.

Liang X, Wang J, Yan C, Shu N, Xu K, Gong G, He Y (2012) Effects of
different correlation metrics and preprocessing factors on small-
world brain functional networks: a resting-state functional MRI
study. PLoS One 7:e32766.

Liégeois R, Li J, Kong R, Orban C, Van De Ville D, Ge T, Sabuncu
MR, Yeo BTT (2019) Resting brain dynamics at different timescales
capture distinct aspects of human behavior. Nat Commun
10:2317.

Lin F-H, Hara K, Solo V, Vangel M, Belliveau JW, Stufflebeam SM,
Hämäläinen MS (2009) Dynamic Granger-Geweke causality mod-
eling with application to interictal spike propagation. Hum Brain
Mapp 30:1877–1886.

Marrelec G, Krainik A, Duffau H, Pélégrini-Issac M, Lehéricy S,
Doyon J, Benali H (2006) Partial correlation for functional brain in-
teractivity investigation in functional MRI. Neuroimage 32:228–
237.

Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T, Müller
K-R (2008) Robustly estimating the flow direction of information in
complex physical systems. Phys Rev Lett 100:234101.

Ojala M, Garriga GC (2010) Permutation tests for studying classifier
performance. J Mach Learn Res 11:1833–1863.

Pearl J (2011) Causality: models, reasoning, and inference, Ed 2.
New York: Cambridge UP.

Penny W, Friston K, Ashburner J, Kiebel S, Nichols T (2007)
Statistical parametric mapping: the analysis of functional brain im-
ages. New York: Academic.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012)
Spurious but systematic correlations in functional connectivity
MRI networks arise from subject motion. Neuroimage 59:2142–
2154.

Rajan K, Abbott LF (2006) Eigenvalue spectra of random matrices for
neural networks. Phys Rev Lett 97:188104.

Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influ-
ence over the brain using Granger causality and fMRI. Neuroimage
25:230–242.

Runyan CA, Piasini E, Panzeri S, Harvey CD (2017) Distinct time-
scales of population coding across cortex. Nature 548:92–96.

Ryali S, Supekar K, Chen T, Menon V (2011) Multivariate dynamical
systems models for estimating causal interactions in fMRI.
Neuroimage 54:807–823.

Research Article: Theory/New Concepts 22 of 23

July/August 2020, 7(4) ENEURO.0512-19.2019 eNeuro.org

http://dx.doi.org/10.1016/j.neuron.2014.12.018
https://www.ncbi.nlm.nih.gov/pubmed/25556836
http://dx.doi.org/10.1016/j.conb.2004.03.012
http://dx.doi.org/10.1523/JNEUROSCI.5062-08.2009
http://dx.doi.org/10.1016/j.neuroimage.2008.06.030
https://www.ncbi.nlm.nih.gov/pubmed/18656545
http://dx.doi.org/10.1073/pnas.1311772110
http://dx.doi.org/10.1016/S0896-6273(00)80593-0
http://dx.doi.org/10.1371/journal.pbio.0060315
http://dx.doi.org/10.1073/pnas.0901831106
https://www.ncbi.nlm.nih.gov/pubmed/19497858
http://dx.doi.org/10.1016/j.neuroimage.2008.02.020
https://www.ncbi.nlm.nih.gov/pubmed/18394927
http://dx.doi.org/10.1016/j.tics.2008.01.001
http://dx.doi.org/10.1109/TNSRE.2014.2341632
https://www.ncbi.nlm.nih.gov/pubmed/25122836
http://dx.doi.org/10.1073/pnas.0504136102
http://dx.doi.org/10.1371/journal.pbio.1000033
http://dx.doi.org/10.1016/j.conb.2012.11.010
http://dx.doi.org/10.1016/j.neuroimage.2014.05.056
https://www.ncbi.nlm.nih.gov/pubmed/24862075
http://dx.doi.org/10.1016/j.neuron.2006.03.031
http://dx.doi.org/10.1016/j.neuron.2008.01.038
https://www.ncbi.nlm.nih.gov/pubmed/18400159
http://dx.doi.org/10.1212/WNL.0b013e3182872e5f
http://dx.doi.org/10.1080/01621459.1982.10477803
http://dx.doi.org/10.1080/01621459.1984.10477110
http://dx.doi.org/10.1038/nrn3476
http://dx.doi.org/10.1016/j.neuroimage.2013.04.127
https://www.ncbi.nlm.nih.gov/pubmed/23668970
http://dx.doi.org/10.1113/jphysiol.2003.044784
http://dx.doi.org/10.3389/fnsys.2011.00058
https://www.ncbi.nlm.nih.gov/pubmed/21779237
http://dx.doi.org/10.1073/pnas.1715841115
http://dx.doi.org/10.1073/pnas.1805224115
http://dx.doi.org/10.1371/journal.pone.0032766
http://dx.doi.org/10.1038/s41467-019-10317-7
https://www.ncbi.nlm.nih.gov/pubmed/31127095
http://dx.doi.org/10.1002/hbm.20772
https://www.ncbi.nlm.nih.gov/pubmed/19378280
http://dx.doi.org/10.1016/j.neuroimage.2005.12.057
http://dx.doi.org/10.1103/PhysRevLett.100.234101
https://www.ncbi.nlm.nih.gov/pubmed/18643502
http://dx.doi.org/10.1016/j.neuroimage.2011.10.018
https://www.ncbi.nlm.nih.gov/pubmed/22019881
http://dx.doi.org/10.1103/PhysRevLett.97.188104
http://dx.doi.org/10.1016/j.neuroimage.2004.11.017
https://www.ncbi.nlm.nih.gov/pubmed/15734358
http://dx.doi.org/10.1038/nature23020
https://www.ncbi.nlm.nih.gov/pubmed/28723889
http://dx.doi.org/10.1016/j.neuroimage.2010.09.052
https://www.ncbi.nlm.nih.gov/pubmed/20884354


Ryali S, Chen T, Supekar K, Menon V (2012) Estimation of functional
connectivity in fMRI data using stability selection-based sparse
partial correlation with elastic net penalty. Neuroimage 59:3852–
3861.

Schall JD (2004) On the role of frontal eye field in guiding attention
and saccades. Vision Res 44:1453–1467.

Seth AK, Chorley P, Barnett LC (2013) Granger causality analysis of
fMRI BOLD signals is invariant to hemodynamic convolution but
not downsampling. Neuroimage 65:540–555.

Seth AK, Barrett AB, Barnett L (2015) Granger causality analysis in
neuroscience and neuroimaging. J Neurosci 35:3293–3297.

Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012)
Decoding subject-driven cognitive states with whole-brain con-
nectivity patterns. Cereb Cortex 22:158–165.

Smith SM, Nichols TE (2018) Statistical challenges in “big data”
human neuroimaging. Neuron 97:263–268.

Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF,
Nichols TE, Ramsey JD, Woolrich MW (2011) Network modelling
methods for fMRI. Neuroimage 54:875–891.

Smith SM, Bandettini PA, Miller KL, Behrens TEJ, Friston KJ, David
O, Liu T, Woolrich MW, Nichols TE (2012) The danger of system-
atic bias in group-level FMRI-lag-based causality estimation.
Neuroimage 59:1228–1229.

Solo V (2016) State-space analysis of Granger-Geweke causality
measures with application to fMRI. Neural Comput 28:914–949.

Solo V, Poline J-B, Lindquist MA, Simpson SL, Bowman FD, Chung
MK, Cassidy B (2018) Connectivity in fMRI: blind spots and break-
throughs. IEEE Trans Med Imaging 37:1537–1550.

Sporns O, Chialvo D, Kaiser M, Hilgetag C (2004) Organization, de-
velopment and function of complex brain networks. Trends Cogn
Sci 8:418–425.

Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fron-
to-insular cortex in switching between central-executive and default-
mode networks. Proc Natl Acad Sci U S A 105:12569–12574.

Stokes PA, Purdon PL (2017) A study of problems encountered in
Granger causality analysis from a neuroscience perspective. Proc
Natl Acad Sci U S A 114:E7063–E7072.

Sundaresan M, Nabeel A, Sridharan D (2017) Mapping distinct time-
scales of functional interactions among brain networks. In
Proceedings of the 31st Annual Conference on Neural Information
Processing Systems (von Luxburg U, Guyon I, Bengio S, Wallach H,
Fergus R, Vishwanathan SVN, Garnett R eds), pp 4109–4118 NY:
Curran Associates.

Tavor I, Jones OP, Mars RB, Smith SM, Behrens TE, Jbabdi S (2016)
Task-free MRI predicts individual differences in brain activity dur-
ing task performance. Science 352:216–220.

Thomas Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,
Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR,
Fischl B, Liu H, Buckner RL (2011) The organization of the human
cerebral cortex estimated by intrinsic functional connectivity. J
Neurophysiol 106:1125–1165.

Thompson KG, Bichot NP (2004) A visual salience map in the primate
frontal eye field. Prog Brain Res 147:251–262.

Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ,
Bucholz R, Chang A, Chen L, Corbetta M, Curtiss SW, Della Penna
S, Feinberg D, Glasser MF, Harel N, Heath AC, Larson-Prior L,
Marcus D, Michalareas G, Moeller S, Oostenveld R, et al. (2012)
The Human Connectome Project: a data acquisition perspective.
Neuroimage 62:2222–2231.

Vidaurre D, Smith SM, Woolrich MW (2017) Brain network dynamics
are hierarchically organized in time. Proc Natl Acad Sci U S A 114:
12827–12832.

Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008)
Evidence for a frontoparietal control system revealed by intrinsic
functional connectivity. J Neurophysiol 100:3328–3342.

Wen X, Rangarajan G, Ding M (2013) Is Granger causality a viable
technique for analyzing fMRI data? PLoS One 8:e67428.

Wilcox RR (1994) The percentage bend correlation coefficient.
Psychometrika 59:601–616.

Research Article: Theory/New Concepts 23 of 23

July/August 2020, 7(4) ENEURO.0512-19.2019 eNeuro.org

http://dx.doi.org/10.1016/j.neuroimage.2011.11.054
https://www.ncbi.nlm.nih.gov/pubmed/22155039
http://dx.doi.org/10.1016/j.visres.2003.10.025
http://dx.doi.org/10.1016/j.neuroimage.2012.09.049
https://www.ncbi.nlm.nih.gov/pubmed/23036449
http://dx.doi.org/10.1523/JNEUROSCI.4399-14.2015
http://dx.doi.org/10.1093/cercor/bhr099
https://www.ncbi.nlm.nih.gov/pubmed/21616982
http://dx.doi.org/10.1016/j.neuron.2017.12.018
https://www.ncbi.nlm.nih.gov/pubmed/29346749
http://dx.doi.org/10.1016/j.neuroimage.2010.08.063
https://www.ncbi.nlm.nih.gov/pubmed/20817103
http://dx.doi.org/10.1016/j.neuroimage.2011.08.015
https://www.ncbi.nlm.nih.gov/pubmed/21867760
http://dx.doi.org/10.1162/NECO_a_00828
https://www.ncbi.nlm.nih.gov/pubmed/26942749
http://dx.doi.org/10.1109/TMI.2018.2831261
https://www.ncbi.nlm.nih.gov/pubmed/29969406
http://dx.doi.org/10.1016/j.tics.2004.07.008
http://dx.doi.org/10.1073/pnas.0800005105
https://www.ncbi.nlm.nih.gov/pubmed/18723676
http://dx.doi.org/10.1073/pnas.1704663114
http://dx.doi.org/10.1126/science.aad8127
http://dx.doi.org/10.1152/jn.00338.2011
http://dx.doi.org/10.1016/j.neuroimage.2012.02.018
http://dx.doi.org/10.1073/pnas.1705120114
https://www.ncbi.nlm.nih.gov/pubmed/29087305
http://dx.doi.org/10.1152/jn.90355.2008
http://dx.doi.org/10.1371/journal.pone.0067428
http://dx.doi.org/10.1007/BF02294395

	Decoding Task-Specific Cognitive States with Slow, Directed Functional Networks in the Human Brain
	Introduction
	Materials and Methods
	Ethics statement
	fMRI data, parcellation, and time series extraction
	Estimating functional connectivity with GC
	Classification with linear Support Vector Machines based on GC connectivity
	Classification based on GC connectivity across subtasks and with subsampled data
	Permutation testing of classifier accuracies
	Testing for data stationarity and goodness of MVAR model fit
	Control for motion artifacts
	Classification based on BOLD series
	Functional connectivity estimation and classification with partial correlations
	Classification based on GC connectivity in zero-lag correlation purged data
	ZCA
	GEV

	Classification based on unweighted digraph representations of GC connectivity
	GC connectivity in simulated fMRI time series
	GC feature selection based on RFE
	Simulating hemodynamic lag variations across nodes
	Identifying task-generic and task-discriminative GC connections
	Predicting behavioral scores based on GC connectivity
	Data availability

	Results
	GC estimated from slowly sampled fMRI data suffices to distinguish task and resting states
	Correlation-purged GC connectivity suffices for accurate task-state classification
	Instantaneous and directed GC identify complementary aspects of functional connectivity
	Identifying a cognitive core system based on GC connectivity
	Predicting behavioral scores with GC connectivity

	Discussion
	References


