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Abstract

Efforts to compile the phenotypic effects of drugs and environmental chemicals offer the 

opportunity to adopt a chemo-centric view of human health that does not require detailed 

mechanistic information. Here, we consider thousands of chemicals and analyze the relationship 

of their structures with adverse and therapeutic responses. Our study includes molecules related to 

the etiology of 934 health threatening conditions and used to treat 835 diseases. We first identify 

chemical moieties that could be independently associated with each phenotypic effect. Using these 

fragments, we build accurate predictors for approximately 400 clinical phenotypes, finding many 

privileged and liable structures. Finally, we connect two diseases if they relate to similar chemical 

structures. The resulting networks of human conditions are able to predict disease comorbidities, 

as well as identifying potential drug side effects and opportunities for drug repositioning, and 

show a remarkable coincidence with clinical observations.
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Introduction

Humans, in their daily lives, are exposed to a great variety of chemicals, including drugs and 

environmental hazards. Therapeutic and adverse effects of these chemicals result from a 

complex interplay with the human body. It is now recognized that, in most cases, a 
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reductionist viewpoint of such interplay is far from reality. Cumulative evidence shows that 

even the most thoughtfully specific drugs elicit promiscuous interaction profiles1 and, 

accordingly, many adverse chemical events lack a compelling molecular explanation2. The 

emerging opinion is that systems biology strategies —that integrate several layers of detail 

and complexity— will be necessary to zoom out from a reductionist to a more holistic 

picture of pharmacology and toxicology3.

As human biology continues to reveal itself more and more intricate, it is suggestive to 

realize that much information about the behavior of a chemical inside our bodies is encoded 

within a small molecule, with few bonds and atoms. Decoding correlations between the 

structure of a compound and its activity in biological systems has been a prolific research 

area, and the major goal of earliest pharmacologists4. Unfortunately, such a compound-

centered view of phenotypes is blind to molecular mechanisms, lacking theoretical support 

and, therefore, requiring a considerable amount of bioactivity data. In particular, for humans, 

experiments to obtain this information cannot be conceived, and the bulk of chemical 

activity assays is placed several translational steps backward (i.e. at the level of single 

receptor binding), with the consequent reduction of the system complexity.

Recent advances in text-mining techniques and subsequent curation efforts are committed to 

compiling direct human response data from the knowledge accumulated through the 

years5,6. Here, we benefit from this enterprise to revisit the classical structure-activity 

relationship notion, this time for a vast and diverse list of human diseases. Concretely, we 

first delve into chemical structures to identify fragments that are associated with adverse or 

therapeutic responses. Then, we propose disease models based on these fragments, and 

assess their predictive efficiency. Finally, we use such models to relate diseases, providing a 

chemical map of human phenotypes.

Results and Discussion

Several resources exist that contain information on the interaction of small molecules with 

our health. Most notably, the Comparative Toxicogenomics Database (CTD)5 is mainly 

focused on environmental chemicals, and reports curated relationships with a comprehensive 

list of diseases. Moreover, it classifies disease annotations as ‘Marker/Mechanism’ (M) or 

‘Therapeutic’ (T). M refers to a chemical that correlates with the disease (i.e. a marker) or 

may act in its etiology (i.e. a toxin), while T indicates that the chemical has a known or a 

potential therapeutic role in the condition (i.e. a drug). By analogy, hereafter we refer to 

adverse and therapeutic disease outcomes simply as M and T diseases, respectively.

Research worldwide is conducted at different levels of detail and, accordingly, CTD curators 

index publications with a hierarchical organization7. For instance, while some reports 

simply congregate ‘Skin diseases’, others are centered on ‘Dermatomyositis’, and even some 

are focused on a subtype of this condition called ‘Amyopathic dermatomyositis’. Broad 

disease terms are obviously associated with more molecules (direct annotations plus those 

regarding child terms); however, they can involve diverse or more intricate mechanisms. As 

a consequence, extracting molecular rules for imprecise phenotypes may be as challenging 

as for very specific cases, where data are scarce. We have explored the disease hierarchy 
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with the intuition that, in between general and specific disease concepts, there will be 

enough information to learn structure-activity relationships.

In total, 934 M and 835 T diseases could be analyzed after considering 8,881 molecules 

(Table 1). These diseases span the medical hierarchy endpoints, and thus are representative 

of the variety of known human conditions.

Chemical Fragment Mining

As a first step in the chemo-centric disease analysis, we sought to list chemical moieties that 

could be independently associated with the phenotype. Support for this idea is provided by 

examples of chemical scaffolds showing a strong correlation with bioactivity profiles8,9. 

Given, for example, an M set of molecules (i.e. biomarkers and toxins of a particular 

disease), we performed an exhaustive molecular fragmentation and, among the resulting 

fragmentsa, we kept those that were over-represented with respect to compounds unrelated 

to the disease (ain this work, the terms ‘fragment’, ‘moiety’, ‘chemotype’ and ‘scaffold’ are 

used interchangeably.) We considered non-redundant sets of molecules to minimize 

annotation biases, and designed the statistical analysis so that the final selection of 

fragments was simplified in terms of substructural dependencies, without detrimenting 

posterior predictive models (see Materials and Methods). Exactly the same procedure was 

applied to therapeutic annotations, examining T molecules instead.

The median molecule broke into 5 fragments, ranging from a single piece up to 200. A total 

of 98,077 moieties were considered. After the significance analysis, both for M and T sets, 

we obtained around 200 over-represented fragments per disease, and for each fragment we 

found 4 associated diseases. Due to initial permissive statistical requirements, this 

constituted a Low Confidence (LC) set of ~5·104 fragment—disease associations that was 

ideal for later achieving predictive power. When we controlled for the False Discovery Rate 

(FDR) below 1% and applied additional constraints (Materials and Methods), we obtained a 

subset of 7,411 High Confidence (HC) fragment—disease pairs (Supplementary Data 1). 

These fragments are well represented in the known bioactive chemical space 

(Supplementary Fig. 1), and include both expected and novel moieties, emerging from 

diverse sets of molecules (Supplementary Fig. 2). Within HC pairs, a fragment was related 

to a median of 2 M or T diseases, and a disease was linked to 6 fragments (Fig. 1A). At least 

one HC fragment could be found for 41% and 50% of M and T diseases, respectively (Table 

1), providing a chemo-centric molecular description of phenotypes that is interpretable for 

the medicinal chemist, a property that has been recently vindicated in chemoinformatics10.

Over-represented Fragments in the Chemical Space

Identified fragments exhibit a varied chemical repertoire (Fig. 1B). HC moieties have a 

median size of 17 atoms, including 1 ring and 4 heteroatoms. Interestingly, 32% of the 

fragments follow the ‘Rule of Three’ (Ro3) (molecular weight (MW) < 300, number of 

hydrogen bond donors (HBD) ≤ 3, number of hydrogen acceptors (HBA) ≤ 3 and logP ≤ 3). 

Backwards studies found that fragments that accomplish these rules are good starting points 

to meet the Lipinski condition11, or ‘Rule of Five’, that concerns bioavailability of oral 

drugs (i.e. MW < 500, HBD ≤ 5, HBA ≤ 5 and logP ≤ 5).
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Activity-related fragments offer a simple way to compose customized chemical spaces. In 

Supplementary Data 1 and 2, they are given together with associated diseases, enabling the 

design of tailored chemical libraries. In general, while our collection covers a broad and 

representative spectrum of chemical features, it also reflects the diversity of CTD and most 

chemogenomics repositories12 (Fig. 1A, middle), which contain only a small number of 

well-represented scaffolds, and a large proportion of singular moieties. The balance between 

variety of fragments and coverage will depend on the needs. Similar to the case of kinase-

focused libraries13, we might want to achieve a thorough coverage of a narrow 

pharmacological space to address e.g. ‘Anterograde Amnesia’, where only 2 HC fragments 

represent 55% of the beneficial molecules. Sparse libraries would be preferable in cases like 

‘Chronic Obstructive Pulmonary Disease’, where as many as 34 HC fragments can be 

extracted from the corresponding 27 medicines, spanning 74% of the active space and 

requiring a higher diversity.

Accounting for this diversity is crucial in order to move away from chemical clichés14. The 

structural variety of known drugs15 and, in general, of registered compounds is very low — 

the more frequently a scaffold has been used, the more likely it will be used again16. 

However, we have seen that our reported fragments not always emerge from well-studied 

moieties, yielding valuable novel chemotypes (Supplementary Fig. 2). Recently, it has been 

suggested that a large part of fragment space is indeed synthetically accessible, which also 

calls for a more exploratory chemistry17. If orphan regions of chemical space are to be 

populated, we propose that our findings could aid the charting of its biologically relevant, 

primordial regions.

Existence of Liable and Privileged Structures

When analyzing over-represented structures, the immediate question is whether fragments 

exist that are mostly associated with adverse events, while others are usually present in 

therapeutic molecules (Fig. 2A). The former would correspond to problematic structures that 

should be avoided in, for instance, medicinal chemistry endeavors18. On the contrary, the 

latter are desired, privileged chemotypes of potential profit in the design of libraries for 

forward pharmacology practices like cell-based phenotypic screening19.

As expected, it was slightly easier to detect privileged than liable structures (384 vs 367 

liable HC fragments, respectively, over a total of 45,607 T and 72,804 M chemical—disease 

pairs considered (Table 1)). The medicinally relevant space is influenced by size constraints 

and ease of synthesis20, and pharmaceutical research is often incremental. Liable fragments, 

which also occur in drugs and environmental chemicals, may have been abandoned or 

remained unperceived, and thus are less well represented (Wilcoxon’s test (Wt) p-value < 

2.2·10−16) (Supplementary Fig. 3). As a consequence, the LC liable fragment occurs in a 

higher proportion of M compound—disease pairs than the LC privileged fragment in T pairs 

(Wt p-value 8.0·10−10), implying that it might be important across a range of phenotypes, 

although we can only capture the association with weak statistical signal. On the other hand, 

as expected, the trend is inverted for HC fragments (Wt p-value 1.4·10−6), since only a 

thorough exploration of chemical space allows for extraction of strong structure-activity 

relationships.
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Of particular interest are those privileged fragments that have not been successfully used in 

drug development yet. Out of the 367 fragments that could be considered as privileged 

(>80% T both in HC and LC sets), 40% were not present in any approved or experimental 

drug reported in the DrugBank21 (note that CTD scope goes beyond drug molecules: 45% of 

the compounds with T annotations were not found in DrugBank above a similarity cutoff of 

0.8). In Fig. 2B, for example, fragment 1 constitutes a fraction of the ergoline tetracycle. 

Mesulergine is a psychoactive compound of the ergoline class with a halted development 

due to adverse histological abnormalities in rats22. We speculate that 1, that is present in 6 

other molecules in CTD, could be kept and used to derive safer compounds outside the 

ergoline family. Fragment 2 is a propanolamine that we found useful to treat ‘Cardiac 

Arrythmias’ and could be further evolved into Alprenolol alternatives, a close analog in the 

market. Finally, 3 is the scaffold of Dexelvucitabine, a failed anti-HIV and anti-HBV agent 

that, while singular in structure, displays features similar to other desirable chemotypes, and 

is found over-represented in as many as 8 therapeutic indications —safer derivatives of 

Dexelvucitabine could be of potential interest.

Another group of interesting moieties, at least in retrospective, corresponds to those that are 

frequently included in drug molecules despite being mostly associated with adverse events. 

We recognize that, in general, drugs (usually prescribed for few indications) will indeed 

elicit many adverse reactions. However, in CTD the M:T annotation rate is quite balanced 

(less than 2:1), making >80% M a meaningful definition of a liable fragment. In the right 

panel of Fig. 2B, structure 4 accounts for the prototypical hydrochlorothiazide, a class that 

includes methylclothiazide and cyclothiazide. Despite its popularity, we found a large 

number of adverse events associated to this class, ranging from ‘Hypokalemia’ to ‘Arthritis’. 

As done elsewhere23, 4 could undergo a scaffold-hopping exercise to find better analogs. 

Fragment 5, present inside 13 medicines like Sufentanil, constituted a liable HC fragment 

for 5 conditions, including ‘Sinus Arrythmia’ and ‘Muscle Hypertonia’. Similarly, 6 is part 

of several bronchodilator agents and resembles the ancestor Norepinephrine drug. We found 

8 HC associations of 6 with inconvenient events such as ‘Tachycardia’ and ‘Hypertension’, 

suggesting that further generations of Norepinephrine successors are likely to remain unsafe.

Predictive Models

Although valuable, identifying the presence of a characteristic fragment in a molecule is 

usually not enough to accurately infer an association with a disease24,25. Very often, a 

combination or mutual exclusion of several moieties will determine the outcome. In general, 

predictive power and interpretability of structure-activity models are two different objectives 

that are difficult to achieve simultaneously. On this matter, a good tradeoff is offered by LC 

fragments, which are more frequent among disease-related molecules, and thus are 

promising variables for starting machine learning24.

Given its reduced cost, fragment-based learning can be applied at virtually every step of the 

drug discovery pipeline, and offers a means to join chemoinformatics with expert opinion26. 

Its performance will largely depend on the specificity of the underlying biology, and the 

proper, delimited representation of the active chemical space. As a result, while detecting 
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over-represented fragments gets easier for highly annotated, broad disease terms, predictive 

capability does not follow the same trend (Supplementary Fig. 4).

We built a fragment-based chemical classifier for each of the 934 M and 835 T diseases 

(Fig. 3) using Random Forests (RFs). RFs allow detecting interactions between fragments, 

e.g. when the combination of two fragments has a therapeutic effect but each individual 

fragment does not. Table 1 provides a general view of the results. It shows, for instance, that 

point prediction performance metrics sensible to data imbalance (namely the positive 

predictive value and the F1-score) take values close to zero. This is an expected observation 

given the pronounced imbalance of positive:unknown sampling (a median of 30:4,250). 

Also, note that sensitivity could be increased at the expense of the high specificity, and that 

the decision cutoff could slide at will so that e.g. G-mean is optimized (see Materials and 

Methods). The area under the ROC curve (AUC) measures the compromise between 

sensitivity and specificity at all possible cutoffs, and it is widely used to assess the 

performance of predictive models. Overall, 184 M and 216 T disease models exhibited a 

cross-validated AUC above 0.7. The successful models did not display a distinct chemistry 

(Supplementary Fig. 5), and covered 13% and 7% of the full medical hierarchy endpoints, 

respectively. Together, both results evidence our scarce knowledge of the relevant chemical 

space, and the difficulty to assess a priori if a region of it has been sufficiently exploited.

Therapeutic Effects are Better Predicted than Adverse Events

When analyzing accurate, plausible classifiers (AUC > 0.7), the first observation is that 

therapeutic outcomes are better modeled than adverse events, i.e. there is a larger proportion 

of T cases with AUC > 0.7 (Fisher’s test (Ft) p-value 0.001, and Wt p-value 3·10−8 for 

whole distributions) (Fig. 3). Again, this arises from the fact that the therapeutic space is 

composed of incremental discoveries (Supplementary Fig. 3), and emphasizes the difficulty 

of the predictive toxicology task.

ROC curves on the right of Fig. 3 correspond to satisfactory models of T diseases. 

‘Osteomyelitis’, that refers to bone infections, is treated with antibiotics of well-used 

families (quinolones, cephalosporins, penicillins, etc.). Thus, it is easy to infer whether a 

molecule will be suitable for addressing such condition. A similar chemistry has been 

learned for ‘Pseudomonas Infections’, for instance. Analogous conclusions can be drawn for 

‘Paranoid Schizophrenia’, where e.g. benzodiazepines and phenothiazines are annotated, and 

for ‘Supraventricular Tachycardia’, a cardiovascular complication of which the 

aforementioned propanolamines are prominent examples.

Other chemicals, rather than treating, may trigger cardiovascular events. In fact, these are 

commonly alerted drug side effects. Pergolide, for instance, was withdrawn from the market 

due to heart issues —we predicted its association with ‘Aortic Valve Insufficiencies’ (this 

annotation was not available from CTD). A plausible model was also obtained for 

‘Mesenteric Valve Insufficiencies’ (left ROC curves in Fig. 3). In general, for heart events, 

even when the underlying biology remains intricate27, there is a chemical signal that can aid 

prevention. In Fig. 3, we also display the cross-validation of the ‘Uterine Hemorrhage’ 

model, and, regarding the same organ, that of ‘Endometrial Neoplasms’.
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Not All Types of Diseases are Equally Predictable

Following the last example above, we find support for the intuition that traveling the disease 

hierarchy from specific to broad terms can help to find informative chemical sets. 

Accordingly, while ‘Neoplasms’ are poorly understood as a whole (AUC 0.66), we obtained 

a number of accurate models for certain organs and types (Fig. 4). In particular, we could 

solve many M cancer cases, while few successful T models existed. This illustrates that we 

know more of the chemistry of carcinogens and cancer markers than of the chemistry that is 

needed to cure it. A similar conclusion could be drawn for ‘Male’ and ‘Female Urogenital 

Disorders’. On the contrary, we could provide several plausible classifiers for the treatment 

of ‘Mental Disorders’, meaning that the chemical space that addresses such conditions has 

been well exploited. Similarly, we have deep knowledge on treating ‘Bacterial Infections 

and Mycoses’ while, as expected, there is little chemistry that may facilitate them (the only 

example we found was ‘Candidiasis’, where most relevant structures corresponded to 

steroidal frameworks like glucocorticoids28). The rest of disease classes shared, in general, a 

balance between M and T plausible models. Remarkably, some disease classes were poorly 

modeled. We attempted, for instance, 41 M ‘Eye Diseases’, of which as few as 3 yielded a 

satisfactory classifier. Similarly, we only obtained a good predictor for 4 of the 28 T 

‘Endocrine System Disorders’ (Supplementary Fig. 6).

Indeed, for a majority of diseases we lack an accurate model. We believe, however, that 

there is room for improving chemical classifiers based on literature mining. One important 

hindrance in training these classifiers is the absence of truly negative data (chemical— 

disease pairs that have been verified not to interact, as opposed to not having been observed 

so far). The so-called ‘positive-unlabeled learning’ tackles this issue and is now being 

implemented in biomedicine29. However, in our hands, such methodologies30,31 did not 

improve predictive power, most likely due to the sparseness and reduced size of the set of 

unknowns (Supplementary Fig. 7), an issue that, most likely, will be solved as disease— 

chemical annotations continue to increase32. Also, including physicochemical properties of 

compounds could be of enormous interest, particularly in the case of adverse events, where 

mechanisms of action may not be target-driven. Accordingly, the identification of 

toxicophores is usually thought of in metabolic and reactivity terms18, since toxic effects can 

result from polar or nonpolar processes, uncoupling of oxidative phosphorylation, thiol-

alkylation, etc. In this regard, reactivity prediction methods should be appropriate33, 

particularly for nonspecific complications like tissue necrosis, carcinogenicity, or immune-

mediated toxicities. Recently, a combination of structure and reactivity analysis was applied 

to select groups that shared structure and electronic state34, and it was recommended that 

compounds undergo a structural clustering before the reactivity assessment, suggesting that 

our results could be readily complemented with reactivity profiles.

Disease Networks Based on Underlying Chemistry

In this study, we have analyzed each disease separately. However, results should be 

integrated to provide a general view. For this purpose, network representations are a 

prominent systems biology tool because they integrate relationships between different 

entities, facilitating contextualization and providing a general view35,36. In particular, 

disease networks help to assimilate the diversity of human conditions. In a seminal work, 
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Goh et al. proposed that two diseases could be related if they share a genetic origin37. The 

resulting disease network was able to unveil biological modules and therefore offered a 

means to link the molecular and the organism levels.

Instead of connecting two diseases when the same genes participate in their etiology, we link 

them if they relate to a similar chemistry, i.e. when the molecules associated with the one are 

comparable to those associated with the other. The resulting chemo-centric map of human 

conditions is of singular interest for drug development, since it is focused on intervention, 

i.e. on disease relationships that are directly based on effector compounds.

The Disease Comorbidity Network

When we relate M disease models, the corresponding network is a comorbidity map, where 

two conditions are connected if the toxins and markers of the one are similar to those of the 

other, implying that the two diseases could occur simultaneously. In practice, we screened 

all M molecule sets annotated to the 934 diseases against the 184 successful M models, and 

we related two diseases if the AUC of the cross-classification was higher than 0.7. This 

yielded a network of 12,610 edges (Table 2 and Supplementary Data 3). Interestingly, such a 

chemo-centric comorbidity map captured disease co-occurrences detected in the history of 

more than 30 million patients38: a medical semantics mapping found that a large number of 

our disease associations have indeed been observed in the clinics (9,788 matches, the 

corresponding contingency table yielded a Ft p-value of 4.5·10−28), providing an excellent 

independent validation of our findings (see Materials and Methods). For instance, we 

predicted that molecules associated with ‘Aortic Valve Insufficiency’ are likely related to 

‘Neuroleptic Malignant Syndrome’ (AUC 0.88). In turn, the ‘Aortic Valve Insufficiency’ 

model up-ranked ‘Elimination Disorders’ molecules (AUC 0.82) (Fig. 5). In patients, not 

necessarily due to exposure to chemicals, these relationships have been observed with 

relative risks of 56.7 and 29.5, respectively38. Overall, together with e.g. studies of 

metabolic pathways39, our results show that a chemical viewpoint is useful to account for 

the underlying molecular connection of human conditions.

The Drug Repositioning Network

Analogously, we may relate diseases based on T records and obtain a network that links two 

conditions when medicines for the first could also serve in the second. This so-called ‘drug 

repositioning network’ is appealing given the time and financial burdens of the drug 

discovery process. Currently, a number of computational approaches are taken in this 

direction40, and even the simplest methods41 are proposing remarkable opportunities. After 

screening the 835 T compound-disease pairs against the 216 good T models, we obtained a 

network of 14,590 edges (Table 2 and Supplementary Data 4). Some diseases like 

‘Hypertension’ had a high in-degree (in this case, 235), meaning that they could be the 

repurposing opportunity of many indications, reflecting the clinical complexity of this 

physiological phenomenon associated with cardiovascular, endocrine and nervous system 

components. On the other hand, ‘Urethral Diseases’ displayed an out-degree of 137, i.e. its 

11 medicines could have several other uses. When compared to a network drawn from 

approved indications of drugs42, we observed a significant overlap (10,731 common edges, 

Ft p-value 3.4·10−13), reinforcing the validity of our results. This network based on 
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approved drugs represents the polypharmacy of medicines, and links two diseases if they are 

treated by a significant number of common drugs (see Materials and Methods). Even after a 

conservative semantic mapping, 3,859 of our repositioning opportunities were not found in 

such network, implying that they remain largely unexplored. Among these, we propose the 

use of ‘Rhinitis’ therapeuticals like ketotifen for the treatment of ‘Personality Disorders’ 

(AUC 0.81), and the repurposing of antibronchitic drugs to treat ‘Supraventricular 

Tachycardia’ (AUC 0.81) (Fig. 5).

The Drug Side Effect Network

Finally, linking T and M diseases yields a map that relates treatments to potential adverse 

events. As shown in Table 2, we screened the 835 T chemical—disease pairs to predict 

undesired side effects among the 184 M satisfactory models. The resulting network 

contained as many as 9,921 relationships (Table 2 and Supplementary Data 5). In this 

network, large peripheral nodes are particularly interesting: ‘Seizures’, for instance, has a 

well-defined therapeutic chemistry (AUC 0.71) related to as many as 255 molecules, and is 

not linked to any of the adverse events, suggesting that these treatments are rather safe. 

When we compared our predictions with side effects extracted from drug package labels43, 

we also observed a significant coincidence (8,686 common associations, Ft p-value 

6.9·10−21), while still providing 1,235 novel predictions. One of them is the possible 

appearance of ‘Serotonin Syndrome’ after exposure to ‘Hyperpituitarism’ (e.g. carmoxirole) 

and ‘Neointima’ agents like nebivolol (AUC of 0.78 and 0.81, respectively) (Fig. 5). 

Nebivolol, in fact, is metabolized by CYP450 2D6, resembling serotonin reuptake inhibitors 

—concomitant treatment with such inhibitors may lead to overdose44. Overall, these novel 

associations contribute to the completion of putative drug side effect profiles. In the last 

years, such profiles have shown useful to elucidate molecular events from phenotypic 

observations45, in turn proving that a lot can still be learned from the always imperfect drug 

molecules46.

Future Perspectives

The current perception is that systems biology will aid the learning of drug action by 

rationalizing the influence that small molecules exert on our health47. In most cases, drug 

action is mediated through receptors, being of critical importance their identification. In a 

previous work48, we reported protein targets shared among drugs with a common effect. Our 

approach was agnostic in the sense that it considered a vast chemical—protein interactome, 

and was therefore suitable to initiate a systems view. Although we recognize the relevance 

of target and off-target identification, we found this knowledge insufficient to anticipate side 

effects, in good agreement with the translational gap in drug discovery49. To complement 

this lack of knowledge, we also mined characteristic chemical moieties inside the drugs with 

the aim to surrogate phenomena that molecular biology is not yet able to consider, as done 

by others50. We learned that chemical structures treasure a remarkable predictive power, 

although they are difficult to inspect given the small number of known drugs and their 

sparse distribution across the chemical space. Now, our results highlight that collecting and 

grouping molecules with enough insistency aids the modeling of phenotypic implications 

with no need to acknowledge all the underlying biological events. Several studies have 

proven the value of this chemo-centric view of biology. Most notably, such a view allowed 
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for the prediction of ligand binding to protein targets with unresolved structures51. 

Databases like ChEMBL52 and BindingDB53, among others, have been essential to decipher 

relationships between chemical features and affinity, and a ligand-centered description of 

the binding event is now feasible4. In these databases, hundreds of thousands of distinct 

compounds are recorded. The ambition to relate chemical structures directly to human-body 

responses is, undoubtedly, a more challenging task, given the complicated intrinsic biology 

and the lack of compound records. We have shown that, even when only a few thousand 

molecules are available, it is already possible to identify scaffolds that correlate and predict 

phenotypic outcomes. We recognize, however, that scaffold identification is only a starting 

point, and it may not be sufficient in many cases —ultimately, it will be the modulation of 

biological networks what determines phenotype, and slight differences in chemical structure 

may translate into dramatic changes of activity. Moreover, some of the identified scaffolds 

are the result of follow-on studies and biased reporting systems, narrowing the applicability 

domain of our method to diseases with varied and abundant annotation of chemicals.

Despite these limitations, we anticipate that the number of well-modeled phenotypes could 

increase considerably in the upcoming years. Concretely, we estimate that the amount of 

accurate classifiers could be doubled if we would double the annotation of certain diseases 

(Supplementary Fig. 8). Approximately, increasing by 25% the number of chemical—

disease records could result in this doubling of satisfactory models. To guide disease 

annotators, in Supplementary Data 2 we detail which diseases fall on a learning plateau, be it 

because they are sufficiently apprehended or largely under-annotated, and which cases will 

benefit most from curation efforts54. Likewise, improving disease annotation will enable the 

modeling of more specific phenotypes: terms in this study are slightly broader than those 

commonly used in drug discovery, and these are, in turn, notably unspecific relative to the 

existing medical vocabulary (Supplementary Fig. 9).

To grow the body of chemical records, improvements in text chemical entity identification55 

and new knowledge discovery concepts56 will be fundamental. Opposite to e.g. genomics, 

large-scale experimentation in chemistry has been conducted primarily by pharmaceutical 

industry and, traditionally, proprietary data have not been available to the community. 

Therefore, scientific literature is still a major support to publish chemical data. We expect 

that, with the advent of text-mining technologies, resources like CTD will continue to 

expand in size and scope. Moreover, current chemical—disease records are being gathered 

together with disease-related genes, which manifests that knowledge is being assembled at a 

fast pace towards a holistic view of biology. Only now, network-based tools to handle such 

complexity are flourishing57, and urgently demand more chemistry awareness58. In this 

context, our study brings chemical cognizance to the systems level, fulfilling a need of 

translational sciences, and widening the applicability of network-based strategies.

Methods

Exhaustive Fragmentation

Compound structures were obtained by querying the Chemical Identifier Resolver 

[cactus.nci.nih.gov] with CTD names. Additionally, we fetched the fraction of chemicals 

contributed by CTD to PubChem [pubchem.ncbi.nlm.nih.gov]. Organometallic compounds 
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were excluded, inorganic salts were removed from mixtures, and stereochemical information 

was not considered. In order to include only ‘small molecules’, where fragments would have 

a similar structural impact, substances with a molecular weight above 800 were also 

discarded. Fig. 6 schemes the processing that these molecules underwent.

We exhaustively fragmented each chemical structure through recursive bond breaks down to 

a minimum size of 5 atoms. We followed JChem’s [www.chemaxon.org] CCQ 

fragmentation approach, based on cutting carbon—carbon bonds (CC) if at least one of the 

carbons is bound to a heteroatom (Q). Thus, CCQ rules do not modify functional groups, 

ensuring that the resulting fragments conserve the chemical features of the original 

molecule. Aliphatic rings and aromatic systems were not cleaved either. The 5% of 

molecules that broke into more than 200 fragments were dismissed.

Disease Annotation of Chemicals

We fetched chemical—disease associations from CTD (January 2013)5. This 

knowledgebase includes a controlled vocabulary7 that is based on the ‘Diseases’ branch of 

the National Library of Medicine’s Medical Subject Headers (MeSH). MeSH hierarchy 

grows from broader to more specific disease terms, and molecules are annotated throughout. 

General concepts include annotations from the more specific ones.

To assign M and T molecules to each disease, we fetched curated (‘Direct evidence’) 

annotations from CTD. Ambiguous annotations (M and T, simultaneously) were removed. 

Molecules labeled in CTD as ‘inferred’ (through gene—disease triangulation59) were also 

discarded since they were confounding the obtainment of disease classifiers (Supplementary 

Fig. 10). The set of ‘unknown’ molecules corresponded to all of those entries that shared no 

relationship (neither curated nor inferred) with none of the terms in the corresponding 

branch of the disease vocabulary. Only diseases annotated with at least 10 molecules entered 

further analysis. In total, we kept 934 M and 835 T chemical-disease relationships.

In order to obtain non-redundant sets of chemicals for each disease, we clustered a full pair-

wise chemical similarity matrix. Chemical similarity was measured with the widely used 

topological fingerprints based on hashed molecular sub-graphs, as implemented in the 

RDKit [www.rdkit.org]. The resulting matrix underwent an unsupervised clustering with the 

Butina algorithm60, which is fast, consistent, parameter free, and performs well with hashed 

fingerprints. Clusters were flattened at a Tanimoto cutoff of 0.8, i.e. at a distance of 0.2 to 

the central molecule. Whenever a disease was associated with several chemicals in a cluster, 

the molecule with the highest accumulated similarity to the rest was kept as representative 

for the group. Analogously, we obtained non-redundant sets of disease-unrelated chemicals 

(unknowns).

Fragment Mining

For each M or T compound—disease pair, we outlined a matrix W listing small molecules 

in the rows and fragments in the columns. To fill in W, we screened each molecule i against 

all of the fragments. In a molecule—fragment comparison, we aimed at checking if the 

molecule contained at least one fragment that was similar to that of interest. This 
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comparison was performed as follows. First, we broke compound i into fragments. Each of 

the fragments in the resulting set was compared to fragment j. The score of the molecule—

fragment comparison corresponded to the highest Tanimoto similarity among the individual 

fragment—fragment comparisons. Here, similarity was measured using MACCS 

fingerprints, and was kept in cell Wij. MACCS keys are a set of questions about a 2D 

structure, and are thus useful to capture chemical features beyond simple topological 

matching. Using MACCS fingerprinting, we increased the power to detect relevant features, 

while diminishing the sparseness of W.

Then, the width of W was shrunk using statistical filtering. In the resulting matrix WLC, for 

each column j, rows displaying a MACCS similarity > 0.8 were counted, and the 

significance of the over-representation of fragment j among molecules related to the disease 

was assessed using a right-tailed Fisher’s exact test. Please note that the contingency table 

classifies ‘positives’ and ‘unknowns’ (instead of ‘negatives’): this reduces statistical power, 

but should not affect the true positive rate (Supplementary Fig. 11). Those fragments with a 

p-value < 0.1 were retained25. Note that the selection of LC fragments underwent a final 

step that ensured an acceptable tradeoff between classification performance and statistical 

signal (see Data Balancing below).

From LC fragments, we selected a subset of HC representatives. In W, these had to elicit an 

odds ratio ≥ 10, a minimum support of 3 molecules and a Benjamini-Hochberg adjusted p-

value < 0.01. To report a diverse and representative set, we grouped those fragments that 

occurred in the same molecules. From each group, the fragment associated with more 

diseases was kept.

Data Balancing

In general, few chemicals are known per disease, while the majority of chemicals is not 

related to it. We balanced WLC using a combination of under-sampling and SMOTE over-

sampling61,62. For each case in the minority class (i.e. chemicals annotated with a disease of 

interest), 5 new examples were created, up to a maximum of 1,000 instances. The majority 

class (i.e. ‘unknown’ cases) was under-sampled to achieve a 1:1 proportion with the 

minority class.

Then, columns in the balanced dataset (WLC’) were hierarchically clustered using 

Fastcluster63, and branches were pruned using DynamicTreeCut64 with a minimum cluster 

size of 1. Inside each cluster, fragments were compared all-against-all to detect parent—

child relationships. For a lineage of fragments, the one with the best initial over-

representation p-value was retained. Overall, this led to matrices WLC’’ that had an even 

sampling through the rows and a simplified set of LC over-represented fragments in the 

columns.

Chemical Classifiers

WLC’’ matrices above are suitable for machine learning because they have a balanced class 

distribution, and a representative and reasonably distinct set of variables. Given its general 

robustness in the learning of structure-activity relationships65, we chose to build chemical 
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classifiers with the random forest algorithm. For this, we used the randomForest R-

package66, growing 10,000 trees and taking default values for the rest of parameters. Since 

each tree returns a decision, class probabilities were estimated from voting.

As schemed in Fig. 6, we performed a stratified 10-fold cross-validation of predictive 

models. Test and training sets were split before the LC fragment mining step (i.e. before the 

variable selection, and therefore previous to the data balancing). Performance metrics in 

Table 1 were obtained from the reassembled vector of test predictions.

Disease Network Construction

In a chemo-centric disease network, disease A is linked to disease B if molecules annotated 

to A are predicted to relate with B. Since we obtained M and T models, we can propose, at 

least, three different networks (Fig. 5A and Table 2): (1) a comorbidity network, that links A 

to B if chemicals that cause A are predicted to cause B; (2) a drug repositioning network, 

where chemicals employed to treat A may also be useful to treat B; and (3) a drug side effect 

network, that relates A to B when chemicals used in the treatment of A could cause B.

To infer an edge from A to B, we tested A curated chemicals together with a set of chemicals 

unrelated to A and B using the B random forest classifier. The strength of the association was 

assessed with the AUC of the cross-classification ROC plot, where molecules predicted to 

associate with B are checked for their association with A. Note that we removed easy cases 

by discarding disease pairs in the same branch of the medical hierarchy. To mine the 

examples discussed in Fig. 5, we only considered those pairs that shared no chemicals, 

highlighting the importance of the fragment mining procedure.

Network Analysis

Comparison of the comorbidity network with a clinical disease co-occurrence network: A 

clinical disease network was obtained from Hudine38, a comorbidity network that reports the 

relative risk (RR) of experiencing a disease when another disease is diagnosed. In Hudine, 

clinical reports are stored using the International Classification of Diseases, 9th revision 

(ICD-9). The mapping between MeSH and ICD-9 (3-digits code) terms was achieved using 

BioPortal’s [bioportal.bioontology.org] UMLS concepts, and by best-matching MeSH and 

ICD-9 UMLS concepts with the UMLS-similarity Perl-package67 (vector relatedness > 0.8). 

We assigned a significance p-value to the coincidence between our chemo-centric network 

and Hudine comorbidities (RR ≥ 20 or ϕ ≥ 0.06)38 by using a right-tailed Fisher’s exact test. 

The corresponding confusion matrix classified predicted and unpredicted pairs, and pairs 

that were mapped and not mapped to Hudine. In order to demonstrate the need for robust 

disease models, we also built a comorbidity network (same [A] and [B] sets) that linked A to 

B simply if at least 50% of A LC fragments were LC fragments of B. In addition to a 

reduction in the number of edges of two orders of magnitude, we observed no significant 

coincidence with the clinical network.

Comparison of the drug repositioning network with a drug repositioning network derived 

from known drugs: Disease—disease associations were inferred based on drug indications42. 

For a pair of diseases A and B, we filled a 2×2 confusion matrix counting the number of 
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drugs that are used to treat both, one or none of the diseases68. From this matrix, we 

obtained the two-tailed p-value of a Fisher’s test and the Matthews correlation coefficient 

(MCC). A and B were linked in the drug repositioning network if p-value ≤ 0.05 and MCC ≥ 

0.1568. Like above, node mapping was achieved using UMLS term similarities, and the 

significance of the overlap with our results was evaluated analogously. Here again, we 

checked that the modeling step was important to provide significant results.

Comparison of the side effect network with side effects reported in drug labels: We 

collected a side effect network from 68. This network represents side effects that occur 

frequently among approved drugs prescribed for a particular disease. As done for the 

comorbidity and the drug repositioning networks, we analyzed its coincidence with our 

chemo-centric map, and confirmed the convenience of disease models for building the 

network.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Over-represented fragments
Fragments per disease (A) and diseases per fragment (C), considering only the HC set. In 

(B), a Voronoi diagram where each fragment is a shape with area and color proportional to 

the number of molecules that contain it (best match similarity > 0.8). To illustrate chemical 

diversity, we display the cumulative distribution of the total number of atoms (D), the 

number of heteroatoms (E), and the number of rings (F). Distributions are decorated with 

illustrative fragment structures. M and T fragment-disease relationships are shown in orange 

and green colors, respectively.
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Figure 2. Privileged and liable structures
(A) Balance between privileged and liable structures, both for the HC and LC sets. % of M 

indicates the proportion of M associations for each fragment over its disease associations. 

(B) Three scaffolds that, while being mostly liable, are included in drug molecules. (C) 

Fragments that are privileged and remain unsuccessful or unexplored as therapeutics. Next 

to each structure, top and bottom pie charts represent the number of diseases for which the 

fragment is LC- and HC-associated, respectively. Area of pie charts is proportional to the 

number of diseases. To select these examples, experimental and approved drug structures 

were extracted from Drugbank (July 2013)21.
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Figure 3. Predictive models
AUC distribution of M and T models (E). Area of violin plots is proportional to the number 

of diseases. Example ROC plots for M and T chemical-disease relationships are shown in (A

—D) and (F—I), respectively.
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Figure 4. Disease categories of successful models
M and T plausible disease models classified in high-level disease categories. Each circle 

represents an M or T disease model belonging to the corresponding category. Area of circles 

is proportional to the number of associated molecules in our dataset.
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Figure 5. Disease networks
Disease comorbidity, drug repositioning and drug side effect networks. Examples discussed 

in the text are depicted with directed links on top of each network. To select these examples, 

we looked for strong correlations (see Materials and Methods) occurring between diseases 

in different categories. None of the cases share annotated chemicals, highlighting the value 

of our fragment-based models. Networks are displayed with a gravity layout, being node 

size proportional to the number of related chemicals. Network statistics can be found in 

Table 2.
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Figure 6. Scheme of the method
Analysis protocol exemplified for an M disease of interest. (A) Annotated molecules are 

collected and split in training and test sets. (B) M training molecules are fragmented using 

CCQ rules. (C) W is built from the resulting fragments (columns) and the training set (rows) 

(stratified 10-fold cross-validation). W undergoes a significance filtering, a data balancing 

step, a column clustering and a pruning, resulting in WLC’. (D) Columns of WLC’ constitute 

the LC set of fragments; (E) further filtering considering substructural relationships and co-

occurrence in molecules yields the HC set. (F) Using WLC’, a random forest classifier is 
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learned, and (G) tested against the test set. If the model performs with AUC > 0.7, it is 

considered of good quality. (H) Steps 1-7 are conducted for all M and T chemical-disease 

relationships. (I) Using plausible models, chemo-centric disease networks are constructed.
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Table 1
Disease and fragment statistics

Analysis of M and T chemical-disease annotations, ‘Total’ column refers to the union of both categories. 

When applicable, median values are shown for count data, while mean values are shown for performance 

metrics. Point performance metrics are taken with default 0.5 cutoff in the random forest classifier. The cutoff 

could be slid along the classifier’s outcome to get different point performances along the ROC space.

M T Total

Diseases 934 835 1,176

Molecules per disease 36 25 30

LC fragments 23,135 28,325 37,809

HC fragments 910 1,107 1,550

LC fragments per disease 204.5 196.5 200.5

HC fragments per disease 5 6 6

Liable (M) and privileged (T) fragments 348 367 715

Diseases with ≥ 1 HC fragment 385 409 794

AUC 0.613 0.641 0.627

Specificity 0.878 0.882 0.880

Sensitivity 0.265 0.292 0.278

Balanced accuracy 0.571 0.588 0.579

Positive predictive value 0.032 0.023 0.029

G-mean 0.463 0.488 0.475

F1-score 0.053 0.044 0.049

Diseases with AUC > 0.7 184 216 400
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Table 2
Network statistics

General statistics of the chemo-centric disease networks.

Target Diseases Source Diseases Nodes Directed Edges In-degree Out-degree Undirected edges Degree

Comorbidity 184 M 934 M 934 12,610 44.5 7 10,917 8

Repositioning 216 T 835 T 835 14,590 63 7 11,997 8

Side effect 184 M 835 T 1,019 9,921 31.5 2 9,921 8
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