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A B S T R A C T   

Background: Pancreatic adenocarcinoma (PAAD) is a lethal malignancy with high levels of het-
erogeneity. Pyroptosis is thought to influence the development of various tumors. Nevertheless, 
the role of pyroptosis-related genes (PRGs) in prognostic risk stratification and therapeutic 
guidance for PAAD remains ambiguously. 
Methods: Transcriptome profile and clinical information of PAAD patients were retrieved from 
The Cancer Genome Atlas (TCGA) as well as Gene Expression Omnibus (GEO) databases, followed 
by differential analysis. Patients were divided into distinct pyroptosis phenotype subtypes based 
on the characteristic of differently expressed PRGs (DEPRGs). Then a PRG signature was estab-
lished through univariate analysis and LASSO algorithm in the training set to assess the prog-
nostic risk, and its reliability was verified in the validation set using receiver operating 
characteristic(ROC) curve. The correlation of risk score with tumor microenvironment(TME), 
TMB and chemotherapeutic drug sensitivity were also analyzed. In addition, a nomogram was 
constructed to promote better clinical application. 
Results: A total of 28 DEPRGs were determined in the integrated TCGA-GEO datasets. Patients 
were divided into three pyroptosis phenotype subtypes, Kaplan-Meier curve suggested patients in 
cluster B had a worse prognosis than those in cluster A and C. Then a price signature comprised of 
8 PRGs was generated. TME analysis suggested that the low-risk subgroup displayed potential 
stronger antitumor immune effect and might respond better to immune checkpoint inhibitors 
(ICIs) therapy. Furthermore, PRG signature exhibited favorable discriminatory ability for TMB 
status and the sensitivity of multiple conventional chemotherapeutic agents including paclitaxel. 
Ultimately, we constructed a promising nomogram according to the risk score and N stage with 
good predictive accuracy compared with the actual overall survival (OS) probabilities. 
Conclusion: We established an 8-gene signature that could be regarded as an independent prog-
nostic risk factor for PAAD patients. The 8-gene signature could provide rationale for immuno-
therapy and chemotherapy, which might help clinicians make precise individualized treatment 
regimens.   
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1. Introduction 

Pancreatic adenocarcinoma is one of the most fatal malignancies with approximately 9 % 5-year overall survival rate and 6–8 
months median survival time after diagnosis [1]. It currently ranks seventh among the causes of cancer mortality worldwide and is 
estimated to raise to the second by 2030 [2,3]. Generally, surgical resection is considered the most effective potential curative 
treatment, which significantly elevates the 5-years survival rate of early stage patients to 24.6 % [4].However, majority of PAAD 
patients miss the chance for operation at first diagnosis owing to absence of early detection methods and recognizable symptoms [5]. 
For these patients with unresectable or postoperative status, conventional chemotherapies such as FOLFIRINOX and Nab-Gem are the 
main therapeutic options, but the effectiveness is unsatisfactory [6]. In the past decades, despite advances in several treatment 
strategies including adjuvant chemotherapies, targeted therapies and immunotherapies have been developed, the PAAD is still 
characterized by poor prognosis and presents a disparity in the resistance to multiple therapeutic methods [7]. The vital cause of 
disparities in clinical outcome and response to treatments between PAAD patients is significantly associated with molecular 
complexity and heterogeneity between their tumors. However, survival prediction and selection of systemic therapies were largely 
depending on the American Joint Committee on Cancer (AJCC) classification system and histopathology type, which could not meet 
the needs of clinicians to initiate personalized treatment protocol [8]. Thus, it is a critical thing to develop a novel prognostic model to 
help clinicians accurately evaluate the survival outcome of PAAD patients and optimize medical regimen. 

Pyroptosis is a pro-inflammatory mode of programmed cell death induced by microbial invasion, malignant neoplasms and other 
pathophysiological stimuli [9]. The specific characteristics of pyroptosis distinguished from apoptosis is chromatin laddering, plasma 
membrane perforation, cytoplasmic swelling with bubble-like protrusions and subsequent cellular lysis combined with release of 
intracellular cytokines [10,11]. Caspases family proteins and gasdermin family proteins are essential “executioners” during pyroptosis 
process [12]. In the canonical pyroptosis pathways, stimulated by pathogen-associated molecular patterns (PAMPs) or 
damage-associated molecular patterns(DAMPs), inflammasomes defined as cytoplasmic multi-protein platform containing the 
pattern-recognition receptors (PRRs) is assembled, which activated the pro-caspase-1 [13]. In the noncanonical pyroptosis process, 
caspase-4/5 could be activated via N-terminal recruitment domain directly binding to the intracytoplasmic lipopolysaccharide (LPS) 
generated by invading gram-negative bacteria [14]. Subsequently, the activated caspase-1/4/5 could cut GSDMD into the N-terminal 
and C-terminal fragment and promoted release of mature IL-1β and IL-18, while the GSDMD N-terminal will oligomerize and structure 
10–20 nm pores in cell layer [15,16]. Besides, other vicarious pathways that depends on caspase-3/GSDME or granzyme-A/GSDMB 
have been also identified to induce pyroptosis [17,18]. 

Recently, a rising number of studies have illustrated the role and mechanism of pyroptosis malignant tumor, although the 
connection between pyroptosis and tumor prognosis is still debatable, this is due to the possibility that pyroptosis might have a dual 
role in the development of carcinoma. The pyroptosis of cancer cells could efficiently supress the proliferation and metastasis of 
malignant tumors, and the immune system could be stimulated to work better against tumors [19]. On the contrary, the proin-
flammatory cell death induced by pyroptosis could accelerate immune evasion and facilitate a suitable tumor microenvironment for 
tumor growth [20]. To date, the survival predicting ability of pyroptosis-related signature has been extensively studied in multiple 
tumor types including lung adenocarcinoma(LUAD) [21], hepatocellular cancer [22] and gliomas [23].Unfortunately, the clinical 
prognostic significance of pyroptosis in PAAD is still unclarified. 

In our research, combined with machine learning algorithm, we verified the differences in prognosis between distinct pyroptosis 
phenotype subtypes and established a PRG signature. We also evaluated the OS rate between patients with high- and low-risk and 
explored the possible biological mechanism. In addition, we analyzed the connection between PRG signature, TME, mutation land-
scape and IC50 of chemotherapeutic drug. Our study is intended to investigate the role of PRGs in prognostic risk stratification and 
evaluate the predictive power of this risk stratification signature in relation to the chemotherapeutic agent sensitivity and immuno-
therapy efficacy for PAAD patients with different risk groups. We hope our study offer reference advice for the precise prognostic 
management of PAAD patients. 

2. Materials and methods 

2.1. Data acquirement and preparation 

Transcriptome data and relevant clinical features of 182 PAAD patient samples were retrieved from TCGA data portal through 
UCSC Xena platform (http://xena.ucsc.edu/; version 2018-07-22). Two samples with incomplete survival data or TNM stage infor-
mation were excluded. Thus, 176 PAAD samples and 4 normal adjacent samples were enrolled. 

Besides, another 220 PAAD patient samples from two datasets were auquired from the GEO data portal (https://www.ncbi.nlm.nih. 
gov/geo/). The microarray data of GSE28735 and GSE62452 were based on GPL6244 Platform, including 45 tumor tissue samples,45 
normal adjacent tissue samples and 69 tumor tissue samples,61 adjacent normal tissue samples respectively. 

The three datasets were merged by removing the batch effect using “sva” package [24] and generated a larger combined cohort for 
follow-up bioinformatics analysis. 

Transcriptome data and clinical information of advanced urothelial carcinoma patients who underwent anti-PD-L1 therapy from 
IMvigor210 cohort was retrieved from http://research-pub.gene.com/. 
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2.2. Identification of DEPRGs 

The differentially expressed genes (DEGs) between primary tumor and normal adjacent samples was assessed throug the “limma” R 
package, selecting by the threshold of p value < 0.05 [25]. 47 PRGs were extracted from the MsigDB (http://www.broadinstitute.org/ 
msigdb) and earlier reviews. The intersection between DEGs and PRGs were regarded as DEPRGs and then visualized via “pheatmap” R 
package. 

2.3. DEPRGs consensus clustering 

An unsupervised Consensus clustering analysis was carried out utilizing ConsensusClusterPlus package [26] to divide PAAD tumor 
samples into distinct pyroptosis phenotype subtypes according to the expression matrix of the DEPRGs. The appropriate number of 
PAAD subtype with stable sample distribution was identified by the cumulative distribution function (CDF) curve and optimal k means 
[27]. To compare survival time between pyroptosis phenotype subtypes, Kaplan-Meier curve was conducted using “survival” as well as 
“survminer” R packages [28]. 

2.4. Establishment and assessment of prognostic risk signature 

TCGA-PAAD (n = 176) was utilized as a training set, and the combined TCGA-GEO cohort (n = 220) was taken as a validation set. 
To begin with, univariate Cox regression analysis was performed to screen out DEPRGs linked to OS in training set, and only DEPRGs 
with a p value < 0.05 were considered as candidates for the creation of prognostic risk signature [29]. Further, these pre-selected genes 
were subjected to LASSO regression algorithm with application of “glmnet” R package, followed by the determination of optimum 
penalty parameter lamba (λ) through tenfold cross-validation. Ultimately, core prognostic genes included in the signature and cor-
responding coefficient was obtained from multivariate COX regression analysis. The risk score was calculated as following formula: 
∑n

k=0Coefk Expk. 
Coefk suggests regression coefficient, while Expk is the expression quantity of each signature gene. According to whether risk score 

was above or below the median, patients were distributed to two subgroups. Kaplan–Meier curve was drawn to assess the OS between 
two risk subgroups, showing the efficiency of core prognostic genes. Meanwhile, ROC curve was plotted to appraise prognostic pre-
diction performance of our PRG signature using “timeROC” R package. The above formula and same evaluation method was also 
applied in the validation set. 

2.5. Functional annotation analysis of DEGs between subgroups at high- and low-risk 

By using “Deseq2” R package, DEGs comparing around risk subgroups (high-versus low-risk group) were discovered, p-value<0.05 
together with |logFC|>1 was chosen as the criteria. Expression features of DEGs with statistical significance were displayed via 
heatmap and volcano plot using “pheatmap” and “ggplot2” R package. 

To demonstrate the functional annotations of risk score related DEGs, “clusterProfiler” R package was applied to conduct Gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis [30], the results with p-value <0.05 in conjunction 
with q-value <0.05 was defined as significant enrichment. In addition, the functional vlaue of DEGs in the most significant pathway 
was rated by semantic similarity algorithms using “GoSemSim” R package [31]. 

2.6. Gene set enrichment analysis (GSEA) 

To investigate the underlying molecular pathway cause that responsible for the disparity in survival outcome between risk sub-
groups, GSEA was applied for analysis of the significantly enriched pathways using “clusterProfiler” R package. The pre-defined gene 
set “H.all.v7.4. entrez” was obtained from MSigDB database, and only pathways with p-value <0.05 were marked as statistical 
significantly. 

2.7. PPI network construction 

DEGs between risk subgroups were uploaded onto the Search Tool for the Retrieval of Interacting Genes (STRING) online database 
(https://cn.string-db.org/) to assess protein–protein interactions (PPIs) information. Confidence score ≥0.700 was set as a threshold. 
Cytoscape software (v3.8.0) was applied to show PPI network based on STRING results. CytoHubba plug-in was utilized to identify 
significant protein nodes and submodules of PPI network. The top 20 hub genes were chosen through edge percolated component 
(EPC) algorithm, and the interaction relationship of them was displayed. 

2.8. Construction of miRNA-DEGs regulatory network 

The regulatory factor miRNAs of DEGs differ across risk subgroups were predicted using “multiMIR” R package [32], which 
contained miRNA-mRNA target interaction information from 14 databases including 3 verified databases, 8 predicted databases and 3 
miRNA-disease/drug association databases. The obtained miRNA-DEGs pairs that validated by luciferase reporter assays in 
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miRTarBase database were selected to establish the miRNA-DEGs regulatory network, followed by visualization using Cytoscape 
software. Furthermore, miRNA-DEGs interaction that contained the top 20 hub genes was extracted to visualize through “ggalluvial” R 
package. 

Fig. 1. Whole process of our research and elimination of batch effect between datasets (A) Flow diagram describing data collection and processing 
(B,C) The box and PCA plot of three datasets without batch effect elimination (D,E) The box and PCA plot of three datasets with removal of 
batch effect. 
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Fig. 2. | Determination of DEPRGs and pyroptosis phenotype subtypes using unsupervised clustering analysis (A) Heatmap of 46 PRGs expression in 
tumor and normal adjacent tissues, genes with yellow font represents the DEPRGs (B) The mutation characteristics of PRGs in TCGA-PAAD cohort 
(C) Consensus matrix heatmap for k = 3 in PAAD (D) CDF curve when k changing from 2 to 9 (E) PCA plot of three pyroptosis phenotype clusters (F) 
Kaplan-Meier curve for OS between three pyroptosis phenotype clusters 
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Fig. 3. | Establishment and assessment of the PRG signature in training and validation set (A) Forest map for prognostic significance of 14 DEPRGs 
in PAAD (B) LASSO coefficient trajectory of 14 prognostic DEPRGs (C)Tenfold cross-validation for selecting the optimal value of λ (D) The histogram 
exhibits the coefficients of the 8 hub prognostic genes (E) Expression heatmap of 8 signature genes in high- and low-risk subgroups (F–K) Distri-
bution plot of survival status and time with increasing risk score; Kaplan− Meier curve for OS difference between risk subgroups; ROC curve of the 
PRG signature for predicting OS event in training and validation set. 
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2.9. Evaluation of tumor microenvironment of PRG signature 

Multiple parameters associated with tumor microenvironment were calculated through the “ESTIMATE” R package [33]. The 
infiltration levels of 22 immunocyte subtypes in each sample were converted from the gene expression matrix using CIBERSORT 
algorithm [34]. The effect of PRG signature on the abudance of immunocyte subtypes and mRNA levels of key immune checkpoint 
genes and T cell activation genes was estimated. We also investigated the correlation of signature genes with differentially infiltrated 
immunocyte subtypes and key immune checkpoint genes. An external Imvigor210 cohort was used to verify the value of 8-gene 
signature in predicting the immunotherapy response. 

2.10. Analysis of mutation spectrum 

In order to compare the somatic variants between risk subgroups, mutation annotation format (MAF) and segmental copy number 
files of PAAD samples were retrieved from TCGA database. The waterfall chart was used to display top 20 commonly mutated genes in 
both high- and low-risk subgroup through “maftools” R package [35]. The copy number variation (CNV) was detected by GISTIC 2.0 
database (https://www.genepattern.org/). The TMB score was calculated for every PAAD patient based on following formula: (total 
mutation/total covered bases) × 10^6. 

2.11. Chemotherapy sensitivity analysis 

To evaluate the capacity of PRG signature on predicting chemotherapeutic drug efficacy, the sensitivity of common chemother-
apeutic drug in two risk subgroups were analyzed. Half maximal inhibitory concentration (IC50) is a most widely used measurement of 
a drug’s sensitivity, which was calculated by a ridge regression model constructed by Genomics of Drug Sensitivity in Cancer (GDSC) 
database (www.cancerrxgene.org/) cancer cell lines drug response data and TCGA-PAAD transcriptome profiles using “pRRophetic” R 
package [36]. 

2.12. Construction and verification of predictive nomogram 

Nomogram is an important approach to predict tumor prognosis. In the study, on the basis of independent clinical prognostic 
factors, a nomogram was constructed using “rms”, “regplot” and “Hmisc” R package to evaluate the OS probability of 1-,3- and 5-year 
for PAAD patients. Furthermore, concordance index (C-index) was calculated to quantitatively assess accuracy of the nomogram. For 
determining the consistency between predicted and actual OS probabilities, calibration curve was also plotted. 

3. Results 

3.1. Identification of DEPRGs and pyroptosis phenotype subtypes 

The whole process of our research was illustrated in Fig. 1A. An entire TCGA-GEO dataset containing 290 PAAD samples and 110 
normal adjacent samples with gene expression profiles and clinical information was constructed via integrating the TCGA-PAAD and 
GEO datasets (GSE28735/GSE68452)(Supplementary Table 1). The principal component analysis (PCA) and box plot revealed that 
differences in distance and expression level between three datasets significantly reduced after removing the batch effect by “sva” R 
package (Fig. 1B–E). Followed by differential analysis, a total of 28 DEPRGs were extracted from the intersection of DEGs and PRGs, 
the mRNA level of PRGs in primary tumor samples versus normal adjacent samples was demonstrated by pheatmap (Fig. 2A). The 
waterfall chart for genetic mutation landscape of PRGs in PAAD was depicted, indicating TP53 as the most frequently mutated gene 
(Fig. 2B). 

To characterize the expression pattern of PRGs in PAAD, unsupervised clustering was performed according to the expression levels 
of 28 DEPRGs. The CDF plot and consensus matrix heat map demonstrated that k = 3 was the optimal number of subtypes (Fig. 2C, D). 
Subsequently, the PAAD samples were separated into three subtypes, cluster A, cluster B and cluster C, and the independence of three 
subtypes was confirmed by a PCA plot (Fig. 2 E). Kaplan–Meier curve and heatmap illustrated that cluster B showing higher DEPRGs 
expression had a lower OS rate than that of cluster A and cluster C (Fig. 2 F; Supplementary Fig. 1A). 

3.2. Establishment and assessment of a PRG signature predicting the prognosis of PAAD 

First, 14 prognostic genes were recognized from 28 DEPRGs by the univariate Cox analysis, of which 2 PRGs were protective genes 
(HR < 1) and 12 PRGs were risk genes (HR > 1), showing in the forest map (Fig. 3A). These 14 initial candidate genes were further 
subjected to Lasso-penalized Cox analysis in training set, 8 hub prognostic genes (including CASP4, GSDMC, NLRP2, CHMP2B, IL18, 
BAK1, CHMP4C and PRKACA) were obtained based on the optimum value of λ and used to establish a PRG signature (Fig. 3 B, C). The 
final PRG signature based risk score was calculated as following formula: Risk score = (0.001311101 ∗ ExpBAK1) + (0.007149094 ∗

ExpGSDMC) + (0.001863649 ∗ ExpIL18) + (0.008284412 ∗ ExpCASP4) + (0.004426405 ∗ ExpNLRP2) + (0.00278087 ∗ ExpCHMP2B) + (−

0.006815925 ∗ ExpPRKACA) + (0.000804342 ∗ ExpCHMP4C) (Fig. 3 D) Afterwards, all PAAD patients in training set (n = 176) were 
separated into high- and low-risk subgroup with median risk score as threshold. Expression heatmap displayed a significantly 
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Fig. 4. | GO and KEGG enrichment analysis (A) Heatmap illustrating the expression pattern of 1198 DEGs among risk subgroups (B) Volcano map 
showing distribution of the 1198 DEGs (C–F) Bar diagram and circle plot showing the top significant GO terms and KEGG pathways for the DEGs 
between risk subgroups (G)Summary of the top 20 genes enriched in the most significant pathway in terms of functional similarity. 
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upregulation of GSDMC, CASP4, CHMP2B, IL18, BAK1, CHMP4C and NLRP2 in high-risk subgroup, while PRKACA was downregulated 
(Fig. 3 E). For verifying the prognostic prediction ability of our PRG signature, we applied the formula derived from training set to the 
validation set. Distributions plot depicted that the rise of risk score accompanied by an increasing dead patient number and shorter OS 

Fig. 5. | GSEA for the pathway mechanism between risk subgroups based on transcription profile (A) raincloud map for the top 12 significant 
pathways (B) The top 5 pathways with the highest and lowest NSE (C) The top 5 pathways with the lowest NSE in GSEA (D–I) Enrichment map 
showing pyroptosis related pivotal pathways. 
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time in both training and validation sets. Consistently, Kaplan–Meier curve proved similar result. Time-dependent ROC curve for PRG 
signature to predict OS event indicated that the area under the curve (AUC) was measured to be 0.711 at 1-year, 0.732 at 3-year, 0.706 
at 5-year time point in training set, and 0.617, 0.809 and 0.790 for 1-year, 3-year and 5-year OS in validaton set (Fig. 3F–K). 

3.3. Functional annotation of risk score related DEGs 

Through differential analysis of expression profiles among risk subgroups, we obtained 1449 DEGs consisting of 1198 down-
regulated and 251 up-regulated in high-risk subgroup, showing with volcano map and heatmap (Fig. 4 A, B). Subsequently, GO 
analysis for thses DEGs suggested the top significantly enriched terms of three GO categories highly correlated with transmembrane 
and trans-synaptic signal transduction, particularly by affecting membrane potential and neurotransmitter transmission, such as 

Fig. 6. | PPI and miRNA-mRNA regulatory network for DEGs comparing around risk subgroups (A) A PPI network of the interaction pairs using 
interaction score >0.7 as the cutoff criterion (B) The top 20 hub genes with high degrees of connectivity. The darker the red, the higher the degree 
(C) A miRNA-mRNA regulatory network (D) alluvial plot showing the miRNA-mRNA regulatory axes focused on the hub genes 
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Fig. 7. | Relationship of the PRG signature with immune characterization (A–D) Distribution of immune related scores in high- and low-risk 
subgroup (E, F) Infiltration abundance of immunocytes and expression pattern of key immune checkpoint genes between risk subgroups (G-H) 
Heatmap matrix showing the correlation of signature genes with differentially infiltrated immunocytes and key immune checkpoint genes. 
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Fig. 8. | Relationship of the PRG signature with mutation(A, B) Waterfall plot showed the top 20 mutated genes in both risk subgroups (C) In-
tegrated CNV landscape of the top 10 genes (D) Scatter plot of the correlation between TMB and risk score(E) TMB distribution among 
risk subgroups. 

J. Zhou et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e23004

13

Fig. 9. | Drug sensitivity analysis of 16 common chemotherapeutic agents (A–H) Common chemotherapeutic agents with a lower IC50 value in low- 
risk subgroup (I–P) Common chemotherapeutic agents with a lower IC50 value in high-risk subgroup. 
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“regulation of ion transmembrane transport”, “presynapse” and “neuropeptide binding” terms. Similarly, the KEGG pathway analysis 
also indicated pathways associated with signal transduction including “Neuroactive ligand-receptor interaction”, “GABAergic syn-
apse”, “cAMP signaling”, “Glutamatergic synapse”, “Calcium signaling”, “cGMP-PKG signaling”, “Cytokine-cytokine receptor inter-
action”, “Synaptic vesicle cycle”, and “MAPK signaling” pathways (Fig. 4 E, F; Supplementary Tables 2 and 3). In addition, we ranked 
the top 20 genes enriched in the most significant pathway (hsa04080) based on the average functional similarity. The results 
demonstrated that RLN3 was the key role in Neuroactive ligand-receptor interaction pathway (Fig. 4G). 

3.4. Gene set enrichment analysis 

For further exploring the underlying pathway mechanism of PRG signature, we conducted GSEA between risk subgroups. The top 
12 significant pathways were shown in the raincloud plot (Fig. 5 A; Supplementary Table 4). The top five pathways with highest 
normalized enrichment score (NES) were PLK1 pathway, P53 downstream pathway, IL1R pathway, FAS pathway and apoptosis 
(Fig. 5B). At the same time, the top five pathways with lowest NES were chemokine signaling pathway, CTLA4 pathway, primary 
immunodeficiency, CSK pathway and complement cascade (Fig. 5C). Among them, the pivotal pathways associated with ptroptosis 
process were displayed separately (Fig. 5D–I). 

3.5. Construction of PPI network and miRNA-mRNA regulatory network 

Base on a PPI list comprising of protein interaction pairs selected by confidence score ≥0.700, we built and visualized a PPI network 
containing 740 nodes and 1487 edges through Cytoscape software (Fig. 6A). EPC algorithm uncovered the top 20 hub genes with high 
degrees of connectivity in our PPI network, and interaction network between them was shown (Fig. 6B). 

Furthermore, we predicted the upstream regulatory miRNAs of risk score related DEGs using “multiMiR” R package. The obtained 
interaction pairs of miRNA-mRNA validated by Luciferase reporter assay derived from miRTarBase database were screened to build a 
miRNA-mRNA regulatory network, which contained 132 mRNA and 188 miRNA, mapped by the Cytoscape software (Fig. 6C). Then, 
we focused on the top 20 hub genes and assessed their miRNA-target associations, a total of 6 hub gens including BDNF, CACNB2, 
GRIA1, GRIA2, GRIA3, SNAP25, and their corresponding upstream regulatory miRNAs were displayed in the alluvial plot (Fig. 6 D; 
Supplementary Table 5) 

3.6. TME analysis between risk subgroups 

Previous findings revealed by GSEA indicated that our PRG signature was highly correlated with the immunity inflammation 
pathways, thus we investigated the impact of PRG signature on TME. Through ESTIMATE algorithm, we discovered that patients in 
high-risk subgroup had lower ESTIMATE score, immune score, and stromal score, as well as higher tumor purity than low-risk sub-
group (Fig. 7A–D).For the infiltrating level of different immunocytes derived from CIBERSORT algorithm, significantly higher 
abundance of regulatory T cells(Tregs), M0 Macrophages, activated Dendritic cells (DCs), and lower abundance of naïve B cells,CD8+
T cells was observed in high-risk subgroup (Fig. 7 E).The correlations between immunocytes were displayed (Supplementary Fig. 1B). 

We also studied the expression levels of key immune checkpoint genes which had become a vital biomarker for the selection of 
immunotherapy. Most of immune checkpoint genes (except PDL1) and T cell activation genes (except GZMB and IFNG) were highly 
expressed in low-risk subgroup (Fig. 7 F, Supplementary Fig. 2C). To validate these findings above, we conducted spearman correlation 
analysis of signature genes with differentially infiltrated immunocytes and key immune checkpoint genes, which revealed that the 
expression of most signature genes had a positive correlation with Tregs, M0 Macrophages, activated DCs, and a negtive correlation 
with naïve B cells and CD8+ T cells(Fig. 7 G). Meanwhile, significant correlation was also observed with key immune checkpoint genes 
(Fig. 7H).In IMvigor210 cohort, patients with low-risk group stratified by the 8-gene signature exhibited a significantly better prog-
nosis.In addition, we discovered that patients who responded to ICI therapy had a slightly lower risk score than those who did not 
respond(Supplementary Figs. 2A and B). 

3.7. The PRG signature and mutation landscape 

The mutation profiles of PAAD samples from TCGA cohort were summarized, we displayed the mutation frequency and type of the 
top 20 significantly mutated genes in both risk subgroups respectively (Fig. 8 A, B). Overall, the high-risk subgroup exhibited slightly 
higher somatic mutation frequency than that low-risk subgroup. Notably, KRAS, TP53, SMAD4, TTN, CDKN2A and MUC16 were 
common genes in the top 10 most frequently mutated genes of both risk subgroups. Then an integrated landscape showed the dis-
tribution of CNVs among risk subgroups (Fig. 8C). In the top 10 genes with highest CNV rate, CCAT1, CASC11, and CCDC26 were copy 
number amplified genes, which were known as proto-oncogenes.While SMAD4, CDKN2A, MAP2K4, CDH2, PTRRD, LOC100287072 
and LINGO2 were copy number deleted genes, which were generally considered as anti-oncogenes. In addition, the high-risk subgroup 
had a relatively higher TMB, consistency with correlation between TMB and risk score (Fig. 8D and E). However, the microsatellite 
instability (MSI) did not differ significantly among risk subgroups (Supplementary Figs. 1C and D). 

3.8. Evaluation of chemosensitivity by the PRG signature 

We assesed the predictive effect of the PRG signature on the efficacy of conventional chemotherapy drugs using the pRRophetic 
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Fig. 10. | Construction of a PRG signature-based nomogram for clinical application(A-D) Distribution of risk score between diverse clinicopath-
ologic features (E,F) Forest plot showing the prognostic significance of multiple clinical parameters (G-J)The PRG signature-based nomogram and 
validated calibration curves for 1-, 2- and 3-year OS prediction perfomance 
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algorithm. Our study demonstrated that the IC50 levels of Axitinib, CCT007093, VX.702, EHT.1864, ZM.447439, Temsirolimus, 
ABT.263 and NU.7441 were markedly lower in low-risk subgroup, and the IC50 levels of A.443654, BIBW2992, BI.2536, JW.7.52.1, 
Paclitaxel, GSK.650394, GW843682X and S-Trityl-L-cysteine were opposite (Fig. 9A–P). Our results suggested that the PRG signature 
was an efficient tool for selection of clinical Chemotherapy regimen in PAAD patients. 

3.9. Development of a PRG signature-based nomogram for individual prognostic prediction 

We firstly investigated the distribution of risk score between different clinicopathologic features (Fig. 10 A-D; Supplementary 
Table 6). Significant differences were observed in T stage and grade (Fig. 10 A, D). Univariate and multivariate analysis illustrated that 
only N stage and risk score were considered as independent prognostic factors linked with OS (Fig. 10E and F). Ultimately, we con-
structed a new nomogram combined with N stage and risk score to evaluate the OS probability for PAAD patients (Fig. 10 G). The C- 
indexof our 0.66, and calibration curves demonstrated that the predicted OS probabilities were considerable agreement with actual OS 
probabilities (Fig. 10H–J). 

4. Discussion 

It has become increasingly appreciated that PAAD is a highly heterogeneous disease. The genetic heterogeneity between individual 
tumors has been an obstacle in PAAD characterization and considered as a crucial cause of discrepancy in prognosis and varying degree 
of resistance to current approved therapeutic strategies [37,38]. With the widespread application of high-throughput sequencing, 
there is a deeper understanding of underlying molecular mechanism that causes PAAD intratumor heterogeneity and the search for 
novel therapeutic targets. In addition, a precise clinically relevant molecular subtype classification system could be developed utilizing 
the genetic and transcriptomic information to predict survival outcome and therapeutic response of PAAD patients. 

Cell death is a process of fundamental importance to tumor pathogenesis.The progression and treatment response of tumor are 
affected by a wide variety of cell death forms, such as cuproptosis, pyroptosis and anoikis.Recently, the prognostic value of PRGs has 
attracted more attention in malignant tumors. Shi et al. verified that colorectal cancer (CRC) patients with elevated NLRP3 expression 
had a worse prognosis [39]. David Sarrió et al. reported that the GSDMB promoted the invasive and migratory phenotype of breast 
carcinoma and could be considered as a new potential prognostic indicator [40]. However, the predictive ability depending on a single 
gene is usually unreliable because a single gene could participate in a variety of biological processes and be regulated by multiple 
signal pathways. The construction of a polygene risk signature according to the expression characteristic of core regulatory factors that 
involved in the same biological function is of great significance to elevate the prediction accuracy. In our study, we systematically 
analyzed the transcriptional level, somatic variant and prognostic relevance of 46 PRGs. As expected, although these PRGs were 
conservative and stable at genetic level, approximate 60 % (28/46) of them were identified as DEGs between PAAD and normal 
adjacent tissue. While univariate analysis revealed that 50 % (14/28) DEPRGs were associated with OS, implying that pyroptosis might 
be potential prognostic biomarkers for PAAD. To gain insight into the prognostic role of PRGs in PAAD, a 8-gene signature consisting of 
CASP4, GSDMC, NLRP2, CHMP2B, IL18, BAK1, CHMP4C and PRKACA was established, which could accurately predict survival 
outcome of PAAD. 

Among the risk genes in our PRG signature, most of them except PRKACA were adverse prognostic factor. CASP4 was a key 
component of non-canonical pyroptosis pathway, it could participate in innate immune response to defend against infection of 
pathogenic bacteria [41]. In the progress of cancer, Giuliana Papoff et al. indicated that the down-regulation of CASP4 could lead to an 
impairment in migratory and cell-matrix adhesion behavior of epithelial cancer cell lines through actin remodeling [42].CHMP4C was 
a member of charged multivesicular body protein (CHMP) family, it involved in composition of the endosomal sorting complex 
required for transport (ESCRT) which mediated the damage repair and blebbing of plasma membrane during pyroptosis [43–45].Some 
researchers suggested that CHMP4C overexpression was linked to poor prognosis in patients with lung squamous carcinogenesis 
(LUSC) and cervical carcinoma (CC) [9,10],whereas depletion of CHMP4C will result in S-phase arrest of tumor cells, thus inhibiting 
tumor growth. The upregulated mRNA level of CASP4 and CHMP4C in PAAD patients with poor prognosis were consistent with the 
results of Chen’s report, the research also revealed that the knockdown of CASP4 and CHMP4C obviously inhibited the invasion and 
migration of PANC-1 cells at experiment level [46]. 

CHMP2B was another member of CHMP family, which participate together with CHMP4C in composition of the ESCRT-III to 
constrict and stabilize membrane structures in membrane remodeling processes [47].Unfortunately, the basic study of CHMP2B 
related to tumor prognosis was rare. GSDMC was a member of gasdermin protein family, the cleavage of GSDMC by activated caspase-8 
could induce pyroptosis in HeLa cervical carcinoma cells treated with α-ketoglutarate (α-KG) [48].GSDMC was generally considered as 
a risk factor in several tumor types such as kidney renal clear cell carcinoma(KIRC) and LUAD [15,49,50], GSDMC was also an 
oncogene in our study. In contrast, GSDMC exhibited to be a tumor suppressor in gastric cancer [51], demonstrating that the actual 
functional role of GSDMC might exert tissue specifically.IL-18 was one of the downstream productions during pyroptosis process, 
which could increase the NF-κB activity in pancreatic cancer cells and be confirmed as a predictor of poor prognosis [52].NLRP2 
belonged to NLRs family, which was a crucial type of innate immune sensor. The NLRP2 overexpression was confirmed to play an 
unrecognized role in regulating proinflammatory responses [53]. BAK1 was a critical apoptosis regulator, Jinyu Zhu’s study validated 
that knockdown of BAK1 significantly suppressed hepatocellular carcinoma cells proliferation and promoted apoptosis [54]. Kohsuke 
Tsuchiya reported that under certein circumstances pyroptosis could be switched to apoptosis, so it was speculated that the BAK1 could 
influence pyroptosis through modulating apoptosis process [55]. 

As the only protective prognostic factor, PRKACA was also associated with apoptosis. PRKACA was known to encode the main 
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catalytic subunit of protein kinase A (PKA) that led to activation of cAMP/PKA pathway which has been found to promote apoptosis of 
pancreatic cancer cells [56]. 

GO and KEGG analysis revealed that the transcription discrepancy between risk subgroups mainly involved in complicated signal 
transduction, which might be mediated by cascade reaction of inflammasome signaling complex during pyroptosis process. The PPI 
network revealed that the top 20 hub genes mainly belonged to the ionotropic glutamate receptor superfamily and synapsin gene 
family which were also associated with signal transduction. The GSEA results showed that high-risk subgroup primarily focused on 
programmed cell death and malignant progression related pathways such as apoptosis pathway, PLK1 pathway and IL-1R pathway. 
The appearance of apoptosis pathway was not surprisingly, Gurung et al. have discovered that core components of apoptosis-inducing 
caspase cascade including caspase-8 and FADD could regulate NLRP3 inflammasome signaling as apical mediators, suggesting a co- 
regulation and crosstalk between apoptosis and pyroptosis pathway [57]. The PLK1 pathway and IL-1R pathway were both associ-
ated with poor patient outcome [58].PLK1 could trigger tumor cell proliferation through accelerating S-phase progression and pro-
moting mitotic entry by means of activating the cyclin B/cdc2 complex [59].For IL-1R pathway, as one of the pyroptosis production 
downstream pathways, growing evidence demonstrated that it could induce the generation of proteases and cytokines that signifi-
cantly change extracellular matrix [60].These upregulated molecules were also linked to recruitment of innate immunocytes such as 
macrophages, which will secrete angiogenic growth factors that enhance the oxygen and nutrients supply and vascular permeability, 
thus helping tumor cells disrupt the endothelial barrier and infiltrate into deep tissues [61]. While low-risk subgroup was mainly in 
relation to immune and inflammatory response related pathways such as CTLA4 pathway, chemokine signaling and complement 
cascade pathway, which might be a substantial evidence for the mmunologically active state of low-risk subgroup. 

In recent years, TME is a spotlight in oncology [62]. Pyroptosis could serve as a link between immune system and tumor immunity. 
The traditional brief concluded that the patients with high immune activity and low tumor purity exhibited a better prognosis [63], the 
association between TME and PRG signature in our research was consistent with it.CD8+ T cell had been found in proximity to cancer 
cells and known as a critical anti-tumor immune cell due its cytotoxicity, some researchers reported that lower CD8+ T cell infiltration 
represented an unfavorable outcome in pancreatic cancer [64,65], and our results confirmed this finding. Effector CD8+ T cell with 
activated cytotoxic phenotype eventually paly a role in clearance of tumor cells. Recognizing the activation status of CD8+ T cell is of 
great significance for understanding the antitumor activity of TME.As previous study reported, a T cell activation gene set including 
NKG7, CCL4, CST7, PRF1, GZMA, GZMB, IFNG and CCL3 which mainly involved the secretion of cytotoxic cytokines has been defined 
to differentiate cell subsets and heterogeneity of activation status within CD8+ T cell [66,67]We discovered that these CD8+ T cell 
activation markers were almost highly expressed in low risk group, implying an increased activation status of CD8+ T cell in low risk 
group.Interestingly, these cytotoxic markers exhibited a similar expression pattern with inhibitory checkpoint molecules in two risk 
subgroups, which consistent with a "activation-dependent exhaustion expression programme" that has previously been described [68]. 
Unexpectedly, the infiltration of activated dendritic cell was higher in high-risk subgroup. Dendritic cells are predominant 
antigen-presenting cells that act a critical role in promoting anti-tumor CD8+T cell immunity [69]. It could be presumed that higher 
infiltration level of dendritic cell was correlated with high TMB level in high-risk subgroup, and there was an impairment in function of 
dendritic cell to recruit and stimulate CD8+T cell. The insufficient CD8+T cell might be mediated by the regulatory T cells (Tregs) 
which was more abundant in high-risk group, an earlier study showed that Tregs could downregulate the level of co-stimulatory 
molecules in dendritic cells as well as limit the interaction with conventional T cells, thus impairing the DC immunogenicity and 
alleviating CD8+T cell activation [70]. Notably, MUC16 exhibited higher mutation frequency in high-risk group, which conflicted 
with the conclusion that MUC16 mutation was associated with longer survival time in PAAD [71]. Elevated MUC16 mutation might 
contribute to increased neoantigen formation and thus enhancing anti-tumor immune response [72]. However, other factors such as 
the dysfunction of CD8+T cell and other genetic alterations might counteract the potential beneficial effects of MUC16 mutation. 
Therefore,it is worthy exploring the effect of somatic mutation in tumor microenvironment, including recruitment and activation of 
immune cells, and potential impact on immunotherapy response. 

Immune checkpoint inhibitors(ICIs) known as an important immunotherapy option have showed promising therapeutic effects in 
various solid tumors including melanoma, bladder as well as renal cancer [73].However, this novel therapeutic approach failed to 
elicit response in most of PAAD patients, and tumor genotyping system that identify patients more likely to benefit from ICIs treatment 
was limited. Our research revealed that patients in low-risk group exhibited higher expression of ICIs-related moleculars such as PD-1, 
CTLA-4, TIM-3 and CXCR4, and it has been reported that the expression level of ICIs-related moleculars can serve as a biomarker to 
forecast the efficacy of ICIs therapy [23]. PD-1 is expressed on a variety of immune cells especially on activated T cells, and also marked 
as an indicator for activation of CD8+ T-cell [74], which consistent with the finding that higher expression of PD-1 indicated better 
prognosis. PD-L1 known as an indicator of tumor burden was the most important ligand of PD-1, exhibited opposite expression pattern. 
The relation of PD-L1 with poor prognosis in PAAD had been conformed by other academics. In Loos M et al.’s study [75], patients with 
high PD-L1 expression only had a 10-month median survival time compared to those with low PD-L1 expression, who had a 24-month 
median survival time.Similar conclusion was also reported by Birnbaum DJ et al. with the evidence of lymphocyte exhaustion 
mediated by PD-L1 [76].A newly published study involving tumor-stroma interplay found that high local abundance of macrophage 
usually accompanied with strong PD-L1 staining in tumoral lesions of PAAD，but the cytotoxic phenotype of CD8+ T cells co-cultured 
in PAAD macrophage spheroids was not enhanced by the ICIs treatment [77].So it could be speculated that the high-risk group with 
high expression of PD-L1 which might be partially mediated by higher abundance of macrophage didn’t respond to ICIs treatment. 
Overall, we discovered that our PRG signature was a reference toolr to recognize PAAD patients who might be more sensitive to ICIs. 

We also predicted potential response to conventional chemotherapeutic agents in high-risk versus low-risk group using GDSC 
database and pRRophetic algorithm. The cornerstone of PAAD treatment is still systemic chemotherapy. As a crucial agent of first-line 
chemotherapy against pancreatic cancer, it has been reported paclitaxel could induce pyroptosis in various types of cancer [78,79]. In 

J. Zhou et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e23004

18

our study, paclitaxel exhibited potential higher sensitivity in high-risk group, which might be mediated by the function of PRGs in 
regulating cell proliferation and apoptosis [80,81]. Some researches reported that the programed death pattern of tumor cells 
expressing high levels of PRGs such as GSDME and GSDMC coud be swiched from apoptosis to pyroptosis induced by chemotherapy, 
leading to a extensive inflammatory response [17,82]. BI 2536, a novel small molecule inhibitor, was another chemotherapeutic agent 
exhibited higher sensitivity in high-risk group. Jianting Huo et al. reported that the BI 2536 exerted antitumoral effect through 
inducing pyroptosis and accumulation of CD8+ T cells [83],which was less infiltrating in high-risk group. Future research should focus 
on exploring the precise mechanism by which the PRGs regulate sensitivity of chemotherapeutic agents. 

It must be acknowledged that there are several shortcomings in our research. Firstly, as a retrospective analysis, both training and 
validation datasets included in our research were retrieved from public databases, thus prospective clinical cohort is needed to validate 
the prediction performance of the risk signature. Secondly, some crucial clinical information especially response to conventional 
chemotherapy and immunotherapy were not available in our datasets, which might be helpful to understand whether the PRG 
signature is a reliable predictive factor of treatment response. Last but not least, the molecular mechanism how PRGs in the risk 
signature regulate the precise process of PAAD remains unclear, so further fundamental experiments including cellular and animal 
models are necessary to explore it. We hope that the aforementioned limitations could be solved in the future. 

In conclusion, we developed a novel PRG signature and preliminarily assessed its efficacy in foretelling the outcome of PAAD 
patients. We also investigated the guiding significance of the PRG signature for chemotherapy and immunotherapy response. Future 
studies on the prospective randomized clinical trials and specific mechanisms of these pyroptosis related risk genes will be clinically 
helpful. 
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