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Abstract
Drug-induced liver injury (DILI) is one of the leading reasons for discontinuation of a new drug development project. Diverse 
machine learning or deep learning models have been developed to predict DILI. However, these models have not provided 
an adequate understanding of the mechanisms leading to DILI. The development of safer drugs requires novel computa-
tional approaches that enable the prompt understanding of the mechanism of DILI. In this study, the mechanisms leading to 
the development of cholestasis, steatosis, hepatitis, and cirrhosis were explored using a semi-automated approach for data 
gathering and associations. Diverse data from ToxCast, Comparative Toxicogenomic Database (CTD), Reactome, and Open 
TG-GATEs on reference molecules leading to the development of the respective diseases were extracted. The data were used 
to create biological networks of the four diseases. As expected, the four networks had several common pathways, and a joint 
DILI network was assembled. Such biological networks could be used in drug discovery to identify possible molecules of 
concern as they provide a better understanding of the disease-specific key events. The events can be target-tested to provide 
indications for potential DILI effects.

Keywords DILI · Drug-induced liver disease · Hepatotoxicity · Computational toxicology

Introduction

To protect human health and the environment from undesired 
adverse effects, safety information on the toxic potential of 
new molecules has to be generated and revised to regulate 
their use [1]. Safety assessments usually involve a substan-
tial amount of animal experimentation. This is financially 
burdensome and time-consuming [2], is not always ethically 
performed, and sometimes, the relevance for humans is ques-
tionable. To address these shortcomings, regulatory agencies 
worldwide are encouraging the implementation of the 3Rs 

(reduction, refinement, and replacement) of animal experi-
mentation. Among the numerous alternative approaches 
being developed and tested, those using toxicogenomics or 
computational toxicology in general are considered espe-
cially promising because they will likely facilitate faster 
hypothesis generation covering data-rich historical sources 
as input information. This will provide a more detailed and 
precise understanding of the mechanisms of toxicity.

Drug-induced liver injury (DILI) is one of the com-
mon reasons for terminating drug development projects. 
Approaches for the early detection of such alerts are needed. 
Numerous machine learning (ML) and deep learning (DL) 
models have been developed for the detection of DILI and 
resulting withdrawal of drug candidates in the early phases 
of development [3]. Although ML or DL models can accu-
rately predict DILI, their interpretability is still an issue for 
researchers because the process of decision-making by the 
models is not explainable in most cases [4]. Therefore, a 
different approach is required to determine the mechanisms 
of the development of liver disease due to drug-mediated 
damage. The adverse outcome pathway (AOP) concept par-
tially addresses the issue. The AOP is a formalized, trans-
parent, and quality-controlled way to describe mechanistic 
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information to endpoints for regulatory purposes [5, 6]. 
However, a potential problem of the AOP is that it requires 
a lot of time for experts to manually search the literature and 
identify key events and the links between them. Further-
more, the suggested constructs are linear and are sometimes 
too simplistic to cover the entire spectrum of events leading 
to an adverse outcome. Thus, another approach is needed to 
broaden the understanding of how to deploy knowledge in 
the development of safer drugs.

Biological networks are one of the most common ways 
to represent a sequence of molecular and cellular events 
leading to toxic effects following exogenous exposure [7]. 
Such networks provide a systemic approach for key events 
identification and targeted testing by means of alternative 
approaches [8]. For some complex diseases such as DILI, 
biological networks are an appropriate way of capturing 
events and relationships as they cover the entire spectrum 
of relationships, which can also be non-linear. In evidence 
collection for biological network development, use of his-
torical data and novel computational approaches for data 
analysis and assembly have proven very useful for hypoth-
esis generation [9].

In this study, we used a semi-automated approach for 
diverse data gathering, harmonization, and integration to 
identify important key events and their relationships in the 
development of four DILI diseases: cholestasis, steatosis, 
hepatitis, and cirrhosis. Diverse data from different levels 
of biological organization extracted from ToxCast, Com-
parative Toxicogenomics Database (CTD), Reactome, and 
Open TG-GATEs were subjected to association analysis. 
Top-ranked genes and pathways associated with the respec-
tive diseases were identified and interlinked. As expected, 
the four studied diseases had a significant number of over-
lapping biological processes. Finally, a joint DILI network 
was assembled. Oxidative stress was an obvious major factor 
contributing to the development of DILI.

Materials and methods

Chemical‑gene‑pathway‑disease mapping

Following a previously described approach [9], frequent 
item set mining methods were applied to high-throughput 
screening, gene expression, in vivo studies, and disease 
data present in ToxCast and the CTD. ToxCast provides 
high-throughput toxicity screening in vitro assay data, and 
active/inactivity calls on one target gene were collected. 
CTD provided chemical-gene and chemical-disease inter-
actions. Chemical-gene interactions were defined as activ-
ity or expression variation due to chemical treatment, and 
chemical-disease interactions were inferred associations 
between chemicals and diseases through genes commonly 

associated between the chemical and the disease. Reactome 
database clustered pathways according to function similarity, 
and pathway hierarchy data was used in the mapping.

Selection of reference chemicals for the diseases

In this study, cholestasis, steatosis, hepatitis, and cirrhosis 
were selected as the most common diseases among DILI 
cases in post-market phase based on  PharmaPendium® 
database (https:// www. pharm apend ium. com/, accessed 
Dec. 2018) which curated the post-market reports based on 
disease terms. After the removal of not-specific adverse end-
points such as liver injury and hepatotoxicity, post market 
reports for these four DILI cases were more than 10,000 in 
numbers, respectively. Some drugs were withdrawn from the 
market due to development of severe DILI even though there 
were no sign of DILI in preclinical and clinical test, there-
fore, the diseases were selected based on post-market reports 
only. A set of reference compounds specific for each dis-
ease of interest were selected. Positive reference chemicals 
induce the disease of interest. Negative chemicals are those 
for which there is no evidence in the literature of an asso-
ciation to the disease of interest. This is a challenging task 
as most of the known chemicals coincidently cause several 
of the studied diseases, rather than being disease-specific. 
As this was a very important part of the analysis and forms 
the basis of the developed biological networks, the follow-
ing strategy was applied. First, search of publicly available 
literature sources was performed to identify chemicals that 
were specific to one of the four diseases. Once the disease-
specific chemicals had been identified, those also present in 
Open TG-GATEs [10] were selected for further analysis. 
The list of OpenTG-GATEs compounds was compared with 
the list of LiverTox compounds. The LiverTox DB provides 
up-to-date comprehensive and unbiased information about 
DILI (https:// www. ncbi. nlm. nih. gov/ books/ NBK54 7852/). 
The idea was to obtain a list of compounds that lead to DILI 
and have available gene expression data. Furthermore, the 
probable mechanisms of action as listed according to Liv-
erTox were extracted whenever possible or available. The 
chemicals were split into groups according to the cause of 
the diseases. Finally, compounds in each group were com-
pared to post-market reports on the four diseases.

Refinement of chemical‑gene‑pathway‑disease 
associations

Transcriptomics data from Open TG-GATEs of the selected 
set of chemicals were applied to customize chemical-gene-
pathway-disease associations to the reference chemicals. The 
fold changes between treatment and control were used from 
transcriptomics data based on p values. Genes were labeled 
as toxic group-specific if they showed statistically significant 

https://www.pharmapendium.com/
https://www.ncbi.nlm.nih.gov/books/NBK547852/
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deregulation (− 1 < Log2 fold change > 1 and p value 0.05 
by the Welch t test) over more than three chemicals. This 
approach was applied identically to both positive and nega-
tive groups at each time point and dose combination. The 
genes were further selected only if they were deregulated 
mostly by the positive reference chemicals. Finally, to 
ensure that all the identified specific genes were differen-
tially expressed compared to that in response to the negative 
group of chemicals, the individual gene profiles were manu-
ally examined using a bar chart time-series to acknowledge 
changes in expression over time and by heatmap validation 
to acknowledge grouping and differential expression in com-
parison to the negative group of chemicals. This additional 
curation was done to capture group-specific genes involved 
in the development of a disease and to remove the individual 
chemical-specific behaviors. For example, if there is a gene 
deregulated in response to three chemicals only, it would ful-
fill the above-described cutoff criteria and would automati-
cally be selected and initially appear in the gene list. This 
would be a captured chemical-specific behavior, rather than 
disease-specific. Therefore, an additional step of individual 
gene examination was performed. Only the group-specific 
genes were used in the further analysis.

The goal was to extract associations between genes and 
diseases that co-occur across datasets. The four diseases 
were used as input queries, and the output data of the high-
est probability of a disease of interest to be connected to a 

set of genes was extracted. Figure 1 describes the workflow 
of this study.

Biological networks assembly

Lastly, biological networks were defined as a set of biologi-
cal events (e.g., at a gene, protein, and pathway level) and 
relationships assembled. To accomplish this, the first step 
was to search for direct links between the selected genes. 
This did not yield very promising results. Thus, the next 
step was to examine the possibility of interlinking through 
connector genes. This was done using the GeneMANIA 
(https:// genem ania. org/) web-based application for gene 
function prediction [11]. Once the biological networks were 
compiled, the processes in which these direct and indirect 
interacting genes were involved were identified. This was 
done mostly through a literature search and manual curation.

Results

Genes associated with the four liver diseases

The reference chemicals (Fig. 2) were used in chemical-
gene-pathway-disease mapping. Querying the assembled 
chemical-gene-pathway-disease output for the selected dis-
ease of interest resulted in 200 to 300 characteristic genes 

Fig. 1  Workflow of this study. Associations between chemicals, 
genes, pathways, and diseases were established based on data from 
ToxCast, CTD, and Reactome. This association was further refined 

with TG-Gates data. Query molecules for each disease were used to 
extract relevant associations

https://genemania.org/
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Fig. 2  Venn diagram for chemicals selected for each disease. Most of the compounds were labeled over multiple DILI subtypes

Fig. 3  Venn diagram of the 
genes associated with the 
diseases
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per disease. There was a substantial gene overlap of approxi-
mately 140 genes between all four diseases (Fig. 3). The 
largest difference at the gene level was evident for hepatitis, 
with 28.6% of the genes specific to hepatitis. The follow-
up pathway analysis also indicated a substantial overlap in 
the number of affected pathways between all four diseases. 
Thus, a second tier was added. By incorporating data on 
disease-specific reference chemicals, identification of genes 
highly specific to the disease of interest was possible. After 
the application of the second tier, 32 genes highly associated 
with the development of cholestasis were initially identi-
fied (Table 1). The expression of each gene was individually 
examined and compared to the negative control group to 
identify whether these genes could serve as biomarkers to 
characterize and identify cholestasis-specific mechanisms. 
This further refinement showed that most of the identi-
fied genes were also deregulated in a similar fashion in the 
negative control group, with the exception of five genes 
(BHLHE40: basic helix-loop-helix family member e40, 
CSRP1: cysteine and glycine rich protein 1, NQO1: NAD(P)
H quinone dehydrogenase 1, SLC16A10: solute carrier fam-
ily 16 member 10, and AGT: angiotensinogen) that were 
consistently deregulated in the positive group as opposed 
to in the negative group (Fig. 4). In the case of steatosis, 
20 genes were initially identified as highly associated with 
its development (Table 2). Further examination revealed 
that only four genes (CCL2: C-C motif chemokine ligand 
2, ICAM1: intracellular adhesion molecule 1, ME1: malic 
enzyme 1, and SGK1: serum/glucocorticoid regulated kinase 
1) were consistently upregulated in the positive group, and 
they exhibited a different trend in the negative group (Fig. 5). 
Twenty-five genes were initially identified as being highly 

associated with the development of hepatitis (Table 3). Fur-
ther examination revealed that only nine genes (SLC6A6: 
solute carrier family 6 member 6, CSRP1, RAB30: RAS 
oncogene family member, APOM: apolipoprotein M, 
PPP2R1B: protein phosphatase 2 scaffold subunit abeta, 
HMOX1: heme oxygenase 1, TSR1: ribosome maturation 
factor, EBNA1BP2: EBNA1 binding protein 2, and WDR77: 
WD repeat domain 77) were consistently deregulated in the 
positive reference group, whereas they were unaffected or 
less affected by the negative reference group of chemicals 
(Fig. 6). In the case of cirrhosis, 37 genes were initially iden-
tified as highly associated with the development of cirrhosis 
(Table 4). Further examination showed that only eight genes 
(CSF1R: colony stimulating factor 1 receptor, EGR1: early 
growth response 1, GPNMB: glycoprotein Nmb, LPL: lipo-
protein lipase, HSD11B2: hydroxysteroid 11-beta dehydro-
genase 2, MGAT2: alpha-1,6-mannosyl-glycoprotein 2-beta-
N-acetylglucosaminytransferase, NR1D1: nuclear receptor 
subfamily 1 group D member 1, and S100A9: S100 calcium 
binding protein A9) were consistently deregulated (Fig. 7).

Biological network compilation

The identified disease-specific genes were assembled in a 
network by using the GeneMANIA tool along with manual 
curation to identify directly and indirectly connected genes. 
Using this approach, four networks comprising one network 
each for cholestasis, steatosis, cirrhosis, and hepatitis were 
generated. In the case of cholestasis (Fig. 8A), the main 
processes triggering the development of the disease were 
NRF2 (nuclear factor erythroid 2-related factor 2) activa-
tion, oxidative stress, increase in expression of detoxification 

Table 1  Genes identified as 
of highest probability to be 
associated with the development 
of cholestasis

Time 29Days 15 days 8 days 4 days 1 day 9 h 6 h 3 h

 Genes ABCC2 ABCC2 CD63 A1BG ABHD3 A1BG CARS A1BG
ADSSL1 ACLY CYP26B1 ABHD3 CYP26B1 ABHD3 EGR1 ABHD3
BHLHE40 AGT CYP7A1 ACLY EGR1 BHLHE40 HSPB8 IFIT1
CD63 CSRP1 BHLHE40 MID1IP1 CEBPB NARS NQO1
CFD CYP27A1 C1R UHRF1 CREM S100A9 USP18
CREM IFIT1 MID1IP1 CYP7A1
CSRP1 IL13RA1 TM7SF2 MID1IP1
CYP7A1 S100A9 NQO1
IP6K2 SREBF1
MID1IP1
NQO1
PPP2R1B
S100A9
SLC16A10
SREBF1
USP18
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enzymes, and cytoprotection. The decrease in the level of 
AGT, which is involved in the regulation of glucose and 
homeostasis, indirectly leads to an increase in oxidative 
stress [12]. This increase stimulates the natural defenses 
of the organism, with increased activities of detoxification 
enzymes. This is also supported by NRF2 activation, repre-
sented by an increase of NQO1 level [13, 14] and increased 
transport of amino acids by SLC16A10 upregulation [15]. 
Although the goal of the responses is cytoprotection, a gen-
eral stress response to the downregulation of BHLHE40 
also occurs [16]. This is further reflected in the decrease of 
responses leading to hepatic differentiation by a decrease in 
CSRP1 level [17]. The findings indicate that oxidative stress 
plays an important role in the development of cholestasis. In 
the steatosis network (Fig. 8B), the main identified triggers 
were an increase in the stress response, as indicated by an 
increase in SGK1 level [18, 19]. This can be associated with 
increased de novo fatty acid biosynthesis, as verified by the 
increase in ME1 level [20–22]. This is linked to an overall 
increase in apoptosis (upregulation of ICAM1) [23] which 
leads to the recruitment of immune cells and inflammation 
via the upregulation of CCL2 [24]. For the hepatitis net-
work (Fig. 8 C), important identified pathways were, again, 
mainly involved in responses to increased oxidative stress, 

which initiates cytoprotective action of upregulated HMOX1 
[25] leading to mitochondrial dysfunction associated with 
downregulation of the SLC6A6 taurine transporter [26]. 
Mitochondrial dysfunction triggers autophagy events by 
increasing RAB30 level [27] and its linked genes. Increased 
PPP2R1B level is associated with cell cycle arrest [28] and 
decreased TSR1 level [29] is associated with DNA dam-
age. Cell cycle arrest causes hepatic differentiation, which 
maps to the decreased expression of CSRP1 and its linked 
genes. Upregulated APOM [30] and WDR77 [31] and their 
associated genes are related to hepatitis virus replication 
and re-entry. Similarly, in the case of the cirrhosis network 
(Fig. 8D), the results revealed a central role for oxidative 
stress. Increased oxidative stress leads to apoptosis asso-
ciated with upregulated EGR1 [32, 33] and activation of 
the NF-κB (nuclear factor-kappa B) pathway through the 
downregulation of HSD11B2 [34, 35]. The genes surround-
ing EGR1 and HSD11B2 are also important for the mapped 
events. Activation of apoptosis and the NF-κB pathway leads 
to production, differentiation, and function of macrophages 
connected to decreased CSF1R level [36] and its interact-
ing genes. This event promotes the activation of Kupffer 
cells (evident as increased GPNMB level) [37] and mac-
rophage response (evident as increased NR1D1 level) [38]. 
The macrophage response causes inflammation (upregulated 
S100A9) [39], which promotes uncontrolled wound healing 
and hepatic stellate cell (HSC) activation (evident upregu-
lation of lipoprotein lipase) [40]. HSC activation produces 
hepatic fibrosis, and glycoproteins appear as indicators of 
the disease (increased MGAT2 level) [41]. After analysis 
of each network, the four networks were combined to create 

Fig. 4  Heat map (A) and bar chart (B–F) analyses of genes associ-
ated with drug-induced cholestasis by comparison between positive 
compounds (PCs) and negative compounds (NCs). Five genes were 
consistently deregulated among PCs and displayed a different trend 
in NCs: BHLHE40 (downregulated, B), CSRP1 (downregulated, 
C), NQO1 (upregulated, D), SLC15A10 (upregulated, E), and AGT 
(downregulated, F)

◂

Table 2  Genes identified as 
of highest probability to be 
associated with the development 
of steatosis

Time 29 days 15 days 8 days 4 days 1 day 9 h 6 h 3 h

 Genes CROT CROT A1BG ME1 ACLY ACLY ACLY INSIG1
ME1 ME1 CROT SLC22A8 CCL2 EGR1 SGK1

S100A9 EGR1 CROT ME1
ME1 EGR1 PHGDH
SLC22A8 ICAM1 SREBF1

KLKB1
LAMC2
ME1
MYC
S100A9
SOD2
SREBF1
TARS
USP18
XBP1
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Fig. 5  Heat map (A) and bar chart (B–E) analyses of genes associ-
ated with drug-induced steatosis by comparison between positive 
compounds (PCs) and negative compounds (NCs). Four genes were 

consistently upregulated among PCs and displayed a different trend in 
NCs: CCL2 (B), ICAM1 (C), ME1 (D), and SGK1 (E)
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a general DILI network to identify overlapping or common 
events (Fig. 9). Oxidative stress was evident in all four dis-
eases. Cholestasis and hepatitis shared cytoprotection and 
hepatic differentiation. Cholestasis and steatosis featured a 
general stress response as the most common process. Stea-
tosis and cirrhosis seem to be involved in apoptosis.

Discussion

Drug-induced hepatic injury is the most common reason for 
the termination of drug development projects or withdrawal 
of market-approved drugs. Characteristic DILI-associated 
diseases include cholestasis, steatosis, hepatitis, and cirrho-
sis. Cholestasis is a condition in which the flow of bile from 
the liver is slowed or blocked. Steatosis features abnormal 
retention of fat within liver cells. Impaired hepatic lipid stor-
age usually leads to liver metabolic dysfunction and inflam-
mation. Cirrhosis is an irreversible scarring of the liver that 
leads to impaired liver function. It is considered a terminal 
stage of chorionic liver impairment. Hepatitis is character-
ized by general inflammation of the liver, triggered by either 
chemical exposure or viral infection. Although all these dis-
eases have specific characteristics, they are interconnected 
in their manifestation. Discrimination of these diseases can 
be difficult as they can progress from one of the diseases to 
another. For example, steatosis, cholestasis, and hepatitis can 
progress to cirrhosis, which is considered an end-stage liver 
disease. Better understanding of the mechanisms behind the 
progression of these diseases is important. Many predictive 
tools have tried to provide clarity using numerous cell-based 
systems, animal models and in silico algorithms. However, 
progress has been unsatisfactory.

We used semi-automated approaches for data gathering 
and integration to try to capture the major events responsible 
for the progression and development of the four selected 
diseases. The added value of the selected approach includes 
its fast and robust performance. Diverse data from high-
throughput screening, gene expression, in vivo observations, 

and various diseases can be harmonized, analyzed, and 
assembled to generate the complex DILI biological net-
work. The collective findings indicate that oxidative stress 
is a central mechanism in the pathogenesis of DILI. Results 
of the applied semi-automated approach for biological net-
work assembly revealed an increase in the release of reactive 
oxygen species (ROS) in all four diseases. ROS are asso-
ciated with an increase in cytoprotective mechanisms and 
decrease in hepatic differentiation. Furthermore, when such 
damage is persistent, the natural defenses of the organism 
are over-ruled and cell damage occurs. This leads to the gen-
eration of oxidative stress, mitochondrial dysfunction, and 
endoplasmic reticulum stress, which may result in scarring 
and necrosis. At the same time, increased cellular damage 
stimulates the immune response, whereby inflammasomes 
trigger an adaptive immune response. Normally, the liver has 
natural defense mechanisms. However, in DILI, these natu-
ral defense mechanisms are compromised, resulting in dete-
riorated oxidative stress, mitochondrial damage, cell death, 
and inflammation. These series of events have recently been 
described in the literature as biomarkers for early identifica-
tion of DILI in clinical practice [42].

Another important identified mechanism is apoptosis. 
It seems to be a common event between steatosis and cir-
rhosis. However, in the case of cirrhosis, the inflammatory 
response is markedly more pronounced due to the simulta-
neous action of macrophage response and activation. Cell 
death is an important mechanism contributing to the devel-
opment of DILI [43]. Although important, apoptosis is not 
a central mechanism for DILI development, and therefore, 
inhibiting apoptosis is insufficient to prevent liver injury. 
Furthermore, it is not an individual event, but rather an inter-
connected series of chain events involving increased oxida-
tive stress, refractory increase of cytoprotective mechanisms, 
and failure of cytoprotection due to the DILI-compromised 
mechanisms, and eventually mitochondrial dysfunction and 
apoptosis.

As this approach identified the significant biological 
events related with the diseases, it can be used to suggest 

Table 3  Genes identified as 
of highest probability to be 
associated with the development 
of hepatitis

Time 29 days 15 days 8 days 4 days 1 day 9 h 6 h

 Genes HBB HBB SLPI SLPI EGR1 EGR1 EGR1
CROT SLPI CROT CROT HMOX1 HMOX1 MID1IP1
FOXA2 EGR1 SLC6A6 CSRP1 MID1IP1 XBP1 RAB30
SLC6A6 CROT RAB30 ABHD3 TSR1 MID1IP1 CEBPB
CSRP1 SLC6A6 TM7SF2 IP6K2 AURKA RAB30 CROT
REEP5 CSRP1 SREBF1 RAB30 CYP26B1
RAB30 PPP2R1B CYP26B1 SREBF1
APOM RAB30 DNAJB9
SREBF1 CEBPB EBNA1BP2

WDR77
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possible molecular initiating events (MIEs), key events 
(KEs), and key event relationships (KERs) in AOP develop-
ment. Currently AOP development requires massive manual 
curation to identify MIEs, KEs, and KERs. Furthermore, 
AOPs that have been suggested seem to be over-simplified 
to cover the whole process of adverse outcome development. 
Therefore, this study can help enrich the understanding of 
the adverse outcome development. Another possible appli-
cation of this approach is to suggest biological descriptors 
and interpret the biological significance of the descriptors. 
Since hepatotoxicity is generally caused by reactive metabo-
lites rather than drug molecule itself, sometimes molecular 
descriptors calculated from the parent compounds show a 
tendency of low correlation with the target endpoint; there-
fore, most of in silico models used complicated ML or DL 
algorithms to improve prediction accuracy with the price of 
renouncing the interpretability of the models. To overcome 
the limitation of molecular structure-based prediction mod-
els, toxicogenomics profiles were used in prediction model. 
Yen Low et al. used toxicogenomics profiles in hepatotox-
icity prediction model development and achieved higher 

prediction accuracy compared to the model developed with 
molecular descriptors alone [44]. As toxicogenomics profiles 
cover wide range of genes, descriptor selection is needed in 
order to make model building process efficient, and model 
interpretation also requires analysis of selected descriptors. 
The approach suggested in this work can be used both in 
selection and interpretation of the model. As Xi Chen et al. 
recently developed deep generative adversarial network 
(GAN) to generate toxicogenomics profile [45], GAN-driven 
toxicogenomics profile data can be increased, and thus, the 
semi-automated approach in this study is expected to be 
applied in wider range of chemicals.

Conclusions

Semi-automated approaches for data gathering, analysis, 
and biological network assembly can be valuable as they 
provide a robust and unbiased way to handle large amounts 
of diverse data. In this study, the approaches were applied to 
identify genes deregulated by the reference chemicals that 
cause the four liver diseases (cholestasis, steatosis, hepa-
titis, and cirrhosis). Biological networks of each disease 
was compiled based on the selected genes, and these were 
combined to deduce significant events in the progression 
of the four chemical-induced liver diseases. The assembled 
network can be used to identify important key events and 
their relationships in the development of four DILI diseases: 

Fig. 6  Heat map (A) and bar chart (B–J) analyses of genes associ-
ated with drug-induced hepatitis in comparison between positive 
compounds (PCs) and negative compounds (NCs). Nine genes were 
consistently deregulated among PCs and displayed a different trend in 
NCs: SLC6A6 (B), CSRP1 (C), RAB30 (D), APOM (E), PPP2R1B 
(F), HMOX1 (G), TSR1 (H), EBNA1BP2 (I), and WDR77 (J)

◂

Table 4  Genes identified as 
of highest probability to be 
associated with the development 
of cirrhosis

Time 29 days 15 days 8 days 4 days 1 day 9 h 6 h 3 h

 Genes CSRP1 ABHD3 CROT C1R A1BG ABHD3 CSF1R CYP26B1
DUSP6 CSRP1 HSD11B2 DUSP6 CYP26B1 BHLHE40 CYP26B1 NR1D1
EGR1 CYP27A1 LPL HBB CYP27A1 CEBPB GPNMB NR1D2
HBB EBP PTPRF EGR1 CYP26B1 SLC16A10
LPL GPNMB GPNMB DUSP6
PHGDH HBB KCNJ8
PPP2R1B LPL KDR
S100A9 NCALD LAMC2

PPP2R1B LPL
S100A9 MGAT2

NARS
NR3C1
NT5E
PHLDA1
POLR3G
SLC1A4
TARS
WARS
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Fig. 7  Heat map (A) and bar chart (B–I) analyses of genes associ-
ated with drug-induced cirrhosis in comparison between positive 
compounds (PCs) and negative compounds (NCs). Nine genes were 

consistently deregulated among PCs and displayed a different trend in 
NCs: CSF1R (B), EGR1 (C), GPNMB (D), LPL (E), HSD1182 (F), 
MGAT2 (G), NR1D1 (H), and S100A9 (I)



405Toxicol Res. (2022) 38:393–407 

1 3

Fig. 8  Each biological network for cholestasis (A), steatosis (B), hepatitis (C), and cirrhosis (D)

Fig. 9  Integrated biological networks on four liver diseases
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cholestasis, steatosis, hepatitis, and cirrhosis. Suggested key 
events are basis for initial testing of chemicals responsible 
for the development of any of the diseases, and they can be 
further refined once the patterns of deregulation are consist-
ently recorded.
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