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Abstract

Background: Collagen fibers play an important role in tumor initiation, progression, and invasion. Our previous
research has already shown that large-scale tumor-associated collagen signatures (TACS) are powerful prognostic
biomarkers independent of clinicopathological factors in invasive breast cancer. However, they are observed on a
macroscale and are more suitable for identifying high-risk patients. It is necessary to investigate the effect of the
corresponding microscopic features of TACS so as to more accurately and comprehensively predict the prognosis
of breast cancer patients.

Methods: In this retrospective and multicenter study, we included 942 invasive breast cancer patients in both a
training cohort (n = 355) and an internal validation cohort (n = 334) from one clinical center and in an external
validation cohort (n = 253) from a different clinical center. TACS corresponding microscopic features (TCMFs) were
firstly extracted from multiphoton images for each patient, and then least absolute shrinkage and selection
operator (LASSO) regression was applied to select the most robust features to build a TCMF-score. Finally, the Cox
proportional hazard regression analysis was used to evaluate the association of TCMF-score with disease-free
survival (DFS).

Results: TCMF-score is significantly associated with DFS in univariate Cox proportional hazard regression analysis.
After adjusting for clinical variables by multivariate Cox regression analysis, the TCMF-score remains an independent
prognostic indicator. Remarkably, the TCMF model performs better than the clinical (CLI) model in the three
cohorts and is particularly outstanding in the ER-positive and lower-risk subgroups. By contrast, the TACS model is
more suitable for the ER-negative and higher-risk subgroups. When the TACS and TCMF are combined, they could
complement each other and perform well in all patients. As expected, the full model (CLI+TCMF+TACS) achieves
the best performance (AUC 0.905, [0.873–0.938]; 0.896, [0.860–0.931]; 0.882, [0.840–0.925] in the three cohorts).
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Conclusion: These results demonstrate that the TCMF-score is an independent prognostic factor for breast cancer,
and the increased prognostic performance (TCMF+TACS-score) may help us develop more appropriate treatment
protocols.

Keywords: Breast cancer, Multiphoton imaging, TACS corresponding microscopic features, Prognosis

Background
Most of cancer-related mortality is directly caused by
the cancer cell metastasis from the primary tumor to
distant sites [1]. The migration of cancer cells is a multi-
step process and begins with a remodeling of the local
tumor microenvironment (TME) including changes in
the extracellular matrix (ECM) [2]. The ECM provides
structural and mechanical support for cells and tissues,
influences cell migration through its physical properties
[3, 4], and is mainly made up of a complex meshwork of
collagen fibers, glycoproteins, and proteoglycans [5].
Collagen fibers, which are the important component of
ECM and may promote or inhibit cell motion, either im-
pede tumor invasion via acting as a barrier against mi-
gration [6] or facilitate invasion through providing high-
speed “highways” according to their orientation [7]. The
role of neighboring stroma in mediating breast tumor
initiation, progression, and invasion to surrounding tis-
sue has been broadly researching [8, 9].
There has a famous prognostic factor associated with

collagen orientation, known as TACS1-3, which predicts
the behavior of cancer cells according to the mode of
collagen alignment [10]. In vitro research showed that
collagen orientations are crucial to tumor cell invasion
[11], and in vivo study also proven that collagen signa-
ture is an important prognostic factor [12]. Especially,
TACS3, which was identified via the presence of linear
collagen structure perpendicular to tumor border, shows
an important prognostic value and is related to reducing
the survival rate of patients [12]. In our previous re-
search, we expanded the TACS1-3 by recognizing
TACS4-8 at a large scale and at the invasion front of the
primary tumor. TACS1-8 could describe the changes of
collagen distribution patterns caused by the interaction
between tumors and surrounding collagen fibers during
the process of tumorigenesis, development, and invasion.
We found that TACS-score (combining TACS1-8) was a
strong and general prognostic indicator for disease-free
survival (DFS) of breast cancer patients [13]. However,
the microscopic features of TACS have not been system-
atically investigated.
Many new computational techniques were developed

to quantify the collagen microstructures and provided
robust and informative features within a heterogeneous
collection of collagen patterns [14]. For example, Bred-
feldt et al. have applied the curvelet-denoising filter fol-
lowing by the FIRE (CT-FIRE) to track collagen shape

changes over time in an in vivo mouse model [15]. Fal-
zon et al. have used the elliptical Fourier analysis to
compare the differences in collagen shape between nor-
mal, benign, and malignant breast tissues [16], and Hu
et al. suggested the orientation-dependent gray-level co-
occurrence method (OD-GLCM) for distinguishing the
different texture patterns of collagen fibers in rat ten-
dons and human pancreatic tissue [17]. Multiphoton
microscopy (MPM) has the talent to provide detailed tis-
sue architecture information of unprocessed specimens
through a combination of two-photon excitation fluores-
cence (TPEF) and second harmonic generation (SHG),
where SHG imaging could provide a direct and label-
free approach for observing collagen structures. Re-
cently, the feature extraction of SHG images is a rapidly
growing field, which involves in extracting numerous
quantitative features to determine the relationships be-
tween the microscopic features and potential pathology
[18, 19]. Nevertheless, the association between collagen
microstructure characteristics and breast cancer progno-
sis has not been fully explored.
In this study, we first converted TACS1-8-related SHG

images into high-dimensional minable data and ex-
tracted TACS corresponding microscopic features
(TCMFs). Then, the least absolute shrinkage and selec-
tion operator (LASSO) regression was used for choosing
the most robust features to build a TCMF-score. In con-
trast to the results from TACS, the TCMF-score is more
suitable for identifying low-risk patients. Furthermore,
when the TACS and TCMF models were combined, they
could complement each other and perform well in all
patients. Therefore, this strong and general imaging
prognosticator (TCMF-score) may convince pathologists
to adopt it as a prognostic histopathology tool, thereby
broadly altering therapeutic options.

Methods
Patients and clinicopathological information
The institutional review board at Fujian Medical Univer-
sity Union Hospital and Harbin Medical University Can-
cer Hospital provided ethical approval for the use of
patient material in this study. We retrospectively col-
lected 1223 formalin-fixed paraffin-embedded (FFPE)
breast cancer tissue samples from 1223 patients (age
21–87 years), where 281 samples were excluded accord-
ing to the exclusion criteria and 942 passed quality con-
trol for the final analysis. Samples were included in
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terms of a consecutive series of predefined inclusion cri-
teria: histologic diagnosis of invasive breast cancer with-
out distant metastasis, more than 5 years of follow-up
except for patients who developed distant relapse within
5 years. The exclusion criteria were as follows: patients
were treated with preoperative therapy (neoadjuvant
chemotherapy or radiotherapy); patients had missed
relevant clinicopathological characteristics or follow-up
data; some samples were not suitable for analysis due to
the damage, tumor-free, or poor section quality; some
samples’ collagen fibers are too sparse to extract their
microscopic features.
For this study, 689 patients were from the Fujian Med-

ical University Union Hospital and were divided ran-
domly into training (355 cases) and internal validation
(334 cases) cohorts. The external validation cohort was
comprised of 253 patients from Harbin Medical Univer-
sity Cancer Hospital. Table 1 shows the clinical charac-
teristics of the patients in the three cohorts. The patient
recruitment pathway is shown in Additional file 1: Fig.
S1. Patients in the three cohorts are balanced for
disease-free survival (DFS), with the median DFS time
(IQR) of 71.0 (38.0–84.0) months for the training cohort,
70.0 (35.8–83.0) months for the internal validation co-
hort, and 70.0 months (40.5–80.0) for the external valid-
ation cohort. Baseline clinical characteristics were
collected, including age at surgical intervention, molecu-
lar subtype (luminal A and B, HER2-enriched as well as
triple-negative), tumor size (T1, T2, and T3), lymph
node metastasis (N0, N1, and N2), clinical stage (I, II,
and III), histological grade (G1, G2, and G3), chemother-
apy (yes or no), radiation therapy (yes or no), endocrine
therapy (yes or no), and targeted therapy (yes or no).

Sample preparation and computer-based quantitation of
TACS corresponding microscopic features (TCMFs)
Two serial sections of 5-μm thickness were cut from ar-
chived paraffin block via a semiautomatic microtome in
the pathology department. One slice was deparaffinized
by alcohol and xylene and stained with H&E for whole
slide imaging, and the other adjacent section was simply
deparaffinized for stain-free MPM imaging.
The protocol for TACS1-8 quantification has been de-

scribed in detail in a previously published paper [13].
For each case, the FFPE tissue block with tumor bound-
ary was selected by a pathologist for microscopic ana-
lysis of collagen features. Throughout the whole tissue
slice, several (7–20) discrete ~2.8-mm squared non-
overlapping regions across the invasive margin and adja-
cent tumor areas, which depended on the size of sam-
ples, were firstly numbered in H&E images. Then, MPM
imaging was performed on another section based on all
the numbered regions. The large-scale TACS were

determined on the MPM images by three independent
reviewers who did not know the pathological outcomes.
Subsequently, for each patient, a region of interest

(ROI) with a field of view of 150μm × 150μm was identi-
fied from each non-overlapping large-scale MPM image
with TACS patterns. A total of 142 TACS corresponding
microscopic features (TCMFs), including 8 morphologic
features and 134 textural features, were first extracted
from each ROI using Matlab 2016b (Additional file 1:
Supplementary Methods [20–28], Table S8-S11, Fig. S8,
Fig. S10) and averaged over all ROIs from each patient,
and then all 142 TCMFs were normalized using Z-score
transformation. The average time of MPM imaging on a
slice (a patient) was about 60 min, and the examination
time for a trained reviewer to extract TACS was about
10 min/section. The average time of the intercepting
small-scale image and running Matlab program was
about 6 min/section.

Statistical analysis
The statistical analysis was performed on R 3.5.2 and
IBM SPSS Statistics 24. The clinical endpoint of our
study was disease-free survival (DFS) that was defined as
the time from the date of diagnosis to that of the first re-
currence of the disease, date of death, date last known to
have no evidence of disease, or date of the most recent
follow-up. All statistical tests were two-sided, and a P <
0.05 was considered statistically significant.
The least absolute shrinkage and selection operator

(LASSO) regression was applied to choose the most ro-
bust features to establish a TCMF-score. LASSO is a
popular regression method for the high-dimensional
predictors [29] and has been expanded to the Cox pro-
portional hazard regression model for survival analysis
[30]. The R package “glmnet” was selected to implement
the LASSO Cox regression model analysis [31]. We ap-
plied the LASSO algorithm jointly with the Cox survival
model to perform a nested feature selection scheme to
analyze the association between each TCMF feature and
DFS in the training cohort. A formula was obtained
through a linear combination of the selected features
weighted by their respective LASSO coefficients and
then was applied to acquire a TCMF-score for each pa-
tient. We used multivariate Cox regression analysis to
calculate the relative weight of each score (TCMF-score,
TACS-score, CLI-score) and then used a linear combin-
ation of each score and its relative weight to establish a
comprehensive prognosis score (TCMF+TACS or CLI+
TCMF+TACS).
We performed a receiver operating characteristic

(ROC) curve analysis to obtain the areas under the
curves (AUCs) for estimating prognostic accuracy and to
determine the optimal cutoff value by maximizing the
Youden index in the training cohort. Then, the cutoff
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Table 1 Baseline characteristics of patients in the training, internal validation, and external validation cohorts

Characteristics Fuzhou training
cohort (355)

Fuzhou internal validation
cohort (334)

Harbin external validation
cohort (253)

Total cohort (942)

Age

≤50 199 (56.1%) 194 (58.1%) 136 (53.8%) 529 (56.2%)

>50 156 (43.9%) 140 (41.9%) 117 (46.2%) 413 (43.8%)

Molecular subtype

Luminal A 75 (21.1%) 59 (17.7%) 69 (27.3%) 203 (21.5%)

Luminal B 161 (45.4%) 145 (43.4%) 97 (38.3%) 403 (42.8%)

HER2-enriched 64 (18.0%) 75 (22.5%) 48 (19.0%) 187 (19.9%)

Triple negative 55 (15.5%) 55 (16.5%) 39 (15.4%) 149 (15.8%)

Tumor size

≤2cm 147 (41.4%) 134 (40.1%) 143 (56.5%) 424 (45.0%)

2–5cm 187 (52.7%) 174 (52.1%) 107 (42.3%) 468 (49.7%)

>5cm 21 (5.9%) 26 (7.8%) 3 (1.2%) 50 (5.3%)

Nodal status

0 180 (50.7%) 169 (50.6%) 117 (46.3%) 466 (49.5%)

1–3 74 (20.8%) 81 (24.3%) 75 (29.6%) 230 (24.4%)

≥4 101 (28.5%) 84 (25.1%) 61 (24.1%) 246 (26.1%)

Clinical stage

I 96 (27.0%) 83 (24.9%) 74 (29.3%) 253 (26.9%)

II 156 (43.9%) 161 (48.2%) 117 (46.2%) 434 (46.1%)

III 103 (29.1%) 90 (26.9%) 62 (24.5%) 255 (27.0%)

Histological grade

G1 56 (15.8%) 56 (16.8%) 11 (4.4%) 123 (13.1%)

G2 194 (54.6%) 176 (52.7%) 202 (79.8%) 572 (60.7%)

G3 105 (29.6%) 102 (30.5%) 40 (15.8%) 247 (26.2%)

ER

Negative 119 (33.5%) 130 (38.9%) 87 (34.4%) 336 (35.7%)

Positive 236 (66.5%) 204 (61.1%) 166 (65.6%) 606 (64.3%)

PR

Negative 152 (42.8%) 155 (46.4%) 108 (42.7%) 415 (44.1%)

Positive 203 (57.2%) 179 (53.6%) 145 (57.3%) 527 (55.9%)

HER2

Negative 243 (68.5%) 213 (63.8%) 171 (67.6%) 627 (66.6%)

Positive 112 (31.5%) 121 (36.2%) 82 (32.4%) 315 (33.4%)

Chemotherapy

No 28 (7.9%) 28 (8.4%) 27 (10.7%) 83 (8.8%)

Yes 327 (92.1%) 306 (91.6%) 226 (89.3%) 859 (91.2%)

Endocrine therapy

No 135 (38.0%) 140 (41.9%) 133 (52.6%) 408 (43.3%)

Yes 220 (62.0%) 194 (58.1%) 120 (47.4%) 534 (56.7%)

Radiation therapy

No 234 (65.9%) 232 (69.5%) 195 (77.1%) 661 (70.2%)

Yes 121 (34.1%) 102 (30.5%) 58 (22.9%) 281 (29.8%)
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value was applied to classify the patients into the low-
and high-risk groups. The Kaplan-Meier survival curves
were used for evaluating the correlation between vari-
ables and disease-free survival, and the log-rank test was
used to analyze the differences in survival between the
two groups. Univariate and multivariate Cox propor-
tional hazard regression analysis was used for choosing
independent predictors by likelihood ratio test [32], and
then we made use of the independent predictors to es-
tablish the nomogram and generate a comprehensive in-
dicator for assessing DFS. The performance of the
nomogram was evaluated via discrimination and calibra-
tion [33]. A concordance index (C-index) which ranged
from 0.5 (no discrimination at all) to 1.0 (perfect dis-
crimination) was used for estimating the discrimination,
and a calibration plot, which was a graphic representa-
tion of the relationship between the actual incidence and
predicted probabilities, was used for evaluating the cali-
bration. A calibration curve would be close to the 45° di-
agonal line for a well-calibrated model [34].

Results
TACS corresponding microscopic feature score (TCMF-
score)
Our previous results suggested that the TACS-score is a
key determinant of invasive breast cancer prognosis. We
recognized 8 major TACSs in the large-scale MPM im-
ages, in a way similar to identify biomarkers of histo-
pathological subtypes from H&E images. TACS1-8 were
mainly based on the macroscopic appearance of collagen
morphological changes in the tumor microenvironment.
Details of the TACS-score for each patient have been
presented previously [13]. The calculation formula of the
TACS-score was in Additional file 1: Supplementary
Methods. In this study, the TACS-score is a comprehen-
sive prognostic manifestation of TACS1-8, namely
TACS1-8-score. All TACS-score description in the text
refers to the TACS1-8-score and TACS is the abbrevi-
ation for TACS1-8. After obtaining the macrostructural
information by MPM images, we extracted the corre-
sponding microscopic features (TCMF) of these 8 pat-
terns. The SHG image was segmented and 142 features
were extracted. The flowchart of this study is shown in
Fig. 1. Not all of the aforementioned 142 features are as-
sociated with prognosis, and irrelevant or redundant fea-
tures might potentially lower the prediction quality of

the predictor. High-dimensional feature selection could
remove irrelevant features and retain the most relevant
features for building a predictive model, and there can
contribute to lifting the efficiency of learning tasks as
well as making the model easier to be understood. In
this study, we used the least absolute shrinkage and se-
lection operator (LASSO) to capture 14 robust micro-
scopic features associated with prognosis. A detailed
description of the microscopic collagen features, selec-
tion of the final features, and the formula for calculating
the TCMF-score is shown in Additional file 1: Supple-
mentary Methods and Fig. S7.
As shown in Fig. 2A, the color bar of the heatmap in-

dicates the relationship between the risk scores and DFS.
A lower score (TCMF-score, TACS-score, or TCMF+
TACS-score) is associated with better prognosis (higher
5-year DFS), while a higher score is associated with
worse prognosis (lower 5-year DFS). Figure 2A also
shows that there is a relatively apparent demarcation line
at 5 years for the three scores in the three cohorts. Most
of the bars larger than 5 years are blue and have a good
prognosis, and most of the bars lower than 5 years are
red and have a poor prognosis. In the training cohort,
the lower TCMF-score, TACS-score, and TCMF+TACS-
score (<−1) predict higher 5-year DFS rate (93.3%, CI,
92.9–93.7%; 90.3%, CI, 89.9–90.8%; 91.1%, CI, 90.6–
91.7%), and the higher score (>1) indicated lower 5-year
DFS rate (16.5%, CI, 12.6–20.4%; 12.2%, CI, 8.8–15.5%;
11.2%, CI, 7.1–15.3%). Similar findings were also ob-
tained in the validation cohorts. The probability of 5-
year DFS predicted by the scores is presented in Fig. 2B.
The histograms of the three scores can be seen in the
supplementary material (Additional file 1: Fig. S2) and
are evenly distributed in the three cohorts. This scoring
system may act as an auxiliary tool for pathologists to
estimate patients’ survival.

Predictive performance of the TCMF-score
The TCMF-score is significantly associated with DFS in
univariate Cox proportional hazard regression analysis
(HR 3.667, [2.716–4.953], P < 0.0001). After adjusting
for clinical variables by multivariate Cox regression ana-
lysis, the TCMF-score remains an independent prognos-
tic indicator for predicting DFS (HR 1.911, [1.407–
2.595], P < 0.0001) (Additional file 1: Table S1) in the
training cohort. Noteworthy, collagen signatures remain

Table 1 Baseline characteristics of patients in the training, internal validation, and external validation cohorts (Continued)

Characteristics Fuzhou training
cohort (355)

Fuzhou internal validation
cohort (334)

Harbin external validation
cohort (253)

Total cohort (942)

Targeted therapy

No 331 (93.2%) 311 (93.1%) 228 (90.1%) 870 (92.4%)

Yes 24 (6.8%) 23 (6.9%) 25 (9.9%) 72 (7.6%)

Note: ER, estrogen receptor; PR, progesterone receptor
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to be the most significant factors (with the smallest P
values in all cohorts) compared to the clinicopathologi-
cal factors in the other validation cohorts (Add-
itional file 1: Table S2, S3).
Model performance was primarily evaluated using re-

ceiver operating characteristic (ROC) analysis in the
training, internal validation, and external validation co-
horts. The TCMF model (AUC at 5-year DFS, 0.781;
95% CI, 0.731 to 0.831) performs better than the CLI
model (0.749; 95% CI, 0.694 to 0.803), but is inferior to
the TACS model (0.845, 95% CI, 0.802 to 0.889) in the
training cohort (Fig. 3A). The input into the CLI model
are clinical risk factors including age, molecular subtype,

tumor size, nodal status, histological grade, clinical stage,
chemotherapy, and radiation therapy, and learning pro-
cedure is based on Cox proportional hazard regression.
We included all clinical parameters to show that TACS-
score or TMCF-score has a good prediction perform-
ance. These models were also applied to the internal val-
idation and external validation cohorts to examine their
generalizability. We found that the prediction perform-
ance of these models is generally stable on the two valid-
ation cohorts.
Moreover, patients were divided into low-risk and

high-risk groups according to the cutoff value at the 5-
year time point. The optimal cutoff value was

Fig. 1 The flowchart of this study. Large-scale TACSs were visually examined on SHG images by three independent reviewers. A total of 142 TACS
corresponding microscopic features (TCMFs) were extracted from SHG images. Ridge regression and LASSO regression were used to calculate the
TACS- and TCFM-score, and then the two scores were combined for a series of prognostic analysis. TACS1, curved collagen fibers wrap around the
emergent tumor foci; TACS2, collagen fibers are stretched due to tumor growth and align more parallel to tumor boundary; TACS3, collagen fibers
align perpendicular to the tumor boundary in a radiation pattern to facilitate tumor cell migration; TACS4, reticular distribution of collagen fibers
adjacent to expanding tumor that leads to a clear tumor boundary; TACS5, directionally distributed collagen fibers that enable unidirectional tumor
cell migration without a clear tumor boundary; TACS6, chaotically aligned collagen fibers that enable multidirectional tumor cell migration without a
clear tumor boundary; TACS7, densely distributed collagen fibers at the tumor invasion front largely free of tumor cells; TACS8, sparsely distributed
collagen fibers at the tumor invasion front largely free of tumor cells
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Fig. 2 A Heatmaps show the relationship between the TCMF-score, TACS-score, and TCMF+TACS-score of the three cohorts and disease-free
survival (DFS). B The 5-year DFS probability is predicted based on the TCMF-score, TACS-score, and TCMF+TACS-score in the three cohorts
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determined by the maximum Youden index in the train-
ing cohort obtained by the ROC curve analysis. Survival
differences between the low-risk and high-risk groups in
each cohort were evaluated by Kaplan-Meier survival
analysis. The predicted high-risk group has worse DFS
than the low-risk group as shown in Fig. 4. As to the risk
stratification, the hazard ratio (HR) value of the TCMF
model is higher than that of the CLI model in the three
cohorts, indicating that its risk stratification ability is su-
perior to the clinical prognostic factors (HR, training 4.4

vs. 3.8, internal validation 3.5 vs. 3.3, external validation
3.4 vs. 2.9).

Difference between TCMF and TACS models
In order to elucidate the predictive performance of these
models among different subgroups, we conducted a num-
ber of subgroup analyses classified by the clinical variables.
We evaluated the ability of risk stratification and predic-
tion of 5-year DFS of different models in different sub-
groups (Table 2). The CLI model demonstrates poor

Fig. 3 A ROC curves of the CLI, TCMF, TACS, TCFM+TACS, and CLI+TCMF+TACS models predicting 5-year DFS in three cohorts. B Mean iAUC of
the five prognostic models in the three cohorts. C Comparison of the five prognostic models by time-dependent area under ROC curves (AUC) in
the three cohorts
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predictive performance, and the performance was rela-
tively consistent in each subgroup. The distribution of
clinicopathological characteristics did not alter signifi-
cantly between the high-risk and low-risk groups in the
three cohorts. The TCMF model achieves better perform-
ance than the CLI model and significantly improves the
classification accuracy, especially in some subgroups of
low-risk variables (luminal A: HR, 5.738, AUC, 0.827; lu-
minal B: HR, 4.647, AUC, 0.835; grade G1: HR, 5.206,
AUC, 0.811; grade G2: HR, 4.122, AUC, 0.794; ER-
positive: HR, 5.174, AUC, 0.833; PR-positive: HR, 6.026,
AUC, 0.844; HER2-negative: HR, 4.083, AUC, 0.790). In
contrast, as can be seen in Table 2, the TACS model

appears to be particularly prominent in high-risk patients
as discussed extensively in our previous publication [13].
When the two models (TCMF+TACS) are combined, they
could complement each other and perform well in all pa-
tients, highlighting its general applicability (Add-
itional file 1: Table S4, Fig. S3), and the full model (CLI+
TCMF+TACS) achieves the best performance and further
stratifies the low- and high-risk patients with outstanding
values of HR (Additional file 1: Table S5).
To further examine whether there was a specific benefit

of these models, we stratified the patients into various
subgroups (ER-positive group: luminal, ER+/N−, ER+/
HER2−, ER+/N−/HER2−, ER+/PR+; ER-negative group:

Fig. 4 Kaplan-Meier curves according to the CLI model, TCMF model, TACS model, TCMF+TACS model, and CLI+TCMF+TACS model in three
cohorts. The patients were divided into low-risk and high-risk groups using the optimal cutoff value of the five models. P values were calculated
using the log-rank test. Blue lines show subjects with low risk, and red lines show subjects with high risk. A Training cohort (355 patients). B
Internal validation cohort (334 patients). C External validation cohort (253 patients). DFS disease-free survival, HR hazard ratio
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non-luminal, ER−/N+, ER−/HER2+, ER−/N+/HER2+, ER
−/PR−). The performance of the CLI model is mediocre in
each subgroup (Additional file 1: Table S6). Surprisingly,
for both risk stratification capability (HR) and prediction
accuracy (AUC), the TCMF model is particularly out-
standing in the ER-positive and lower-risk combination
subgroup, and the TACS model is counter-matched in the
ER-negative and higher-risk combination subgroup (Add-
itional file 1: Table S6). Similarly, the TCMF+TACS
model is quite robust in all ER-positive and ER-negative

subgroups (HR, AUC in the Additional file 1: Table S6, C-
index in the Additional file 1: Fig. S4). The differential
benefit of the TCMF/TACS model is also revealed by the
increases in HR, AUC from the CLI model to the full
model (Additional file 1: Table S6).

Combination prediction of TCMF- and TACS-score
When TCMF is combined with TACS, the AUC in-
creases to 0.876 (95% CI, 0.838 to 0.913) (Fig. 3A). The
accuracy, sensitivity, and specificity of TCMF+TACS are

Table 2 Comparison of 5-year prognostic performance by the five models for different clinicopathological subgroups

Variable CLI TCMF-score TACS-score TCMF+TACS CLI+TCMF+TACS

HR AUC HR AUC HR AUC HR AUC HR AUC

Age

≤50 3.320 0.729 4.112 0.778 5.869 0.823 7.201 0.854 9.069 0.889

>50 3.282 0.739 3.323 0.788 5.999 0.833 7.653 0.872 9.243 0.902

Molecular subtype

Luminal A 1.749 0.601 5.738 0.827 3.594 0.761 4.060 0.816 4.581 0.821

Luminal B 2.789 0.720 4.647 0.835 6.042 0.838 7.490 0.889 9.296 0.901

HER2-enriched 4.386 0.769 2.541 0.719 9.151 0.862 10.000 0.868 11.716 0.917

Triple negative 3.431 0.735 2.404 0.696 6.285 0.863 10.009 0.859 9.107 0.893

Tumor size

≤2cm 2.824 0.683 3.959 0.782 5.976 0.818 7.001 0.855 6.899 0.872

2–5cm 3.150 0.725 3.987 0.789 6.209 0.839 8.264 0.871 10.631 0.897

>5cm 23.874 0.859 2.314 0.818 3.964 0.844 4.425 0.890 8.767 0.942

Nodal status

0 2.874 0.628 3.343 0.751 5.443 0.820 6.808 0.856 8.250 0.880

1–3 1.681 0.593 4.330 0.799 3.871 0.758 5.216 0.813 6.086 0.829

≥4 4.332 0.728 2.826 0.788 6.337 0.865 7.433 0.881 10.753 0.910

Clinical stage

I 4.024 0.615 3.299 0.741 4.071 0.797 5.042 0.833 6.546 0.865

II 1.881 0.609 4.143 0.790 5.256 0.798 7.012 0.844 8.048 0.862

III 3.773 0.724 2.722 0.775 6.102 0.863 7.125 0.876 9.500 0.904

Histological grade

G1 3.214 0.703 5.206 0.811 4.889 0.769 8.407 0.849 10.520 0.876

G2 3.422 0.725 4.122 0.794 6.095 0.840 7.098 0.866 8.016 0.893

G3 2.810 0.733 2.639 0.749 6.528 0.845 8.775 0.874 10.677 0.898

ER status

Positive 2.989 0.721 5.174 0.833 5.187 0.811 6.408 0.866 8.350 0.889

Negative 3.820 0.752 2.495 0.709 7.722 0.864 10.056 0.868 10.508 0.906

PR status

Positive 3.116 0.721 6.026 0.844 5.178 0.807 7.354 0.865 8.698 0.891

Negative 3.416 0.744 2.473 0.719 7.219 0.859 8.012 0.867 9.562 0.899

HER2 status

Negative 3.435 0.736 4.083 0.790 5.158 0.818 7.250 0.857 8.952 0.890

Positive 2.993 0.726 3.209 0.776 8.230 0.852 8.506 0.881 9.530 0.903

Note: ER, estrogen receptor; PR, progesterone receptor
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also universally better than other single models. The full
model achieves more improved AUC, accuracy, and speci-
ficity, but reduces sensitivity, which may be due to the low
sensitivity of the CLI model (Table 3). High specificity
would help the model avoid misidentifying low-risk pa-
tients as high risk, i.e., few low-risk individuals are diag-
nosed as a high-risk group, while good sensitivity allows
the model to not miss high-risk patients, i.e., most high-
risk patients are correctly diagnosed as a high-risk group.
The TCMF+TACS model predicts 5-year DFS for all

categories by six clinical variables (Fig. 5). Patients with a
low-risk score have less frequent recurrence at 5 years
than these with a high-risk score. The personalized prog-
nostic potential of the TCMF+TACS-score implies that
we could triage all patients by the six clinical variables into
low- and high-risk groups with diverged stratification of a
5-year DFS rate. Moreover, not all patients with small tu-
mors (patients with a tumor 2 cm in diameter or smaller)
and luminal A patients are at low risk. Those patients with
a high-risk TCMF+TACS-score have a 54.1 and 37.0% risk
of recurrence at 5 years, respectively.
To further evaluate the prognostic performance of dif-

ferent models, we calculated an integrated cumulative/dy-
namic area under the curve (iAUC) for the five models,
respectively, being 70.6%, 71.7%, 77.1%, 79.8%, and 83.3%
in the training cohort (Fig. 3B). Applying the models to
the internal and external validation cohorts’ results in
iAUC values of 71.4%, 70.9%, 75.9%, 80.5%, 83.6%, and
68.7%, 74.5%, 74.4%, 77.9%, 81.8%, respectively. Figure 3C
shows the AUC for time-dependent ROC performance,
and the performance of these models in predicting recur-
rence risk remains stable with only small fluctuation in
time-dependent AUC values as we move away from the
time point of diagnosis. These results highlight the im-
portance of tumor-stroma spatial patterns.
As illustrated in Fig. 4A, the CLI model, TCMF model,

TACS model, TCMF+TACS, and CLI+TCMF+TACS
deliver an increasing HR from ~4 to ~12, revealing an
increasing capacity for risk stratification. The TCMF+
TACS model shows significantly better risk stratification
than the CLI model (HR = 10.2 [6.6–15.7], P < 0.0001
vs. 3.8 [2.7–5.3], P < 0.0001), and the full model gains
the highest HR (12.2 [8.2–18.3], P < 0.0001) and achieves

the best performance in terms of AUC at 5-year DFS
(Figs. 3 and 4A). To confirm that the TCMF+TACS
model has an outstanding prognostic value in different
populations, we further extended it to the internal and
external validation cohorts and acquired the similar re-
sults (Figs. 3 and 4B, C). Thus, high discriminatory ac-
curacy and super risk stratification ability validate
TCMF+TACS-score as a strong DFS prognosticator.
Moreover, we propose that the combined analysis of

CLI, TCMF, and TACS can improve the prognostic
stratification of breast cancer patients by evaluating the
high and low risks of different models. The risk groups
of CLIlow/TCMFlow/TACSlow represent that primary
breast cancer was controlled by standard treatment with
improved DFS. In contrast, the risk groups of CLIhigh/
TCMFhigh/TACShigh would represent a population of pa-
tients at risk for recurrence. Therefore, as can be seen
from the Kaplan-Meier curves (Additional file 1: Fig. S5,
upper left), low-risk groups of TCMF and TACS are as-
sociated with a higher DFS rate regardless of the CLI
risk category. On the contrary, there is a poorer DFS
rate when TCMF and TACS are both high (Add-
itional file 1: Fig. S5, bottom right).
In addition, TCMF and TACS-score remain as inde-

pendent prognostic factors by the multivariate analysis
of DFS (Additional file 1: Table S1), along with the clini-
copathologic biomarkers such as molecular subtype,
tumor size, nodal status, and chemotherapy. Other clin-
ical factors, such as age, clinical stage, histological grade,
and radiation therapy, are excluded because they are not
significantly associated with DFS in the univariate and
multivariate Cox proportional hazard regression analyses
(P > 0.05). Then, a clinically applicable nomogram inte-
grating these independent prognostic factors was devel-
oped to predict 1-year, 3-year, and 5-year DFS in the
training cohort (Additional file 1: Fig. S6A). Calibration
plots (Additional file 1: Fig. S6B) show that nomogram
performs well (C-index 0.88, 0.86–0.91 for the training
cohort; 0.85, 0.82–0.89 for the internal validation cohort;
and 0.85, 0.81–0.88 for the external validation cohort)
and displays excellent agreement between the observed
and predicted rates in the three cohorts (proximity to
45° diagonal line).

Table 3 The performance comparison of different models for predicting 5-year disease-free survival

Model Training cohort Internal validation cohort External validation cohort

AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE

CLI 74.9 71.5 64.7 75.7 73.3 69.5 58.0 75.2 72.4 69.6 51.1 79.8

TCMF-score 78.1 74.6 66.9 79.3 77.2 71.9 65.2 75.2 80.6 73.1 60.0 80.4

TACS-score 84.5 81.4 78.2 83.3 81.8 74.6 69.6 77.0 81.8 75.9 73.3 77.3

TCMF+TACS 87.6 82.0 84.2 80.6 86.2 78.1 80.4 77.0 84.8 76.3 78.9 74.9

CLI+TCMF+TACS 90.5 85.6 79.0 89.6 89.6 82.6 75.0 86.5 88.2 82.2 70.0 89.0

Note: AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity
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Fig. 5 Forest plot shows the proportion of patients with disease-free survival at 5 years. For each subgroup, the low- and high-risk categories
were obtained according to the optimal cutoff value of the TCMF+TACS-score. Patients with a low-risk score have less frequent recurrences at
5 years
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Clinical applications
Finally, we used the CLI, TCMF, TACS, and CLI+
TCMF+TACS models to evaluate the effect of postoper-
ative adjuvant treatment on different recurrence risk
groups stratified via the treatment guideline in China,
which agrees with the 10th St Gallen expert consensus
[35]. This guideline allowed 590 patients to be classified
as minimum risk (n = 28) or moderate risk (n = 562)
(defined together as low risk) for less aggressive treat-
ment, and 352 patients as high risk for more aggressive
treatment (Additional file 1: Table S7), and thereby may
cause undertreatment up to 139 patients and overtreat-
ment up to 156 patients, demonstrating a significant
percentage of patients may receive inappropriate ther-
apy. The CLI model would lower 1 undertreated patient
and 14 overtreated patients. By contrast, the full model
would reduce the undertreated patients by 56 and the
overtreated patients by 85 (Additional file 1: Table S7).
Therefore, there may be inadequate treatment or over-
treatment for some patients after standard treatment.
On the other hand, we re-stratified the two group pa-

tients (low- and high-risk groups by clinical guideline)
by the five models (CLI, TCMF, TACS, TCMF+TACS,
and CLI+TCMF+TACS models). The full model (CLI+
TCMF+TACS) presents higher hazard ratios (HR, 7.0
[5.1–9.7] in patients with low risk by clinical guideline,
9.6 [6.4–14.0] in patients with high risk by clinical guide-
line) (Additional file 1: Fig. S9). In patients with low/
intermediate recurrence risk by clinical guideline, 79.7%
of patients (n = 590) is still classified as low risk and
20.3% of patients (n = 590) is reclassified as high risk by
the full model, and in patients with high recurrence risk
by clinical guideline, 42.3% of patients (n = 352) is re-
classified as low risk and 57.7% of patients (n = 352) is
still classified as high risk. Thus, to some extent, the full
model may complement the Chinese treatment guideline
and improve the choice of personalized adjuvant
therapy.

Discussion
At present, conventional clinical management of breast
cancer mainly depends on the traditional prognostic fac-
tors, including patient’s age, molecular subtype, tumor
size, lymph node metastasis, clinical stage, and histo-
logical grade, in addition to estrogen receptor (ER), pro-
gesterone receptor (PR), and HER2 [36, 37]. These
biomarkers are valuable for predicting local recurrence
and distant metastasis [38]. However, patients with the
same pathological features often have different out-
comes, suggesting that the current clinical factors are in-
adequate for predicting prognosis [39]. Therefore, the
search for new prognostic and predictive biomarkers is
motivated to promote the prognostic evaluation and im-
prove patient outcome. In our previous study, we found

that TACS1-8 emerge as a tumor microenvironment-
based structural prognosticator, but these large-scale
collagen patterns are macroscopic morphologies ob-
served from multiphoton images [13].
High-throughput collagen microscopic features includ-

ing morphological and textural features can be extracted
through image processing to quantify the differences be-
tween tissues. The morphological features could quantify
shape-related properties, such as collagen area, number,
length, width, straightness, crosslink density, crosslink
space, and orientation. Recently, Sprague et al. found
that multiple morphological features of collagen fibers
around DCIS were associated with DCIS recurrence risk
[40]: patients with greater collagen width and density
had a lower risk of recurrence, while patients with
higher fiber straightness and distance to the nearest two
fibers had a higher risk of recurrence. However, Case
et al. reported that collagen width is associated with
poor outcome by multivariate analysis [41]. The texture
features, including histogram, gray-level co-occurrence
matrix (GLCM), and Gabor wavelet transformation fea-
ture, have been proved to be popular features in biomed-
ical image analysis [19, 22, 42–44]. Texture analysis,
which is based on first-order and second-order statistics,
can be used to extract the image features associated with
the structural and biochemical changes in collagen net-
works and quantitatively track the alterations correlated
with collagen remodeling [45]. GLCM is a second-order
statistical texture feature that reflects the spatial hetero-
geneity of collagen fibers with five different displace-
ments of pixels and four different directions, and Gabor
wavelet transformation is also a type of textural analysis
that could reflect the spatial relationship of images in
different scales and orientations after the convolution of
images. Texture analysis has been employed extensively
in magnetic resonance imaging (MRI) for distinguishing
between breast cancer subtypes [46], differentiating be-
tween benign and malignant lesions [47], and evaluating
the relationship between textural features and survival
outcomes of patients with breast cancer [48], but not for
evaluating the collagen spatial structure because of the
limitation in resolution of MRI [49]. In this study, mor-
phological and textural analyses were used for extracting
the microscopic features of collagen fibers in high spatial
resolution MPM images.
We used computer-assisted image feature processing

to automatically extract the corresponding microscopic
feature of each TACS (TCMF), and then made use of
the least absolute shrinkage and selection operator
(LASSO) regression to choose the most robust features
to acquire a TCMF-score. Statistical analyses show that
TCMF-score is a strong independent prognostic indica-
tor for predicting DFS. Interestingly, we found different
prognostic values for subgroups when the TACS and
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TCMF were used for evaluating the accuracy (AUC) of
diagnosing 5-year DFS and risk stratification ability.
TACS-score would be helpful to recognize a significant
percentage of high-risk patients classified through the
clinicopathological factors. By contrast, TCMF-score
performs better for the low-risk patients, especially for
hormone-positive breast cancer, which may compete
with the popular multigene assays on prognosis [50, 51].
As we all know, microstructural changes will precede
the changes of macrostructure. The changes in micro-
structure may occur in the early stage of diseases, but
cannot be observed visually. It is these microstructural
changes, rather than the macrostructural changes, that
may have the sensitivity to signify important features for
detecting early lesions [52]. This may be the reason why
the microscopic collagen features are more suitable for
identifying low-risk patients, while the macroscopic col-
lagen patterns are more suitable for identifying high-risk
patients. It is a promising method for the early detection
of lesions by microstructural changes. What is more, the
TCMF+TACS-score is far better than the well-
established clinicopathological factors in prognostic per-
formance, highlighting the obbligato role of the tumor
microenvironment in cancer progression. This study
would extend our previous research on TACS and high-
light the importance of microscopic collagen morph-
ology changes.

Conclusions
In summary, we used computer-assisted image process-
ing to automatically extract the corresponding micro-
scopic features of each TACS (TCMF) and then utilized
the LASSO regression to screen out the most robust fea-
tures to establish a TCMF-score. TCMF and TACS
would reflect the microscopic and macroscopic morph-
ology changes of collagen fibers in the breast tumor
microenvironment. A combination of TCMF-score with
TACS-score could be used for predicting individual
disease-free survival rate with good statistical signifi-
cance, high discriminatory accuracy, and superior risk
stratification ability. With the increasing automation of
image processing, TCMF+TACS screening has great po-
tential to become a clinical diagnostic tool, providing
more accurate prognosis information.
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