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Dendritic cells (DCs) are the most potent antigen presenting cells. DCs play a pivotal role in
determining the character and magnitude of immune responses to tumors. Host and donor
hematopoietic-derived DCs play a critical role in the development of graft-versus-host dis-
ease (GVHD) following allogeneic hematopoietic cell transplantation. GVHD is tightly linked
with the graft-versus-tumor (GVT) effect. Although both host and donor DCs are important
regulators of GVHD, the role of DCs in GVT is poorly understood. GVT is caused by donor
T cells that attack recipient tumor cells.The donorT cells recognize alloantigens, and tumor
specific antigens (TSAs) are mediating GVHD. The process of presentation of these anti-
gens, especiallyTSAs remains unknown. Recent data suggested that DC may be essential
role for inducing GVT.The mechanisms that DCs possess may include direct presentation,
cross-presentation, cross-dressing. The role they play in GVT will be reviewed.
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INTRODUCTION
Allogeneic hematopoietic cell transplantation (allo-HCT) has
become widely used as a curative therapy for a variety of
life-threatening hematologic, immunologic, and genetic diseases.
However, serious complications endure, presenting as obstacles
to successful treatment. One complication is graft-versus-host
disease (GVHD) and another is primary disease relapse. The cur-
rent understanding of the science suggests that the dysregulation
and/or dysfunction of the immune system and corresponding
immunocompetent cells of recipients after allo-HCT are responsi-
ble for these obstacles (1). Current prophylaxis and treatment regi-
mens using immunosuppressants mainly target T cells for the mit-
igation of GVHD. Excessive immunosuppression for the treatment
of GVHD often results in serious infections (Cytomegalovirus,
Herpes zoster virus, fungus, and bacterias), decreases graft-versus-
tumor (GVT) responses (which are the most beneficial effects of
allo-HCT), and finally is known to cause relapse of primary dis-
ease (1, 2). Thus, it is imperative that we develop new strategies
of GVHD prophylaxis and treatment while maintaining sufficient
GVT effect.

Dendritic cells (DCs), the most potent of the antigen presenting
cells (APCs) of both the innate and adaptive immune responses,
are critical for the pathophysiology of both GVHD and GVL (1–3).
Host and donor hematopoietic-derived APCs (particularly DCs)
are critical in the development of GVHD (4–6). In addition, host
hematopoietic-derived DCs also play a significant role in GVL (7,
8). In this review, we focus on the role of DCs in GVT and consider
strategies for effective utilization in enhancing GVT.

SUBSETS AND FUNCTION OF DENDRITIC CELLS
Dendritic cells have bilateral characteristics, as DCs are critical for
priming T cell responses in an inflammatory milieu, but are also
required for the induction of tolerance at steady state.

Dendritic cells are phenotypically classified under many sub-
types. This heterogeneity suggests that better understanding of
these distinct subsets may lead to the ability to modify and
manipulate DC functions. Lymphoid and non-lymphoid tissues,
as well as the blood, contain a variety of DC subsets with a
wide range of functions. DCs arise from bone marrow (BM)-
derived macrophage/DC precursors (MDPs) (9). MDPs differen-
tiate into monocytes, yielding macrophages; common DC pre-
cursors (CDPs), which generate classic DC (cDC)-restricted pre-
cursors (pre-cDCs); or plasmacytoid DCs (pDCs) (9). However,
human equivalents of mouse MDPs and CDPs remain elusive (10).
Pre-cDCs migrate from the BM and enter blood circulation des-
tined for lymphoid organs and/or peripheral tissues. Upon arrival,
pre-DCs differentiate into lymphoid/non-lymphoid tissue DCs
(9). DCs express both the hematopoietic marker CD45 and inte-
grin CD11c. Further, DCs can be divided into two major categories
in lymphoid tissues, based upon the intensity of CD11c expres-
sion. The first is conventional DCs (cDCs–CD11chigh) and second
is pDCs (pDCs–CD11clow/int). cDCs are further categorized into
lymphoid organ resident DCs and migratory tissue DCs. Both
categories of cDCs are also divided into CD8α+DCs (lymphoid-
derived DCs) and CD8+α−DCs (myeloid-derived DCs) and they
show low co-stimulatory molecules in steady state (11–13). In
non-lymphoid tissue, there are three types of DCs [tissue-resident
steady state DCs, pDCs, and monocyte-derived DCs (moDCs)]
in mouse; humans express at least two types of DCs, pDCs, and
myeloid-derived DCs that are divided into three different cate-
gories: CD16+DCs, BDCA1+, and BDCA3+ DCs. Although DCs
expressing certain phenotypes are known to contribute to devel-
opment of GVHD, but not obligatory (14–16), the function of the
remaining phenotypes is less understood. The various subsets are
discussed very briefly below and summarized in Table 1, in light
of several recent excellent reviews on these subsets (13, 17–19).
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Table 1 | Dendritic cell subsets.

DC subsets Surface markers Transcription factors Function

Mouse:

CD8α+DCs

Mouse: CD8α+ (11) FMS-related tyrosine kinase 3

(Flt3) (171, 172)

Engulf and process exogenous antigens and

subsequently present these antigens to CD4+ T cells

via MHC class II (13)

Strong cross-presentation capacity (37)

Enhancement of CTL responses (38, 39)

Interferon regulatory factor 8

(IRF8) (24, 30)

Human:

BDCA3+DCs

Human: BDCA3+ (CD141)+ (48) Inhibitor of DNA binding protein

2 (Id2) (31, 36)

Mouse/human: MHC class II+, CD24+

(12), CD36+ (24), DEC205 (CD205)+ (12),

Clec9A (DNGR-1)+ (22), TLR3+ (23),

XCR+ (25, 46, 47)

Basic leucine zipper transcription

factor ATF-like 3 (Batf3) (32)
Nuclear factor interleukin-3

regulated (Nfil3) (33)

PU.1 (34)

Zinc finger transcription factor

(Zbtb46) (35)

Secrete large amounts of IL-12 (38, 39)

Secretion of type I IFN with TLR3, TLR9, and

plasmodium stimulation (173, 174)

Immune modulatory function (13)

Decrease allogeneic T cell proliferation (28, 40, 175)

Induce FoxP3+ Treg and IL-10 secreting T cells (40, 41)

Induction of peripheral self-tolerance (176)

CD8α−DCs Mouse: CD8α− (17), CD11b+ (17), CD209

(DC-SIGN)+ (51), CD172a (Sirpα)+ (52),

DC inhibitory receptor 2 (DCIR2)+ (53),

dectin-1 (Clec-7a)+ (54)

FMS-related tyrosine kinase 3

(Flt3) (17), lymphotoxin β

receptor (LTβR) (17), notch RPB-J

(55), notch receptor 2 (57),

reticuloendotheliosis homolog B

(RelB) (177), TNF-associated

factor 6 (TRAF6) (178)

Enhancement of Th2 responses in primary stimulation

(58)

IL-12 production under certain conditions (59)

CD4+ T cell activation (53)

Cross-presentation of particular antigens under

certain conditions (54, 179, 180)

Plasmacytoid

DCs (pDCs)

Mouse: CD11cint (18), B220 (CD45RA)hi

(18), sialic acid-binding

immunoglobulin-like lectins-H (Siglec-H)hi

(18), CD317 (mPDCA-1)hi (18)

Ikaros (68), STAT-3 (68, 181),

STAT-5 (181) (182)

Secretion of type I IFNs (18, 62)

Immunomodulation (18)

Increased cross-presentation capacity (183)

Human: BDCA-2+ (60), BDCA-4+ (60),

DCIR+ (61), Ly6C+ (62), DC-SIGN+ (63),

CD123+ (64)

Monocyte-

derived

DCs

Mouse (19): MHC class II+, CD11b+,

CD11c+, F4/80+, Ly6C+, CD64+,

M-CSFR+, ZBTB46+

Unknown Migration into the site of inflammation from BM in a

CCR2-dependent manner (77)

Activation and proliferation of T cells (185–188)

Production of various cytokines (185–188)Inflammatory

DCs (infDCs)

Human (184): HLADR+, CD11c+,

BDCA1+, CD1a+, FcεRI+, CD206+,

CD14+, M-CSFR+, ZBTB46+

Human:

BDCA1DC

(CD1c+DCs)

BDCA1+ (60), CD11c+ (79), HLADR+ (79),

CD86+ (83), CCR5+ (83), FcγR+ (161)

Unknown Secretion of high levels of IL-12, following TLR4 and

TLR7 stimulation (83, 161)
Stimulation of allogeneic T cells (79)

Increased cross-presentation capacity (46–48, 83–85)

CD8α+DCs (MOUSE) AND BDCA3+DCs (HUMAN)
CD8α+DCs are approximately 20–40% of total mouse splenic
DCs and around 70% of murine thymic DCs (11, 12). In steady
state, they express low levels of co-stimulatory molecules, such
as CD80, CD86, and CD40 but high levels of MHC class II
(20, 21) and highly express CD24, CD36, DEC205 (CD205),
Clec9A (DNGR-1), TLR3, and XCR, but show little or no expres-
sion of CD172a (Sirpα), CD11b, and DCIR2 (33D1) (12, 22–
26). The administration of Flt-3L to WT mice dramatically
expands CD8α+DCs that are phenotypically and functionally
matured (27) and have a reduced capacity for allogeneic T cell
stimulation (28).

Certain transcription factors play an important role in the
development of CD8α+DCs (29–36). Interferon regulatory factor
8 (IRF8) (29, 30), inhibitor of DNA binding protein 2 (Id2) (31,
36), the basic leucine zipper transcription factor ATF-like 3 (Batf3)
(32), nuclear factor interleukin-3 regulated (Nfil3) (33), PU.1 (34),
and zinc finger transcription factor zbtb46 (35) are critical for the
development of CD8α+DCs. Mice lacking these transcription fac-
tors exhibit dramatically reduced numbers of CD8α+DCs while
absence of zbtb46, which results in increased CD8α+DCs.

CD8α+DCs are unique in which they can present exogenous
antigens on their MHC class I molecules, a process known as
cross-presentation (37). In addition, CD8α+DCs are critical for
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cytotoxic T cell (CTL) responses as they are the predominant
producers of IL-12 (38, 39). On the other hand host-derived
CD8α+DCs, expanded by the administration of Flt-3L, decrease
allogeneic T cell responses in vivo (28). We have also found that
immunization of donors with host-derived CD8α+DCs, reduced
acute GVHD by increased secretion of IL-10 from donor-derived
T cells (40). CD8α+DCs can also induce Foxp3+ regulatory T cells
(Tregs) in a TGF-β-dependent manner in vitro and in vivo (41).
Moreover, CD8α+DCs are responsible for induction of periph-
eral self-tolerance by their ability to capture and cross-present
tissue-associated antigens to naïve CTLs (42–44) or by CD8α+DCs
derived TNF-mediated killing (45).

Although CD8α+DCs present only in mice, recent studies have
identified human equivalents. BDCA3+ (CD141+) DCs, which
express Clec9A and XCR-1 were identified as human homologs
of mouse CD8α+DCs (46–49). BDCA3+ DCs have the ability to
cross-present soluble or cell-associate antigen to CD8+ T cells (47,
48). Aside from the capacity for cross-presentation, BDCA3+DCs
produce IFN-α after TLR3 stimulation, similar to CD8α+DCs
homologs in mouse (50).

CD8α−DCs (CD11b+DCs)
CD8α−DCs (CD11b+DCs) lack expression of the marker CD8α

but express CD11b, which represent a large percentage of splenic or
lymphoid resident DCs (17). CD8α−DCs predominately express
CD209 (DC-SIGN) (51), CD172a (Sirpα) (52), DC inhibitory
receptor 2 (DCIR2) (53), and dectin-1 (Clec-7a) (54). Notch RBP-
J, is important for development and homeostasis of CD8α−DCs
(55). Recent reports also suggest that Notch 2 signaling is
required for the development of a subset of splenic CD11b+ DCs
(CD11b+ESAM+DCs) and intestinal CD103+CD11b+DCs (56),
as well as terminal differentiation of CD8α+DCs and CD11b+DCs
(57). CD8α−DCs are required to enhance Th2 responses in pri-
mary stimulation (58) and also they produce IL-12 under cer-
tain conditions (59). CD8α−DCs exist in the marginal zone of
the splenic lymphoid follicles and take up, process, and present
exogenous antigen to CD4+ T cells via MHC class II (17, 53).

PLASMACYTOID DCs
Plasmacytoid DCs are distinguished in mice by the expres-
sion of CD11cint, B220 (CD45RA)hi, sialic acid-binding
immunoglobulin-like lectins-H (Siglec-H)hi, and CD317 (mPDCA-
1)hi (18). In human, pDCs express BDCA-2 (60), BDCA-4 (60),
DCIR (61), Ly6C (62), DC-SIGN (63), or CD123 (64). Flt3-L is
a critical cytokine for the expansion of pDCs (65, 66), whereas
HIF-1α is a negative regulator of pDC development in vitro and
in vivo (67). Ikaros and STAT-3 play a role in the development
of pDCs (68). The main function of pDCs is to produce type I
interferons (IFN), such as IFN-α and IFN-β, in response to viral,
fungal, and bacterial antigens (18). The role of pDCs in mediating
acute GVHD is distinct depending on whether they are derived
from the host or donor (69, 70).

MONOCYTE-DERIVED DCs
According to recent reports, monocytes exist in the blood as ter-
minally differentiated cells derived from MDP [whose progenitor
is common myeloid precursors (CMPs) in the BM]. In an inflam-
matory environment, monocytes differentiate into MoDCs, or

inflammatory DCs (infDCs) and subsequently migrate into the site
of inflammation (71, 72). Monocytes also contribute to the devel-
opment of CD103−CD11b+DCs in a Csf-1-dependent manner
(73, 74). Mouse BM-derived DCs generated in vitro with GM-CSF
alone or in combination with IL-4 are recognized as equivalent to
infDCs because of similar morphology, phenotype, and charac-
teristics (75, 76). CCR2 controls the exit of monocytes from the
BM and the migration to the site of inflammation and critical for
infDCs. Further, MyD88 and TLRs are known to be required for
the maturation and migration of infDCs (77, 78).

HUMAN BDCA1 (CD1c)+ DCs
Dendritic cells isolated from human are identified as Lin− (CD3,
CD19, CD14, CD20, CD15, glycophorin A) CD11c+HLADR+

cells (79) and are classified into three groups based on their expres-
sion of BDCA1, BDCA3, and CD16 (60). BDCA1+ (CD1c+)
DCs are one of the blood DC subsets found, in addition to
lymphoid tissue-resident DCs and those observed in the skin of
humans (79–81). BACA-1+DCs are likely the human counter-
part of murine CD11b+DCs (82). BDCA1+DCs have a strong
capacity for allostimulation (79) and can cross-present exogenous
antigen to CD8+ T cells but less efficiently than BDCA3+DCs
(46–48, 83–85).

DC CHIMERISM AFTER HUMAN ALLOGENEIC HCT
Although the replenishment of recipient DCs depends on donor
hematopoietic stem cells (HSCs) and associated precursors, the
exact half-life of host APCs in especially inflamed tissues is not
well-understood. So far, kinetics of DC engraftment and turnover
(DC chimerism) utilizing myeloid specific or directly staining DCs
in peripheral blood mononuclear cells (PBMCs) after allo-HCT,
have been reported in humans (86–99). Most of these reports
demonstrated that the reconstitution of human DCs (myeloid
CD11c+DCs and plasmacytoid CD123+DCs) in the early phase
of allo-HCT show that nearly complete donor-derived chimerism
(CDC) develops and maintains in the late phase. However, a small
population of recipient-derived DCs may exist long-term (86, 90,
93, 94). Interestingly, patients with acute GVHD showed signif-
icantly lower donor chimerism of DCs as well as low numbers
of circulating DCs (93, 94, 96). Further, 6-sulfo lac NAc DCs
(slan DCs), potent producers of inflammatory cytokines follow-
ing LPS stimulation (100) are a major subpopulation of human
blood DCs and are also reduced in the patients with severe acute
GVHD (92). Although it is helpful to examine the kinetics and
chimerism of the peripheral circulating DCs, the kinetics and
activation of tissue-resident DC subsets in recipient (especially
GVHD-associated organs and/or lymph nodes) might play a role
in the development of GVHD.

Host-derived Langerhans cells (LCs) are rapidly depleted by
myeloablative regimens and are quickly replaced by donor type in
the absence of GVHD. The recovery of donor LC chimerism and
numbers, however, are delayed in the presence of acute GVHD
(98, 99). In the skin, host-derived myeloid DCs (such as CD1a+

and CD14+DCs) are quickly replaced by donor cells, where host-
derived macrophages still exist during GVHD (97). Similar to the
relationship between GVHD and DC kinetics, a decrease in num-
ber of DCs is observed (96) and mixed chimerism in DCs has the
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capacity for a potent GVT effect in donor lymphocyte infusion
(DLI) (101). This suggests a positive impact of host-derived DCs
on GVT effect.

DCs AFTER EXPERIMENTAL ALLOGENEIC HCT
The results from experimental allo-HCT suggest a complicate
role for DCs in GVHD. For instance, cDCs and pDCs are acti-
vated by TBI (102) and inflammatory cytokines (103, 104) (IL-1
and TNF-α), which are released by damaged tissues. These acti-
vation signals up-regulate the expression of antigen presenting
and co-stimulatory molecules and could modulate GVHD (102).
Moreover, when all other hematopoietic APCs are absent, DCs
alone may induce GVHD (5,105). However, recent reports indicate
that host-derived hematopoietic APCs are dispensable for induc-
ing GVHD, specifically CD11c+DCs and/or pDCs depletion in the
presence of other APCs (106, 107) does not attenuate GVHD, it
might even increase lethal GVHD (15, 107). These data clearly
demonstrate that host DCs are therefore not crucial for the induc-
tion of GVHD and could even play a regulatory role. On the other
hand, donor-derived APCs, especially cDCs too are not required
for induction of GVHD, but may play a role in maintenance or
aggravation of GVHD in presence of other hematopoietic APCs
(6, 106).

DCs AND GVT
To maximize GVT responses, two important factors must be con-
sidered: antigen presentation and donor T cells. Although both
host and donor APCs have been shown to play an important role
in GVHD, their role in GVT is only beginning to be understood.
Donor T cells have to attack recipient tumor cells in GVT. To
that end, they must recognize both alloantigens and tumor spe-
cific antigens (TSAs) that presented either directly by the tumor
or indirectly by the professional APCs (Figure 1). There is a large
amount of evidence that tumor themselves are generally poor pre-
senters and activators of T cell effector responses. In the context of
allo-HCT, professional APCs are required for GVT. Their require-
ment, however, when certain leukemia or tumors may efficiently
present antigens to donor T cells have not been obviously analyzed.
Nonetheless, GVT responses are optimal when both alloantigens
and TSAs responses are induced (7). While alloantigen responses
are also elicited by many APCs including both hematopoietic-
derived and non-hematopoietic-derived APCs cause GVHD, TSAs
are exclusively directed to tumors and thus considered to GVT
without concomitantly causing GVHD. In cases where tumors are
poor APCs of TSAs to donor T cells, the TSAs likely have to be effi-
ciently taken up and cross-presented on professional APCs. In this
regard, DCs may be most relevant and could employ three possible
mechanisms they possess better than other hematopoietic APCs,
capability for better cross-presentation and cross-dressing.

Clinically, most patients with allo-HCT receive HSCs and T
cells from human leukocyte antigen (HLA) matched, but multiple
minor histocompatibility antigens (MiHAs) mismatched donors.
This difference in MiHAs between host and donor are targets for
donor T cells to mediate GVH responses. Alloantigen is expressed
by all host APC subsets as endogenous antigen, which they directly
present to donor CD8+T cells, even if the interaction is brief (4). In
addition to MiHAs, donor T cells respond to TSAs that are virally

encoded and/or mutated tumor antigens representing additional
important targets for GVT responses. Activated and proliferated
allogeneic T cells, stimulated by APCs, are “double edged swords”
in that they not only attack host residual tumors but also dam-
age normal host tissues. Augmenting GVT responses through
identification of relevant TSAs and determining T cells that specif-
ically respond to them is clinically challenging because GVHD is
an allo-reactive disease enhancing TSA-specific T cell responses,
which are dependent on allogeneic reactions (108, 109). As one
approach to distinguish this clinical dilemma, recently, MHC class
I-associated tumor-specific phosphopeptides presented on hema-
tological tumors were shown to be critical for induction of their
specific memory-like CD8+T cells against leukemia and that the
response against leukemic patients can be restored after allo-HCT
(110). These suggest that DCs must simultaneously present both
alloantigens, derived primarily from the endogenously polymor-
phic peptides in the host target tissues, and TSA to donor CD8+

and CD4+ T cells via MHC class I and class II molecules, respec-
tively. In the clinic, the importance of host APCs in GVL has
been suggested in patients with mixed chimerism after DLI in
non-myeloablative BMT (111).

We and others have experimentally explored the role of APCs
in GVL. Host type APCs are required to maximize GVT responses
after allo-HCT (7) and after DLI because they prime donor
CTL in an effective manner (112–115). Host MHC class II+

APCs and CD4+ T cells have an indispensable role in CTL
responses in mixed chimera models (112). In addition, donor
T cells primed by leukemia lysate-pulsed host APCs before DLI,
enhance GVT responses in either leukemia-bearing full chimera
or mixed chimera models (113). These data suggest that the host
environment is critical for mediating GVT responses. Host type
sialoadhesin+ macrophages, which increase inducible nitric oxide
(iNOS) production by CD40–40L interaction in the liver, stimu-
late CTL and prevent liver metastasis (116, 117). Based on the fact
that host leukemia cells or tumors express alloantigens, in addi-
tion to TSA, may possess co-stimulatory molecules, they could be
“APCs.” Although they express APC like features, they have likely
undergone a process of “immune-modulating,”making them poor
direct stimulators of an effective T cell response using a variety
of immune-suppressive mechanisms. We have shown that cer-
tain lymphoma cells lines, despite some APC features, are not
capable of driving an efficient GVT response in the absence of
hematopoietic-derived APCs (7).

We have explored, more recently, the APC subsets that are
required for optimal GVT without GVHD. We recently found
that host-derived CD8α+DCs are required for the induction of
optimal GVT responses utilizing Batf3 deficient mice as recipients
in experimental allo-HCT (8). We also found that TLR3 stimula-
tion via poly I:C in host CD8α+DCs, enhanced GVL responses
without exacerbating GVHD (8). As we described previously,
CD8α+DCs are critical for cross-presentation of tumor and viral
antigens (32, 118, 119) because of their well-specialized cross-
presentation capacity and their superior ability to prime antitu-
mor CTL responses (32, 119–121) without enhancing GVHD (8,
122). As noted above, recently human BDCA3+, XCR-1+, DNGR-
1+DCs found in spleen, blood, and non-lymphoid tissues are
recognized as the equivalent of murine CD8α+DCs by multiple
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FIGURE 1 | Antigen presenting cells in GVT: to maximize GVT
responses, two important factors must be considered: antigen
presentation and donorT cells. Although both host and donor DCs have
been shown to play an important role in GVHD, their role in GVT is only
beginning to be understood. To induce GVT, although donor T cells must
recognize both alloantigens and TSAs that presented either directly by the
tumor or indirectly by the professional APCs, tumor themselves are
generally poor presenters and activators of T cell effector responses.

Therefore, professional APCs are required for optimizing GVT. While
alloantigen responses are also elicited by many APCs including both
hematopoietic-derived and non-hematopoietic-derived APCs cause GVHD,
TSAs are exclusively directed to tumors and thus considered to GVHD
without concomitantly causing GVHD. In cases where tumors are poor APCs
of TSAs to donor T cells, the TSAs have to be efficiently presented by
professional APCs, especially DCs, derived from either donor or host. This
mechanism of presentation includes cross-presentation.

investigators (26, 46–48, 123). Therefore, our investigations under-
score the principle of enhancing antigen presentation using a
subset of host APCs as a strategy for effective enhancement of GVT
responses following allo-HCT. However, cellular processes of regu-
lating GVT responses in host APCs still remain unclear. Specifically
whether low numbers of CD8α+DCs reduce TSA responses or
decrease GVT responses remain unknown. We also explored the
molecular mechanism in hematopoietic-derived APCs for enhanc-
ing GVHD. The absence of Ikaros in host hematopoietic APCs
exacerbates GVHD, but without concomitantly enhancing GVT
responses in multiple models (unpublished data). This uncoupling
is an interesting phenomenon as GVT responses are usually tightly
linked with GVHD severity. Furthermore, genetic alteration of
Ikaros family zinc finger protein 1 (IKZF1) in acute lymphoblastic
leukemia (ALL) is associated with poor outcome and high relapse
after chemotherapy (124,125). Therefore,we are pursuing whether
Ikaros in leukemic cells alone or both leukemic and non-leukemic
host hematopoietic cells play a role in mediating GVT resistance.

Understanding the host microenvironment, especially that of
the tumor is essential for GVT studies. Tumor-infiltrating DCs in
tumor microenvironments in hosts are suggested to regulate CTL
responses, however, their role in the context of allogeneic HCT
remain obscure.

The role of donor-derived DCs in mediating GVT is also being
explored. Initial reports regarding this association demonstrated
that donor APCs are not required for GVT responses, but play an
indispensable role in GVHD in MHC matched,MiHA mismatched
BMT model (6). In order to present host TSAs via donor APCs to
donor CD8+T cells, donor APCs must have the capacity for cross-
presentation as they do not express both endogenous alloantigens
and TSAs. Furthermore, additional studies are needed to deter-
mine which specific subsets of donor APCs play a critical role in
enhancing GVT responses. Reports suggest that donor CD11b−

APCs within the BM grafts consist mostly of pDC progenitors
(pre-pDCs) and enhance GVT activity of donor T cells by promot-
ing differentiation into Th1/type 1 CTLs. These effects have further
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been shown to be mediated by IL-12 in murine allo-HCT models
(126, 127). Pre-pDCs also regulate GVH and GVT responses alter-
ing the balance between donor Tregs and inflammatory T cells by
inducing indoleamine 2,3-dioxygenase (IDO) synthesis (128). In
humans, however, there are no data of the exact mechanisms of
specific subsets of donor APCs in GVT. Therefore, studies exam-
ining and elucidating the kinetics of these subsets of DCs would
contribute to likely better understanding the mechanism of GVT
in humans.

Recent reports suggest a paradoxical association between CMV
reactivation after allo-HCT and reduced disease relapse (129–131).
The mechanisms that CMV reactivation induces potent GVT are
still unclear. However, donor APCs and NK cells might play an
important role in this interesting phenomenon (132). Interaction
between cDCs and NK cells is critical to the activation of effec-
tive antiviral or antitumor response (133, 134). It is possible that
donor DC–NK cell interactions might play a role in enhancing
GVT mediated by NK cells in this context.

CROSS-PRESENTATION AND GVT
Dendritic cells are well-known to take up exogenous antigens
via endocytosis or phagocytosis. Antigen is then processed in the
endoplasmic reticulum (ER) and presented via Class I molecules.
These processes are known as cross-presentation. Although the
molecular mechanism of cross-presentation is still under investi-
gation, two major intracellular pathways of cross-presentation are
speculated. One is cytosolic and the other one is a vacuolar pathway
(135). The cytosolic pathway depends on the proteasome, which
degrades internalized proteins in the cytosol. The degraded pep-
tides are then transported into the ER in a transporter associated
with antigen processing 1 (TAP1) and TAP2-dependent manner.
Peptide is then either loaded onto MHC class I molecules (ER load-
ing) or re-imported into the phagosome to be loaded onto MHC
class I molecules (phagosomal reloading) (135). A novel molecu-
lar mechanism utilizing the small GTPases Rac1 (CD8α−DCs) and
Rac 2 (CD8α+DCs), regulate phagosomal oxidation, which is crit-
ical for the cross-presentation capacity (136). In addition, soluble
N -ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) Sec22b plays an important role in phagosomal func-
tion through the recruitment of ER proteins into the phago-
some (137) and heat shock protein 90 (HSP90) contributes to
cytosolic translocation of extracellular antigen, enhancing cross-
presentation (138). Conversely, the vacuolar pathway is known to
be a TAP and proteasome independent pathway (139–141) where
exogenous antigens are degraded in the phagosome and subse-
quently loaded on MHC class I. This pathway is sensitive to cathep-
sin S inhibitors (140). Some DCs, such as those that express CD8α+

(32, 37, 142, 143), CD103+ (144–147) in mice, and BDCA3+DCs
(functional homology to mice CD8α+DCs) (46, 123, 148–150)
in human are known to have the capacity for cross-presentation.
However, some recent reports suggested that nearly all DCs have
the capacity for cross-presentation depending on the source of
antigen, cytokine milieu, and expression of immunoreceptors spe-
cialized to take up exogenous antigens (76, 83, 149, 151). The
role of cross-presentation in GVT responses is still unknown.
Our data indicates a role for CD8α+DCs and also suggested
that TLR3 agonist, polyI:C, can increase GVT without enhancing

GVHD in host DC-dependent manner (8). Therefore, we presume
that specialized DCs could be associated with optimizing GVT
responses because mouse CD8α+DCs and human BDCA3+DCs
possess the most potent cross-presentation capacity of TSAs. How-
ever, direct in vivo demonstration enhancing cross-presentation
by CD8α+DCs or TLR3 agonist in increasing GVT has not been
shown. While these are being explored, at the minimum our data
suggested a novel concept that it is feasible to modulate host DCs
to improve GVT without increasing toxicity. It remains to be
tested, however, whether this concept holds true for all leukemia
or tumors. In any event, it does suggest a window of opportunity
for careful design of clinical trials in high-risk leukemia.

CROSS-DRESSING AND GVL
Recently, another means of antigen presentation, called “cross-
dressing”was forward by Ostrand-Rosenberg’s group in 2006 (152,
153). It is postulated that cross-dressing transfers cellular materi-
als (such as peptide MHC to DCs) triggering DC activation and
enhanced tumor-specific CD4+ T cells in cancer vaccine (153).
In 2011, as a breakthrough mechanism of elicited CTL responses
by DCs, preformed peptide MHC class I complex is expressed
on infected cells and can be transferred to uninfected DCs with-
out requiring other antigen processing. This process mediates the
activation of memory CD8+ T cells after viral infection (154).
CD8α+CD103+DCs are thought to play an important role in not
only cross-presentation but also cross-dressing to prime CTLs fol-
lowing vaccination (155). Its role suggested in GVHD but GVT
responses is still unknown.

THE STRATEGY OF AUGMENTING GVT RESPONSES
UTILIZING DCs
Graft-versus-tumor is tightly linked with GVHD and is very dif-
ficult to uncouple the two. However, recent advances and under-
standing of DC biology make treatment regimens previously not
considered, namely modulating antigen presentation, to now be
practical options. Nonetheless much remains to be understood.
Specifically, comprehensive understanding of DC subsets will
enable us to maximize GVT responses. For instance, either by
enhancement of cross-presentation, increased NK cell activation,
or induction of type I IFN etc.

We and others have shown that administration of poly I:C stim-
ulates TLR3 on CD8α+DCs enhancing cross-presentation and
direct presentation to CTLs against tumors and virus infection
(8, 118). In addition, poly I:C administration also activates NK
cells through the enhancement of myeloid DC–NK interaction
mediated through an IRF-3-toll/interleukin 1 receptor homol-
ogy domain-containing adaptor molecule (TICAM-1)-IRF-3-
dependent NK-activating molecule (INAM) axis-dependent man-
ner (134). Moreover, CD8α+DCs treated by poly I:C can activate
NK cells in the IFN-promoter stimulator-1 (IPS-1) and Toll/IL-1R
domain-containing adaptor inducing IFN-β (TRIF)-dependent
manner (156). Therefore, poly I:C treatment after allo-HCT could
be extended to increase GVT, however, poly I:C in this context
must be carefully studied as it may enhance GVHD.

Careful utilization of exogenous type I IFN (IFN-α/β)
administration may also be a valuable method of enhanc-
ing GVT responses because they play an important role
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in cross-presentation of tumor antigens on DCs, especially
CD8α+DCs, and enhance CTL responses (119, 120, 157). In
murine allo-HCT models, exogenous type I IFN administration
augments CTL responses through the increased sensitivity of host
target tissues and leukemia to respond to cell mediated cytotoxic-
ity in CD8-dependent GVHD/GVT model regardless of decreasing
GVHD response in CD4-dependent model (158).

Other strategies to enhance antitumor responses through the
augmentation of the cross-presentation capacity of TSA and acti-
vation of CTLs may also be feasible. Alpha-alumina nanoparticles
(159), poly (γ-glutamic acid)-based nanoparticles (γ-PGA NPs)
(160), Fcgamma-receptor (FcγR) antigen targeting (161), TLR7
stimulation by polyuridylic acid (polyU), which is a synthetic
ssRNA analog (162), vitamin E analog-α-tocopheryl oxyacetic
acid (α-TEA) (163) may be useful, but have not been studied
in GVT models. Modulation of host type DCs with anti-CD3
pre-conditioning is also an efficient strategy for separating GVT
and GVHD (164). Furthermore, recent modulation of DCs by
reagent-based inducible or constitutive methods suggested that
deep deletion of host cDCs, pDCs, and B cells are dispensable
for decreased GVH responses (107). This indicated that very low
numbers of DCs, or all host cells including non-hematopoietic
APCs, can directly present alloantigen. Alloantigen expression on
host non-hematopoietic cells decreases GVT responses in a PD-
1/PD-L1-dependent manner in murine experimental BMT (165).
Given this, enhancement of function in only certain DCs spe-
cialized for TSA presentation may also increase GVT responses
without exacerbating GVHD. Moreover, experimental data sug-
gested that modulation of DC function with HDAC inhibitor can
result in immunomodulation to reduce GVHD (166).

Aside from enhancement of the presentation capacity in DCs,
disruption of negative regulatory interactions is also important
for GVT responses. PD-1/PD-L1 interactions and CD47–SIRP-α
interactions are thought to be critical immunosuppressive func-
tion in the tumor environment. For instance, because the expres-
sion of PD-1 on T cells and PD-L1 on APCs facilitated increased
Tregs and decreased CTL functions, PD-1/PD-L1 blockade with
anti-PD-L1 monoclonal antibody decreased the infiltrating num-
ber of Tregs and increased the number and function of tumor
reacting CTLs in an AML mouse model (167). Furthermore, knock
down of PD-L1 and PD-L2 on MoDCs by utilizing siRNA demon-
strated augmented expansion and function of MiHA-specific
memory and effector CD8+ T cells from leukemia patients in vitro
(168). These data suggested that anti-PD-L1 and PD-L2 block-
ade might be a potential strategy for the enhancement of GVT
responses. Tumors may also escape from tumor surveillance uti-
lizing the interaction between monocytic CD47 and SIRP-α, which
is an inhibitory receptor of phagocytosis (169). Recent report
showed engineered high affinity SIRP-α variants can disrupt this
interaction and increase phagocytosis of cancer cells and enhance
antitumor response (170). Although we do not know how these
pathways affect GVHD, such strategy may also be considered as
potential option to treat patients with high risk leukemias.

CLOSING REMARKS
Dendritic cells play important roles in both GVHD and GVT.
Because DCs are heterogeneous, the role of specific DCs in GVHD

and GVT in the presence or absence of other hematopoietic-
derived APCs will need further examination. Identification of a
specialized subtype of DC that may increase GVT without enhanc-
ing GVHD, such as CD8α+DCs in mice, may be possible. Func-
tional studies have identified direct antigen presentation capacity,
cross-presentation, and cross-priming of CTLs as critical mecha-
nisms in allo-HCT. To enhance GVT response, both alloantigen
and TSA must be presented to CTLs. However, tumor cells them-
selves have a poor antigen presentation capacity, therefore TSA are
cross-presented by APCs. Enhancement of the cross-presentation
capacity has the potential to increase GVT response and be a pre-
sumably new strategy in allo-HCT. Through the utilization of DCs,
the goal of increasing GVT and diminishing GVHD might be
realized.
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