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The University of Florida strawberry (Fragaria × ananassa) breeding program has
implemented genomic prediction (GP) as a tool for choosing outstanding parents for
crosses over the last five seasons. This has allowed the use of some parents 1 year
earlier than with traditional methods, thus reducing the duration of the breeding cycle.
However, as the number of breeding cycles increases over time, greater knowledge
is needed on how multiple cycles can be used in the practical implementation of GP in
strawberry breeding. Advanced selections and cultivars totaling 1,558 unique individuals
were tested in field trials for yield and fruit quality traits over five consecutive years and
genotyped for 9,908 SNP markers. Prediction of breeding values was carried out using
Bayes B models. Independent validation was carried out using separate trials/years
as training (TRN) and testing (TST) populations. Single-trial predictive abilities for five
polygenic traits averaged 0.35, which was reduced to 0.24 when individuals common
across trials were excluded, emphasizing the importance of relatedness among training
and testing populations. Training populations including up to four previous breeding
cycles increased predictive abilities, likely due to increases in both training population
size and relatedness. Predictive ability was also strongly influenced by heritability, but
less so by changes in linkage disequilibrium and effective population size. Genotype
by year interactions were minimal. A strategy for practical implementation of GP in
strawberry breeding is outlined that uses multiple cycles to predict parental performance
and accounts for traits not included in GP models when constructing crosses. Given the
importance of relatedness to the success of GP in strawberry, future work could focus
on the optimization of relatedness in the design of TRN and TST populations to increase
predictive ability in the short-term without compromising long-term genetic gains.

Keywords: training population, Fragaria, breeding, Bayes B, genome-wide prediction, test population

INTRODUCTION

The development of high throughput genotyping and new methods for analyzing genome-wide
molecular data are revolutionizing crop improvement. In particular, genomic prediction (GP) is
helping to increase genetic gains for genetically complex traits in animal (Hayes et al., 2009), crop
(Bernardo and Yu, 2007; Crossa et al., 2010; Gezan et al., 2017), and tree breeding programs (Kumar
et al., 2012; Resende et al., 2012a). Genomic prediction relies on an available set of phenotypes and
DNA marker data for a training population (TRN) that is used to fit a model to predict breeding
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values (BV) based on DNA marker data alone for a testing
population (TST). This methodology requires that the genome
has been covered by a sufficiently dense panel of markers, that
moderate to high linkage disequilibrium (LD) exists between
marker loci and the underlying quantitative trait loci and that
there is some degree of relatedness between the TRN and TST
populations (Meuwissen et al., 2001).

As pointed out by Goddard (2009), LD constrains the number
of markers to what is defined as “the number of chromosome
segments” in a segregating population, which depends on the
effective population size (Ne). If Ne decreases, it is expected
that the individuals within the population will share larger
chromosome segments, increasing prediction accuracy (Clark
et al., 2012). Moreover, as Ne decreases, variability on which
to select will decrease, but relatedness between individuals will
increase leading to greater LD in the population (Albrecht
et al., 2014). Therefore, GP methods will capture both LD and
relatedness among individuals in the TRN and TST populations
for predictions (Habier et al., 2007; Albrecht et al., 2014).
Understanding the relative impacts of LD and relatedness in a
breeding program may be helpful, since LD has greater potential
to persist across populations and generations (Hayes et al., 2009).

Predictive ability (PA) is defined as the correlation between the
observed phenotypic value and the BV: [r(y, ĝ)], and prediction
accuracy is the correlation between the true BV and the estimated
BV, [r(g, ĝ)] (Habier et al., 2007). Different empirical equations
can be used to estimate prediction accuracy for GP in one
population (Daetwyler et al., 2008; VanRaden, 2008), or multiple
populations, traits and environments (Wientjes et al., 2015,
2016). However, there is a concern that after several consecutive
breeding cycles using GP the prediction accuracy will decline
due to changes in marker allele frequency (Habier et al., 2007;
Goddard, 2009), and a gradual decay of LD. Therefore, it is
suggested that GP models need to be periodically re-trained to
sustain long-term genetic gains (Habier et al., 2007).

Assessment of GP is not trivial. Some published studies
have been based on a single population with the use of cross-
validation techniques (Crossa et al., 2010; Albrecht et al., 2011;
Resende et al., 2012b). Cross-validation is a statistical technique
used to evaluate models where an independent dataset is not
available for validation. The most common approach, in the
context of GP, is the k-fold cross-validation. Here, individual
observations are randomly split into five or ten subsets, and all
subsets except one are used as a training population with the
remaining subset serving as a validation (or testing) population
in a sequential approach. Because the same original population
is both part of the TRN and TST populations, predictive ability
and prediction accuracy from cross-validation are often upwardly
biased (Amer and Banos, 2010; Michel et al., 2016), resulting in
over-optimistic models. A better alternative is to independently
validate the model with another separate trial (Amer and Banos,
2010; Hofheinz et al., 2012).

Some reports on independent validation and cross-validation
across environments for multiple generations using a two-stage
analysis have been published (Albrecht et al., 2014; Auinger et al.,
2016; Michel et al., 2016, 2017). In these studies, higher predictive
abilities have been reported for cross-validation, with a TRN

population sampling individuals from multiple generations and
validating with an independent trial, rather than predicting from
a single generation and validating with an independent trial.
However, in other studies, no significant differences in predictive
ability or prediction accuracy were found by using independent
validation from either TRN populations constituted as cross-
validation from multiple years or from single years (Sallam et al.,
2015; Ðord̄ević et al., 2019). Nevertheless, as breeding programs
progress in their use of GP, independent validations will become
the reference to evaluate any model.

For training populations tested across multiple environments,
genotype-by-environment (G × E) interactions may be
important. Several GP studies using real data under different
scenarios of locations and/or environments have modeled the
effects of G × E or marker × E interactions (Burgueño et al.,
2012; Jarquín et al., 2014, 2017). Previous studies on genotype
by location interaction (Whitaker et al., 2012) and genotype
by year interaction (Gezan et al., 2017) in the strawberry
(Fragaria × ananassa) production area of Central Florida have
indicated either very low or the absence of G × E interaction for
the main strawberry commercial traits.

The strawberry breeding program at the University of
Florida (UF) conducts genetic trials at the Institute of Food
and Agricultural Sciences, Gulf Coast Research and Education
Center (GCREC) in Balm, FL, United States. Each year a
clonally replicated field trial of advanced breeding selections
is phenotyped for several polygenic traits and genotyped via
single-nucleotide polymorphism (SNP) arrays. These advanced
selections arose from previous marker-assisted seedling selection
for simply inherited disease resistance and fruit quality traits
(Roach et al., 2016; Mangandi et al., 2017; Noh et al., 2017; Salinas
et al., 2019) and subsequent visual field selection of the seedlings.
Yearly advanced selection trials represent the elite parent pool of
the breeding program and have been used to test GP methods
(Gezan et al., 2017) and to apply GP for parent selection. These
accumulated trials now allow further evaluation of models in
strawberry over multiple breeding cycles.

The overall objective of the present study was to inform
practical approaches for the use of GP in the breeding of
horticultural crops by examining multiple cycles in the UF
strawberry breeding program. Our specific objectives were to: (1)
examine the effects on predictive ability of combining multiple
cycles (or years) into TRN populations in the forward and
backward directions; and (2) examine the effects of relatedness
among the TRN and TST populations, LD and Ne on changes in
predictive ability over time.

MATERIALS AND METHODS

Population and Field Testing
The elite population of the UF strawberry breeding program is
treated as a single breeding pool from which the top-ranked
parents of the previous year are used in a partial circular mating
design to generate a large population of seedlings to be evaluated.
This mating design is a modification of a partial diallel design
with a reduced number of four to five crosses per parent, that
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TABLE 1 | Incidence matrix for common genotypes tested among trials (above
diagonal), full-sib families (diagonal, in bold) and common parents of full-sib
families among trials (below diagonal).

Trials T2 T4 T6 T8 T10 N

T2 33 37 29 28 30 217

T4 8 30 57 40 43 240

T6 2 7 45 88 69 237

T8 3 1 14 43 107 273

T10 2 3 10 13 28 266

N is the total number of tested phenotypes excluding common genotypes across
trials. The T2–T10 nomenclature for the five trials conducted in five successive years
is according to Gezan et al. (2017).

fall along an off-diagonal matrix of parental crosses (White et al.,
2007). The best seedling selections are established the following
year in an advanced-selection trial, the structure of which consists
of a mixture of full-sib families, half-sib families, advanced
selections, and cultivars. A representation of the structure of the
population across cycles is presented in Table 1.

Replicated seedling and advanced-selection trials were
previously established at two sites, the Gulf Coast Research and
Education Center (GCREC) in Balm, FL (lat. 27◦ 45′ 37.98′′ N,
long. 82◦ 13′ 32.49′′ W) and at the Florida Strawberry Growers
Association in Dover, FL (lat. 28◦ 0′ 55.55′′ N, long. 82◦ 14′ 5.24′′
W), during the 2013–2014 and 2014–2015 seasons. Very low
genotype by location interactions were observed for yield and
quality traits (Whitaker et al., 2012). Consequently, these trials
were subsequently carried out only at the GCREC.

The populations included in the present study were
established at the GCREC site during five consecutive seasons
from 2013–2014 to 2017–2018. The strawberry breeding program
uses an overlapping generation breeding strategy in which all
the main breeding activities, crossing, testing, and selection, take
place each year (Borralho and Dutkowski, 1998), therefore each
trial was considered a cycle in this sense and was given an even-
numbered code starting with season 2013–2014 as T2 and ending
with 2017–2018 as T10 according to the naming convention
of Gezan et al. (2017). Several common genotypes were tested
across years including cultivars and advanced selections chosen
for further testing in the breeding process (Table 1). Therefore,
these are essentially independent trials established under
different yearly environmental conditions. Seedlings were
clonally propagated by runners in a summer nursery near Monte
Vista, Colorado (T2 and T4 trials) and at Crown Nursery in
Malin, Oregon (T6, T8, and T10) and established in the fruiting
field at GCREC in the first 2 weeks of October in each year.
Site preparation, trial establishment and trial maintenance was
carried out according to standard commercial practices for
west-central Florida (Torres-Quezada et al., 2018). Pest control,
fertilization and weed control varied among seasons according to
environmental conditions. Bare-root clonal plants were arranged
in a randomized complete block design with either five or six
replications per trial and raised beds within replication. Each
bed was subdivided into five to nine plots, each with a common
control genotype to account for environmental variation along
the bed. Genotypes were represented by a single runner plant in
each plot (Supplementary Table S1).

Phenotyping and Genotyping
Five yield and fruit quality traits were assessed weekly from mid-
November to mid-March in all five trials. At each harvest date,
all ripe fruit per plant was removed. All marketable fruit (grams)
by plant were considered as early marketable yield (EMY) if
harvested before the first day of February. Total marketable yield
(TMY) was calculated as the marketable fruit by plant collected
until the first week of March. Average fruit weigh in grams, AWT,
was estimated as the TMY divided by the number of marketable
fruit. Total culls (TC), or unmarketable fruit, were counted and
expressed as a proportion of the total number of fruits per plant
(%). Soluble solids content (SSC) was measured five times during
the season in each trial and was calculated as the mean of all
measurements. One ripe fruit from each plant was squeezed by
hand onto a handheld digital refractometer.

There were a total of 1,715 entries planted in these five
trials that were phenotyped and genotyped using the Affymetrix
Axiom R© IStraw90 (Bassil et al., 2015) and IStraw35 (Verma et al.,
2017) SNP arrays. Quality control was performed on a total of
14,332 segregating SNP markers in which SNPs with MAF < 0.05,
and missing marker data >0.05 were eliminated, yielding a total
of 9,908 markers for the analyses. Missing values for each of the
markers were imputed based on average allele frequency. The
1,715 phenotypes represented 1,558 unique individuals including
advanced selections and varieties that were repeated across trials.

Genomic Prediction Model Analyses
The GP approach implemented was based on best linear
unbiased estimates (BLUE) following one-stage analysis of tested
phenotypes adjusted for the experimental factors in each trial. In
most years, row and column location of each plant in the trial
was recorded and the general linear mixed model was modified
by adding spatial factors (row, col) and correlated residuals
(autoregressive of order 1 for row and column), or independent
residual units. Hence, multiple linear mixed models were tested
for each trait and evaluated based on the Akaike and Bayesian
information criteria (AIC and BIC, respectively) as well as their
numbers of parameters (Isik et al., 2017).

Genomic Best Linear Unbiased Prediction, GBLUP
(VanRaden, 2008) allowed the testing of complex models and
was used only to assess genotype by year interactions (G × Y)
between pairs of years and calculate heritabilities. The multi-year
model assumed the genotypes among years were correlated such
that genetic correlations could be estimated among years, using a
factor analytic variance-covariance structure with two unknown
factors (as fully described by Smith et al., 2001). Factor analytic
models have been used to a large degree in plant breeding
programs to model G × E interaction with heterogeneous
variances between environments, and have shown to work
well for crop species in multi-environment tests (for example,
Burgueño et al., 2007, 2012; Crossa et al., 2006; Oakey et al., 2016;
Dias et al., 2018). We used a multivariate model with a factor
analytic variance-covariance structure with two (K) unknown
factor loadings. When the factor analytic model is applied to
the matrix of genotypic effects in each year (ug), the model can
be written as: ug = (0 ⊗ Im ) f + δ, where 0 is the matrix of
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K vector loadings, f is a vector of genotypic scores; Im is the
vector of genotypes in each year and δ is the vector of genetic
regression residuals. The variance of the genotype effects by
year takes the form: var

(
ug

)
= (0 0

′

+ ψ)⊗ Im where ψ is a
diagonal matrix with ψi as the specific variance for the ith year,
and the matrix across years is G = (0 0

′

+ ψ).
In this analysis, a genomic relationship matrix G was

generated using all 9,908 markers and following the methodology
described by Yang et al. (2010). The G matrix and its inverse were
performed with the software GenoMatrix (Nazarian and Gezan,
2016), and model fitting was carried out with ASReml-R version
4.0 (Butler et al., 2017) R version 3.5.1 (R Core Team, 2018).

Genomic prediction models, for this study, were obtained
by Bayes B and GBLUP, however, Bayes B has been shown to
capture both marker-quantitative trait loci association effects
and genetic relationship effects better than BLUP methods
(Zhong et al., 2009). Even though, GBLUP has indicated to
have a good performance for real data application (de los
Campos et al., 2013), in a previous strawberry prediction study
(Gezan et al., 2017). Bayes B performed slightly better for
low-heritability traits and was therefore the main focus in
our estimation of predictive ability for each TST population.
In Bayes B, the analysis of each trait within each year was
performed according to the following mixed model: y = 1µ+

Zβ+ e, where y is the response vector of BLUES, µ is the
intercept, β is a vector of random marker effects (coded 0,
1, 2) associated with the incidence matrix Z and e is the
vector of residual effects. Bayes B is a variable selection and
shrinkage method, which assumes that some SNP effects are
non-zero with probability 1-π while others have zero effects
with probability π, following a mixture of two different prior
densities with a point of mass at zero and a slab with a
scaled-t density (de los Campos et al., 2013). In this study, we
defined the priors according to the default hyper-parameters
recommended by Pérez and de los Campos (2014).

We estimated predictive abilities by fitting the model for each
trait with data from each individual trial as a training set (e.g., T2)
and predicting to other trials (or years), as testing sets (e.g., T4,
T6). Therefore, when we used T2 as TRN population we made a
prediction for all T4 to T10 trials, by employing a single matrix
of marker effects. The genotypes in these trials are genetically
related to various degrees, but they are statistically independent
in the process of fitting and evaluating the genetic model. After
the single predictions were performed, we increasingly averaged
successive predictions from previous years to the latest cycle
(T10) and evaluated their effect on predictive ability in both
forward (T2, T24,...) and backward (T8642, T864,...) directions.
Each of these combinations was evaluated including or excluding
common genotypes trialed across years. The Bayes B model was
fitted in R (R Core Team, 2018) using the R package BGLR (Pérez
and de los Campos, 2014) implementing a Markov Chain Monte
Carlo method with 50,000 iterations where the first 10,000 were
used as a burn-in. Each trait in each year was run five times
and the predictive ability (PA) was estimated as the average of all
runs, and trace plots of the residual variance were checked. The
heritability of adjusted clonal mean phenotypes was estimated
using GBLUP, with and without common genotypes, as h2

=

σ2
a

σ2
a+σ2

e
, where σ2

a is the additive variance and σ2
e is the estimated

residual variance. Even though there was a moderate number
of full-sib families in each trial (Table 1), we did not estimate
within-family predictive ability for each cycle because of the
unbalanced and small number of seedlings per family, mostly
varying between 3 and 10. Within-family predictive ability is
estimated in a different study (in preparation) established for
three consecutive years with few biparental crosses and a large
number of seedlings per family (60–75).

Linkage Disequilibrium and Effective
Population Size
The previously mentioned set of 9,908 SNP markers was used to
estimate effective population size, Ne. This set of markers was
selected out of 14,332 markers in season 2015–2016 using the
GenoMatrix software (Nazarian and Gezan, 2016) and was used
for all other GP analyses. A closely related set of 9,622 genetically
mapped SNP markers from Axiom IStraw35 SNP array (Verma
et al., 2017) were used to estimate linkage disequilibrium (LD)
for the five trials – T2, T4, T6, T8, and T10. These markers were
distributed among 28 linkage groups (LGs) with a minimum
number of 15 markers and maximum number of 720 markers
per LG (Supplementary Table S2). The multi-year dataset
comprising all cycles was divided into five different subsets
based on crossing year. The purpose of dividing datasets this
way was to estimate the distribution of LD structure and Ne of
each trial without the genetic background influence of parents
and common genotypes among trials. All individuals from
T2 were included: parents, selections, and ancestors connected
to the rest of the trials. Datasets for subsequent cycles T4,
T6, T8, and T10 for the purposes of LD and Ne estimation
included no founders or check cultivars, as the inclusion of
common individuals across trials might influence haploblock
structure estimation.

The R packages synbreed (Wimmer et al., 2012) and LDcorSV
(Desrousseaux et al., 2017) were used to estimate LD based
on population relatedness (r2) and without relatedness (r2

v),
respectively (Mangin et al., 2012). The LD decay in genetic
distance (Mb) was fitted with a non-linear regression model
within the synbreed package. Ne was estimated using an
LD-based approach and allele frequency threshold of 0.05
(Waples, 2006) via NeEstimator v2.1 software (Do et al., 2014).
NeEstimator V2.1 (2017) is a tool for estimating contemporary
effective population size (Ne) using multi-locus diploid genotypes
from population samples. Unlike V1, NeEstimator V2.1 does not
include third-party programs; all methods are implemented by
NeEstimator V2.1 code and also implements a bias-corrected
version of the method based on linkage disequilibrium (LD).

RESULTS

Training GP Models With Multiple Cycles
The effect of using a GP model over multiple breeding cycles
without retraining can be seen when using T2 as a training
population for all successive cycles (Figure 1). For all traits
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FIGURE 1 | Predictive ability (PA), without common genotypes and varieties, using T2 as an independent training population to predict later cycles for five traits.
AWT, average fruit weight (g); EMY, early marketable yield (g per plant); SSC, soluble solids content (◦Brix); TC, proportion of total culls (%); TMY, total marketable
yield (g per plant).

except EMY there was a negative trend in predictive ability
over time. The increase in predictive ability of EMY and TMY
from cycle 2 to cycle 3 seems to be associated with an increase
in heritability, from the TRN to the TST population, that
was not present in other traits. The inclusion of additional
cycles to the training population in the forward direction for
prediction of trial T10 resulted in increased predictive abilities
(Figures 2A,B). Predictive abilities for AWT and TMY tended to
increase continuously, whether common genotypes across trials
were included or not, while the trends for the other traits were
more variable, but still showing an overall positive trend.

Predictive abilities were noticeably higher when common
genotypes were included across cycles (Figure 2), and in this
scenario backward predictions had on average higher predictive
abilities for all traits than forward predictions. When common
genotypes were included in the analyses, adding additional cycles
to the training population in the backward direction gave little
improvement. For example, there seemed to be no improvement
in predictive ability when trial T2 was added to a training
population consisting of trials T8, T6, and T4. However, when
common genotypes were excluded, the addition of cycles to
the training population in the backward direction noticeably
improved predictive abilities for most traits.

Genetic Relationships
Single-cycle predictive abilities based on Bayes B are depicted in
Table 2. The scenario in which all common genotypes between
TRN and TST populations were included had a higher average
predictive ability (0.35) than for the scenario excluding common
genotypes (0.24), as expected. The trait AWT, when common
individuals were included, had the highest average PA (0.43) of
all traits across cycles, with a range from 0.38 to 0.53, followed
by SSC (0.38), TMY (0.35), EMY (0.30), and TC (0.28). A similar

pattern was noted when excluding common individuals, where
AWT had the highest average PA (0.33) varying from 0.15 to 0.48,
followed by SSC (0.26), TMY (0.24), EMY (0.18), and TC (0.18).
The predictive abilities estimated by Bayes B and GBLUP were
very similar (Table 2 and Supplementary Table S4).

Heritabilities and G × E Interaction
Genomic heritability estimates are presented in Figure 3.
Heritability estimates excluding common genotypes among trials
between TRN and TST were lower than those estimates including
common individuals across trials in 80% of the cases. However,
the range of heritabilities in both scenarios was wide and similar,
whether excluding or including common individuals, mostly
varying from 0.15 to 0.65, except for the wider range for TC (0.0–
0.81). Overall, average additive genetic correlations across trials
were very high, indicating very little if any G × Y interaction
(Table 3). Though a few values in some cycles showed moderate
correlations, such as for EMY (0.70) and TC (0.72), all remaining
values were higher than 0.79 (Supplementary Table S3).

Linkage Disequilibrium and Effective
Population Size
A set of 9,622 markers were mapped to 40 linkage groups, the
number of markers per LG varying from 15 to 720. We plotted
r2 and r2v (r2 with no relatedness bias) for T2 and T10 against
genomic distances in Mb for T2 and T10 (Figure 4). We also
compared the decay of LD between T2 and T10. Maximum r2

was 0.4 in T2 and 0.47 in T10. In T2, r2 decreased to 0.2 at
3.5 Mb (Figure 4A), compared to an r2 of 0.2 at 4.2 Mb for
T10 (Figure 4C). Similar trends were observed for r2v, with a
slower decay of LD in T10 compared to T2 (Figures 4B,D).
Much higher values overall for r2 compared to r2v indicates
that a substantial portion of apparent LD was due to relatedness
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FIGURE 2 | Forward (A,B) and backward predictions (C,D) of trial T10 (testing population) and the effect of model averaging the training population on predictive
ability under two scenarios: including common genotypes between the training and testing populations (A,C) and excluding them (B,D). AWT, average fruit weight
(g); EMY, early marketable yield (g per plant); SSC, soluble solids content (◦Brix); TC, proportion of total culls (%); TMY, total marketable yield (g per plant).

(Supplementary Table S2). The effective population sizes, Ne,
for each of the cycles were 25, 17, 23, 23, and 20 for T2,
T4, T6, T8, and T10, respectively, possibly indicating a slight
decrease over time.

DISCUSSION

Independent validation with TRN populations from five breeding
cycles was utilized to evaluate GP methods and inform practical
approaches for its implementation in the strawberry breeding
program at UF. The impact of averaging multiple single
predictions, genetic relationships among the cycles, heritabilities,
G × Y interactions, LD and Ne were explored separately.
The estimation of trait additive correlations across years,
G × Y, using multivariate analyses is complex due to the
heterogenous variances-covariances among environments and
the environmental effects to be fitted. When the number of traits
is high using a parsimonious FA matrix in modeling the G × Y
interaction has advantages in convergence compared to models

using an unstructured variance-covariance matrix. Previous
results showed that increasing the number of components of
FA models would give better estimates of variance-covariance
estimates; however, these models may or may not increase
predictive ability, and it is questionable whether it would improve
the model fit (Burgueño et al., 2011). Though our estimates of
additive correlations across years (Table 3) might be upwardly
biased, they reflect the low G × Y interactions present for the
traits evaluated.

Our focus on the estimation of predictive abilities was due
to the primary emphasis in this study on practical outcomes
and applications; however, it is possible to use deterministic
formulae to calculate prediction accuracies between different
cycles, which we would expect to provide very similar trends
(Wientjes et al., 2015). Prediction accuracy and the reliability of
predictions has been shown to decline across generations due
to a decrease in genetic relationships between the TRN and
TST populations (Habier et al., 2007; Pszczola et al., 2012) as
well as the break-up of LD and consequent reduction of genetic
variance explained by the markers (Goddard, 2009). Therefore,
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TABLE 2 | Forward predictive ability (PA) for five traits estimated using Bayes B, for pairs of trials using: (A) all individuals including varieties and advanced selections in
common among each pair of trials, and (B) excluding common individuals.

(A) (B)

Trait Trial T2 T4 T6 T8 T10 T2 T4 T6 T8 T10

AWT T2 a0.53 0.39 0.45 0.43 0.48 0.33 0.44 0.37

T4 0.38 0.41 0.44 0.31 0.29 0.30

T6 0.42 0.42 0.15 0.32

T8 0.51 0.27

T10

EMY T2 0.30 0.32 0.22 0.37 0.25 0.23 0.20 0.34

T4 0.18 0.23 0.26 0.06 0.13 0.12

T6 0.28 0.40 0.09 0.13

T8 0.40 0.30

T10

SSC T2 0.42 0.38 0.41 0.35 0.36 0.32 0.34 0.30

T4 0.40 0.39 0.40 0.27 0.23 0.25

T6 0.35 0.27 0.11 0.15

T8 0.41 0.29

T10

TC T2 0.32 0.24 0.19 0.22 0.29 0.16 0.19 0.16

T4 0.36 0.29 0.33 0.10 0.24 0.28

T6 0.20 0.29 0.15 0.06

T8 0.33 0.17

T10

TMY T2 0.40 0.36 0.24 0.39 0.35 0.26 0.17 0.35

T4 0.29 0.24 0.33 0.16 0.09 0.25

T6 0.32 0.46 0.22 0.24

T8 0.47 0.27

T10

AWT, average fruit weight (g); EMY, early marketable yield (g per plant); SSC, soluble solids content (%); TC, proportion of total culls (%); TMY, total marketable yield (g per
plant). aPredictive ability ranges from low (light color) to high (dark color).

FIGURE 3 | Genomic narrow-sense heritabilities for five traits for each trial with: (A) all genotypes including varieties and advanced selections in common among
pairs of trials, and (B) excluding common genotypes. AWT, average fruit weight (g); EMY, early marketable yield (g per plant); SSC, soluble solids content (◦Brix); TC,
proportion of total culls (%); TMY, total marketable yield (g per plant).

retraining models for GP is recommended every generation
(Wolc et al., 2011; Pszczola and Calus, 2016). Currently, in the
UF strawberry breeding program the decay of predictive ability
over successive cycles without including common individuals
(Figure 1) is offset by updating the GP model every year with
phenotypic and marker data from the latest field trial. Besides,
significant decreases in selection accuracy over generations are

not expected if marker density is sufficiently high (Solberg
et al., 2008). The number of markers used in this set of trials
(∼10,000) might be considered small when compared with some
other breeding programs, particularly for animals. However,
the most complete strawberry genetic map developed for UF
germplasm (unpublished) has a total length of 1729.5 cM,
meaning that on average more than five markers per cM were
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utilized in this study, which should be more than enough to
account for genome-wide allelic diversity in an elite strawberry
breeding population.

The results obtained by comparing predictive abilities
estimated by Bayes B, as well as a previous report using different
methods of predictions (Gezan et al., 2017), indicate that, for the
commercial traits reported, Bayes B may produce slightly greater
predictive abilities than GBLUP. Therefore, we are using Bayes
B operationally in the breeding program and have focused on
the use of Bayes B for this report. Overall, predictive abilities
using single cycles (or trials) as training populations (Table 2)
were in the general range of estimates reported from other
crops and environments (Sallam et al., 2015; Ðord̄ević et al.,
2019). Using multiple cycles by averaging predictions across
cycles noticeably increased predictive ability, whether individuals
common to multiple trials were included in the analyses or not.
Thus, the size of the training population, which is known to
be important for the success of GP, was increased, not in the
traditional sense (Asoro et al., 2011; Zhang et al., 2017), but
with the addition of independent training populations from each
cycle. Improvements in the estimation of PAs by adding multiple
cycles of training populations could also come from averaging
G× Y interaction effects, though we have shown these to be quite
low (Table 3).

The presence of population structure across the breeding
cycles has important effects on GP (Asoro et al., 2011). Genetic
relationships in the strawberry breeding populations studied arise
from two primary sources: the first is the continued testing
across years of promising advanced selections and check cultivars
during the process of variety development, and the second is the
use of common parents across years which increases relatedness
at the half-sib family level (Table 1). The impacts of genetic
relationships and cosegregation can be seen by comparing the
structure of the TRN populations in Table 1 with the predictive
abilities in Table 2 when including common individuals and
when excluding them. As shown in Table 1, the average number
of common genotypes among T2 or T4 with the other trials is
31 and 44 genotypes, respectively. Among the T6, T8, and T10
trials the average number of common individuals with others is
61, 66, and 62, respectively, partly reflecting the larger number
of genotypes included in these later trials. This helps to explain
the increasing average differences in predictive ability across
traits over time between scenarios where common individuals
are included versus excluded: T2 (0.05), T4 (0.12), T6 (0.18),
and T8 (0.17). Common parents as a source of relatedness is
highlighted by the fact that the average number of parents shared
among individuals for either T2 or T4 with the other trials is four
and five, respectively, but for T6, T8, and T10 trials the average
number of shared parents is eight, eight and seven, respectively.
In other words, the increase in genetic relationships across cycles
over time is clearly one of the factors favoring predictive ability in
this breeding program.

The strength of family relationships within and across
populations has been shown to influence the reliability and the
accuracy of genomic predictions in several studies. In Pszczola
et al. (2012) the effect of four TRN populations with increasing
numbers of half-sib families (5, 20, 40) for a fixed number

TABLE 3 | Average additive genetic correlations for five traits across trials,
including common individuals among trials, using GBLUP and a factor analytic of
order 2 (FA2) variance-covariance matrix, together with the proportion of the total
genetic variance explained (VE%) by FA2.

ra AWT EMY SSC TC TMY

Mean 0.96 0.95 0.9 0.9 0.95

Range 0.94–1.00 0.69–1.00 0.87–1.00 0.72–1.00 0.86–1.00

VE% 97.9 100.0 97.3 98.9 100.0

AWT, average fruit weight (g); EMY, early marketable yield (g per plant); SSC,
soluble solids content (%); TC, proportion of total culls (%); TMY, total marketable
yield (g per plant).

of offspring and a random population with the same number
of individuals was simulated. Based on their results and other
studies (Calus, 2010), the authors concluded that highly related
TRN populations that have a small number of families with
large number of offspring per family yield lower accuracy of
prediction compared to TRN populations with more half-sib
families or random populations. In the UF strawberry breeding
program the composition of the TRN population is largely
determined by the field performance of seedlings selected in
the previous year. Different numbers of seedlings are selected
from each full-sib family based on performance, while also
aiming to have, if possible, all families represented to maintain
genetic diversity. This resulted in small and unbalanced numbers
of individuals representing each full-sib family, which is why
within-family predictions were not performed in this study.
Ultimately, optimizing the design of the TRN population at
the family level is achievable, but constraining the number of
selections in the best families may negatively affect genetic gains,
at least in the short-term. The increase from two common parents
between T2 and T10 to 13 common parents between T8 and
T10 might have had a positive effect on predictive ability. Yet
this is not obvious, since in the scenario of excluding common
individuals the predictive ability for all traits from T8 to T10
(Figure 2D) was lower than the predictive ability from T2 to T10
(Figure 2B), indicating the low impact of the number of half-
sibs in this scenario. When including common individuals, the
situation is reversed, with T8 having greater ability than T2 to
predict T10. It is also important to note that backward predictions
when common individuals are included quickly reach a plateau,
with the addition of T6 to T8 giving a very small increase in
PA and the addition of T4 and T2 giving no improvement
(Figure 2C). Together these results highlight the importance
of relatedness to predictive ability, particularly in the case of
common individuals.

Marker-based genomic heritability estimates from this study
are higher than the previously reported pedigree-based estimates
for T2 and T4 (Gezan et al., 2017). This is not surprising,
as marker-based relationships are more precise. Many studies
have shown positive correlations between predictive ability and
narrow sense heritability, consistent with the present study
(Calus et al., 2008; Daetwyler et al., 2008). The presence of
G × Y interactions may cause rank changes across years, when
pairwise genetic correlations among years are below ra = 0.8
(White et al., 2007; Goddard and Hayes, 2007). In this study,
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FIGURE 4 | Comparison of genome-wide decay of r2 (linkage disequilibrium with relatedness bias) (A,C) and r2v (linkage disequilibrium without relatedness bias)
(B,D) for the T2 (Cycle 0) and T10 (Cycle 4) trials. Horizontal dotted lines represent thresholds of r2 for comparison and vertical dotted lines represent genomic
distances where LD intersects with thresholds.

almost all additive correlations were above 0.8, suggesting low
G × Y interactions that will have little effect on PA. Most of the
strawberry production in Florida is concentrated within a 30-
mile radius of Plant City, and genotype by location interaction
is minimal within this region. On the other hand, G × Y is
more unpredictable and should be monitored closely over time.
Modeling G × Y could allow trials to be pooled into a single
training population, as opposed to averaging predictions across
cycles, possibly improving PA.

Estimates of intra-linkage group regular pairwise LD (r2) and
LD corrected for relatedness (r2

v) for T2 were slightly lower than
our previous estimates of r2 = 0.26 and r2

v = 0.04 (Gezan et al.,
2017). One possible reason is that the original study utilized
17,479 markers from the IStraw90 SNP array, while the present
analysis was based on 9,622 markers from the IStraw35 array
(Verma et al., 2017) which also provides the same quality of
data but at a reduced cost. Simulation studies have shown that
overestimation of LD (r2) comes first from multiples copies of the

same genotype and second from the progeny of full-sib families
(Mangin et al., 2015). In our analysis, we estimated r2 based on
a single copy of each phenotype (common individuals removed),
but there were multiple full-sib families with different numbers
of offspring in each cycle; therefore, the bias of the r2 estimate
should only be due to this second factor. The presence of LD
corrected for relatedness is the driving force for the long-term
success of GP in the breeding population, as r2

v represents the
prediction accuracy that will tend to persist over multiple cycles
without the need for retraining (Mangin et al., 2012; Habier et al.,
2013). The dramatic decrease in LD when removing relatedness
bias once again emphasizes the importance of relatedness in this
population as it relates to the success of GP models.

The impact of Ne on prediction accuracy has been reported
in animals, forest trees and tree fruit species (Kumar et al., 2012;
Daetwyler et al., 2013; Bartholome et al., 2016). In long generation
tree species, the use of elite populations with Ne ranging from
10 to 50 is a common practice to increase genetic gains. In this
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FIGURE 5 | A single UF strawberry breeding cycle (overlapping cycles not shown) combining marker-assisted seedling selection (MASS) for disease resistance and
other simply controlled traits, combined with the early implementation of GP for using untested genotypes in crosses 1 year early (blue line), prior their phenotyping in
a replicated field trial of elite clones (GP trial). Once all clones are phenotyped, GP models are updated with that information for the estimation of BVs to guide future
crosses (dashed line). For ease of visualization, this figure shows only the cycle beginning in 2015. However, due to yearly overlapping cycles, all breeding program
activities including crossing, MASS, seedling trials, GP trials, etc., are carried out every year.

study, effective population size appears to have decreased slightly
from T2 (Ne = 25) to T10 (Ne = 20). In the present study this
apparent slight reduction in Ne and the corresponding increase
in the extent of LD from T2 to T10 are likely contributing to
increased predictive ability with the addition of later cycles. In
the long-term it is important to recognize that intensive recurrent
selection increases inbreeding. Therefore, to maintain long-term
breeding progress, it will be important to continue to introgress
diversity into the elite breeding population.

The last 5 years of implementation of GP in the UF strawberry
breeding program has allowed the use of some parents earlier in
the breeding cycle and has increased the accuracy of estimation
of breeding values. This study makes clear that the use of average
predictions from multiple cycles in training GP models is very
beneficial, at least up to four cycles when common individuals are
included across trials. Based on these results, the following steps
are currently used for the application of GP in the UF strawberry
breeding program (Figure 5):

(1) In the summer prior to each winter fruiting/crossing
season, which in Florida extends roughly from mid-
November through March, phenotypic and marker data
from up to four previous cycles, including common
individuals across trials, are used to train Bayes B models
predicting the BVs of the most recent advanced selections.
These selections were seedlings in the previous cycle and

are genotyped over the summer but are not yet phenotyped
for the five measured commercial traits AWT, EMY,
SSC, TC, and TMY.

(2) Breeding values for these five traits are combined in
a selection index using economic weights for each
trait to rank the advanced selections for their overall
potential as parents.

(3) In November and December, early-season field
observations are made for these advanced selections
for all visually evaluated traits, including: fruit shape, color,
and flavor, disease resistance, plant architecture, etc.

(4) Three to five advanced selections (out of approximately 25–
40 total parents) that are noted for early-season field traits
and ranked highly in the BV selection index are selected for
use as parents in controlled crosses as males. These males
are crossed to one or more elite females that have been field
evaluated for multiple seasons and have complementary
traits to the males chosen by GP. In this way, approximately
10% of crosses have a male parent chosen via GP methods
that is being used in crossing at least 1 year earlier in the
breeding cycle than normal.

As this study suggests, increasing the size of the training
population will increase prediction accuracy, but at some point,
increasing size will not further improve GP models. This appears
to have occurred for the UF strawberry breeding program at the
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fourth cycle. Given the demonstrated importance of relatedness
in this study, future work on the optimal design of the relatedness
within and among TRN and TST populations (choosing which
genotypes to establish in each trial) could possibly increase
predictive ability in the short term without compromising the
potential of future genetic gains. It will also be important to
monitor the performance of crosses chosen via GP versus those
designed in the traditional manner to empirically test whether the
implementation of GP in the breeding program is achieving the
desired results.
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