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SUMMARY
Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for
understanding skewed immune responses and defining predictors of outcome. Here, we performed a longi-
tudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk
DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood
samples harvested from up to 5 time points. Validation was performed in two independent cohorts of
COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyper-
active plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated
circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryo-
cyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study
demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an
entry point toward developing biomarkers and targeted treatments of patients with COVID-19.
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INTRODUCTION

COVID-19 shows a heterogeneous clinical course, ranging

from asymptomatic cases to overwhelming inflammatory re-

sponses leading to organ failure and death. Severe, and ulti-

mately fatal, COVID-19 is associated with a dysfunctional im-

mune response. Critically ill COVID-19 patients show higher

blood plasma amounts of numerous cytokines and chemo-

kines (Chen et al., 2020; Giamarellos-Bourboulis et al., 2020;

Huang et al., 2020; Ong et al., 2020) than do less severe cases.

Patients with severe COVID-19 exhibit an impaired type I inter-

feron (IFN) response with low IFN production and heteroge-

neous regulation of IFN-stimulated genes (Blanco-Melo et al.,

2020; Hadjadj et al., 2020). Peripheral blood of patients with

severe COVID-19 exhibits high frequencies of interleukin-6

(IL-6)-secreting CD14hiCD16hi monocytes as well as a

decrease of non-classical (CD14loCD16hi) monocytes (Hadjadj

et al., 2020; Schulte-Schrepping et al., 2020). Hyperinflamma-

tory COVID-19 is associated with the appearance of prolifer-

ating, type-I-IFN-activated CD14+HLAlo suppressive mono-

cytes and emergency granulopoiesis with elevated pre-

neutrophil counts. T cell lymphopenia and exhaustion are sug-

gested as hallmarks of severe COVID-19 as well (Diao et al.,

2020; Giamarellos-Bourboulis et al., 2020; Guan et al., 2020;

Huang et al., 2020; Zheng et al., 2020). SARS-CoV-2 infection

can elicit specific T cell and B cell responses (Braun et al.,

2020; Grifoni et al., 2020; Long et al., 2020; Ni et al., 2020).

How these changes in immune cell populations and functions

are related to disease outcome lasting immunity are areas of

active investigation.

A significant disease burden is mounted by thrombotic com-

plications associated with COVID-19. Pulmonary embolism

and thrombosis are frequent clinical features of critically ill

COVID-19 cases (Deshpande, 2020), sometimes despite suffi-

cient anticoagulation. Alveolar capillary microthrombi are nine

times more prevalent in COVID-19 than in influenza autopsies

(Lax et al., 2020). Patients exhibit elevated D-dimer levels and

widespread thrombotic microvascular injury (De Voeght et al.,

2020; Rapkiewicz et al., 2020). Several studies suggest altered

platelet immune cell interactions (Leppkes et al., 2020, Manne

et al., 2020) and the presence of megakaryocytes (MKs) in

affected lungs (Meyerholz and McCray, 2020).
Longitudinal analyses on the dynamics of circulating immune

cells in COVID-19 so far have mostly investigated one informa-

tion layer (e.g., fluorescence-activated cell sorting [FACS]) at a

time. Here, we aimed to provide a comprehensive, longitudinal

view of cellular features by using an integrated multi-omics

approach. We analyzed up to five peripheral blood samples

from hospitalized COVID-19 patients throughout their disease

course by single-cell RNA sequencing (scRNA-seq), transcrip-

tome and DNA methylome profiling, multi-color flow cytometry,

as well as multiplex cytokine ELISA. In addition to complex

changes of immune cells, our study linked circulating MKs and

responses of erythroid cells to COVID-19 clinical outcome.

RESULTS

Study Design
We applied a multi-omics approach using up to 5 longitudinal pe-

ripheral blood samples of 13 hospitalized COVID-19 patients and

1 additional recovery control from 2 University hospitals in Ger-

many (Cologne and Kiel). We employed parallel scRNA-seq (10x

Genomics), single-cell B cell receptor (BCR) profiling, bulk

mRNA sequencing (RNA-seq), BCR amplicon sequencing, and

multicolor flow cytometry. Array-based DNA methylation profiling

and multiplex cytokine ELISA analysis was performed in a subset

of seven patients (Figure 1A). All patients were recruited at admis-

sion and samples were taken at days 0, 2, 7, 10, 13 and/or at

discharge. Three patients were diagnosed with Acute Respiratory

Distress Syndrome (ARDS), two of which had a fatal disease

course. Five patients received remdesivir after inclusion into this

study. Patient demographics and clinical characteristics are

described in Table S1. Fourteen age- and gender-matched

healthy controls were processed in parallel. To describe the heter-

ogenous disease trajectories over time, we used a modifiedWHO

ordinal scale (WHO, 2020), which also considers several inflam-

matory markers (serum c-reactive protein [CRP], serum IL-6,

and ferritin) (Table S2). The score was used to classify patients

along their disease course (Figures 1B and 1C).

scRNA-seq Analysis Identifies Cellular Changes along
the COVID-19 Disease Trajectory
We first analyzed scRNA-seq data from 358,930 cells with

10,900 cells on average per sample (Figure 2A). Up to four
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Figure 1. Clinical Definition of Disease

Phases for Disease Trajectory Analyses

(A) Graphical overview of the study cohorts.

(B) Concept of disease phase pseudotimes. Clin-

ical disease phases (pseudotimes) were defined

based on inflammatory markers and ventilation

need (according to WHO ordinal scale). They

reflect temporal disease severity and distinguish

between incremental and recovering disease

stages. Abbreviation is a follows: Hosp, Hospital-

ization. For detailed explanation of the scoring and

pseudotimes, see Table S2.

(C) Overview of the cohort 1. All patients are

temporally aligned to the day of initial admission.

Squares mark the day of COVID-19-related

symptom onset. Frames mark days of in-patient

care, and the color represents the disease pseu-

dotime. Sampling days were marked with a white

circle. Intubations and extubations are depicted

with triangle symbols, if applicable.

See also Tables S1 and S2.
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longitudinal samples were analyzed per patient. Uniform Mani-

fold Approximation And Projection (UMAP) was used to visualize

the structure of cellular populations (Figures 2B–2E). Graph-

based clustering identified 37 distinct cell clusters in the dataset

(Figure S1A). Cell type classification was performed on the basis

of signature genes of each cluster and confirmed by using refer-

ence transcriptomes (Aran et al., 2019; Wilk et al., 2020; Zheng

et al., 2017) (Figures 2B, 2C, S1B, and S1C). Cells from individual

patients were dispersed evenly in the UMAP representation, with

the exception of a higher degree of interindividual heterogeneity

in the monocytic subpopulations (Figure 2D, 2E, and S2).

Enumeration across time points revealed changes of several

cell types including monocytes, proliferative lymphocytes, and

natural killer (NK) cells (Figures 2E, 2F, and S1D). We observed
1298 Immunity 53, 1296–1314, December 15, 2020
an increase of classical CD14+ mono-

cytes especially in convalescence

stages, whereas nonclassical CD16+

monocytes amounts were increased in

pseudotimes 2 and 3 (Figure S2). More-

over, we confirmed suppression of hu-

man leukocyte antigen-DR (HLA-DR)

expression in the critical phase (pseudo-

time 2) (Schulte-Schrepping et al.,

2020). Lymphopenia of CD4+ cells was

present, but less pronounced than in

other datasets. We also noted increased

plasmablast (PB) proportions from the in-

cremental phase to early convalescence,

whereas B cells were depleted during in-

cremental and complicated stages (Wilk

et al., 2020). Of note, we recognized the

increased presence of several bone-

marrow-derived precursor cell types in

the peripheral blood of COVID-19 pa-

tients. Prominently, MK proportions

were elevated throughout the course of

the disease (Figure 2F). To define poten-

tial cell populations, which might be
directly infected by SARS-CoV-2, we specifically interrogated

ACE2 mRNA amounts in the dataset, which were below detec-

tion limit (<7 reads) in all cell populations (data not shown).

A correlation analysis of relative cell proportions with clinical

activity parameters and multiplex serum ELISA revealed that

PB proportions were correlated with serum amounts of e.g., tu-

mor necrosis factor (TNF), IL-10, and IL-21, a factor critically

involved in B cell differentiation to PBs via STAT3 and BLIMP-1

(also known as PRDM1) (Ozaki et al., 2004). Increased bone

marrow precursor cells were associated with increased amounts

of IL-33, a Th2 cytokine involved in regulating hematopoietic

stem cell regeneration (Kim et al., 2014), and elevated MKs

were linked to heightened inflammatory parameters, e.g., serum

CRP, IL-6, and IFN-a (Figure 2G).
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Figure 2. Cellular Changes along COVID-19 Disease Trajectories

(A) Schematic workflow.

(B) Cell type UMAP representation of all merged samples. Twelve cell types were identified by cluster gene signatures. In total, 358,930 cells are depicted.

(C) Dot plot for cell-type-specific signature genes. Genes were selected on the basis of the expression amounts of the ten most characteristic genes. Color

discriminates genes with increased (red) or decreased (blue) expression, and point size represents the number of cells per group expressing the correspond-

ing gene.

(legend continued on next page)
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Whole-Blood Transcriptome Signatures Vary
Dynamically along COVID-19 Disease Trajectory
To delineate the transcriptional response to SARS-CoV-2 infec-

tion at higher temporal resolution and to instruct further cell type

selection from the single-cell dataset, we next analyzed whole-

blood transcriptomic data of the 13 hospitalized patients from

up to 5 time points alongwith the recovery control and compared

the signatures against 14 healthy controls (Figure 3A). Principal

component analysis showed a separation between healthy con-

trols and COVID-19 patients on the first principal component

(PC1) (Figure 3B). In total, 5,915 genes were differentially ex-

pressed between healthy controls and COVID-19 patients in a

pairwise comparison between controls and each of the disease

trajectory pseudotimes (Figures 3C and S3A). Most of the differ-

entially expressed genes (DEGs) were expressed at higher levels

in COVID-19 patients than in healthy controls (Figures 3C and

S3A). Notably, early changes comprised increase of immuno-

globulin transcripts (IGHA1 and IGHG1) and lactoferrin (LTF),

whereas RORCmRNA levels, encoding for a Th17-specific tran-

scription factor (TF) and class II HLA transcripts were decreased

throughout the disease course.

Next, we employed ImpulseDE2 to construct a model of intra-

individual variation of DEGs over time (Sander et al., 2017). Given

that two of three patients reaching pseudotime 2 were deceased

soon after reaching this time point and did not experience a

convalescent disease course, this category was excluded from

this analysis and was only used to contrast identified transcripts

post hoc. We identified 935 DEGs following impulse-like pro-

gression patterns across the disease trajectory (Figures 3D

and S3A). Genes involved in IL-1b and vasodilatory signaling

were highly expressed during the incremental trajectory (pseu-

dotime 1). A broad decrease in transcripts encoding ribosomal

structural proteins was present from the incremental to the late

convalescent state (pseudotimes 1, 3, and 4), whichmight reflect

a general suppression of the protein synthetic apparatus by type

I IFN (Jiang et al., 1997). Opposingly, there was a strong increase

in IFN-related transcripts during the peak of disease activity,

which was, however, suppressed in the critical disease category

(Figures 3D and S3B), confirming earlier reports (Blanco-Melo

et al., 2020; Hadjadj et al., 2020). Transcripts involved in

myeloid-cell-mediated immunity and neutrophil degranulation

were modestly increased during pseudotimes 1, 3, and 4, but

were strongly increased in the critical pseudotime 2. Notably,

during late convalescence (pseudotimes 5 and 6) a strong signal

of erythroid cell differentiation (e.g., HBD, OPTN, and FIS1) was

detectable indicating a response to hypoxia (Ashrafi and

Schwarz, 2013).
(D) Sample of origin UMAP representation of all merged samples. Cells were color

time points of sample collection day 1 (after admission TA), day 3 (TA2), day 8 (T

(E) Pseudotime UMAP representation of all merged samples, colored by pseudo

(F) Cell proportions grouped by pseudotime. Cell proportions depicted as points

and horizontal bars depicting the mean. Pseudotimes are represented by colors.

COVID-19 pseudotimes and p values are based on Mann-Whitney test for comp

(G) Correlation heatmap between cell-specific proportions and clinical parameter

0.001 in Spearman’s correlation. Color intensity corresponds to correlation coeffi

Abbreviations are as follows: DC, dendritic cells; PB, PBs; MK, megakaryocytes;

CMP, common myeloid progenitor cell; GMP, granulocyte-monocyte progenitor

See also Figure S1.
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We used the gene set resource DoRothEA to infer transcrip-

tion factor (TF) activity by enriched regulon analysis. TFs in active

disease were related to inflammation and IFN signaling (e.g.,

IRF1 and STAT3) as well as hypoxic signaling (HIF1A) (Fig-

ure S3C). Supporting the IL-21-PB axis identified in the first

part of the single-cell analysis, PRDM1 (encoded by BLIMP-1)

was predicted as significantly active both at the critical as well

as at convalescent time points. A hypergeometric test of all

active TFs against the REACTOME database showed an enrich-

ment of ‘‘cell differentiation pathway’’ (q = 0.03) and ‘‘MK devel-

opment and platelet production’’ (q = 0.05). Using upstream

network topology of gene expression changes by using signed

and directed protein-protein interactions (Liu et al., 2019), we

could show that MAPK3 (also known as ERK1) and MAPK1

(also known as ERK2) had the highest centralities across all

pseudotimes (Figure S3D). We further constructed metabolic

models of each pseudotime by using the respective DEGs (Ge-

bauer et al., 2016) and found that the inflammatory disease

states were associated with higher numbers of predicted meta-

bolically active pathways than in convalescence and healthy in-

dividuals (Figure S3E). We also investigated the bulk RNA data-

set for presence of viral reads and did not detect relevant

amounts (>10) of viral reads in any sample. This finding was

also confirmed by negative routine real-time PCR (E gene and

S gene amplicon) (data not shown).

Longitudinal Co-expression Modules Identify Impaired
IFN Response in Critical Disease and Signatures of
Increased Thrombo- and Erythropoiesis
We next used all DEGs identified from the combination of pair-

wise and longitudinal analysis (6,317 genes) for weighted gene

co-expression network analysis (Langfelder and Horvath, 2008;

Lee et al., 2004). The analysis identified a total of 10 modules,

which we refer to as M1–M10, of co-expressed genes following

distinct expression patterns throughout the COVID-19 disease

phases (Figures 4A and S3F; Table S3). We calculated the eigen-

gene values, which represent a single expression profile for all

genes within a module, to assess the individual correlation be-

tween themodules and scRNA-seq-derived cellular composition

(Figure 4B) and clinical parameters (Figure 4C). Projecting the

expression of the hub genes of each module on the scRNA-

seq data revealed cell-type- and pseudotime-specific expres-

sion patterns (Figure S4). Gene set enrichment analysis revealed

biological processes and pathways enriched in each of the mod-

ules. Transcription factor binding site (TFBS) inference (Breuer

et al., 2013) was used to depict putatively involved TFs. M2 rep-

resented a signature of a type I IFN response and proliferative
ed by the sample. Samples nomenclature is based on patient ID (001–014) and

B), day 11 (TB2), day 14 (TC), and day 20 (TE).

time.

referring to percentages based on the total cell numbers of individual samples

p values are based on longitudinal linear mixed model for comparison among

arisons between healthy and COVID-19 samples.

s included in routine tests and multiplex ELISA. *p < 0.05, **p < 0.01, and ***p <

cient.

HSC, hematopoietic stem cell; MEP, megakaryocyte-erythroid progenitor cell;

.
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Figure 3. Dynamics of Whole-Blood Gene Expression in COVID-19

(A) Schematic workflow.

(B) PCA plot of all control and COVID-19 samples on the basis of the expression of all genes. Samples are color-coded by their pseudotime and labeled by the

patient or individual ID.

(legend continued on next page)
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activity (G2M transition) (Figure 4D) and was enriched in binding

sites for IRF1, STAT1, and STAT2 (Figure S3G). M4 was associ-

ated with the presence of MKs in the peripheral blood as well as

D-dimers and had two expression peaks, in the critical state

(pseudotime 2) and in the early convalescent state (pseudotime

4), respectively. M7 contained transcripts related to hemoglobin

biosynthesis and coincided with TFBS motifs for GATA-1 and

GATA-2, which are TFs related to erythroid cell differentiation

(Figure S3G). This biphasic pattern is likely related to hypoxia

during highly acute inflammation (first peak) and weaning off

supplemental oxygen during convalescence (second peak).

Altogether, analysis of temporal gene expression patterns in

whole blood of patients clearly depicted pathophysiological con-

sequences of a SARS-CoV-2 virus infection along an idealized

disease trajectory.

Whole-Blood DNA Methylation Profiling Reveals
Genome-Wide Hypomethylation in COVID-19
Associated with Gene Expression
Epigenetic changes have been shown to contribute to the path-

ophysiology of systemic inflammatory states (Lorente-Sorolla

et al., 2019). We thus investigated DNAmethylation (DNAm) pat-

terns along the COVID-19 disease course following the workflow

depicted in Figure 4E in a subset of the same patients (n = 6) (Ta-

ble S1) and compared them with a cohort of six healthy age and

gender-matched controls. A pairwise comparison with healthy

controls and between pseudotimes identified between 46,071

and 69,733 differentially methylated CpG sites (Figures 4F, 4G,

and S5B). A preponderance of hypomethylated sites was pre-

sent at each time point compared with in healthy controls.

Cellular deconvolution analysis (M€uller et al., 2019) identified

that major parts of the COVID-19-associated DNAm signatures

originated from granulocytes, B cells, NK cells, and monocytes

(Figure S5A). Using Locus Overlap Analysis for inferring differen-

tially methylated TF binding sites (Sheffield and Bock, 2016), we

observed a significant overrepresentation of binding sites of the

CCAAT Enhancer Binding Protein Beta (CEBPB) in hypomethy-

lated regions (Figure 4H), which has a critical role for emergency

granulopoiesis (Hirai et al., 2006) and B-lymphocyte-to-granulo-

cyte trans-differentiation, a process that has been proposed in

severe COVID-19 (Wilk et al., 2020).

We employed a hierarchical testing approach (Pan et al., 2018)

to identify interactions between transcriptome and DNAm signa-

tures in cis (Figure 4E). To that end, we screened all DEGs (com-

bined set) for differentially methylated positions (DMPs) within a

5 kb window up- and downstream of their respective transcrip-

tion start site. Of all 3,280 DMP-DEG pairs, 68.3% showed

increased expression with reduced methylation or decreased

expression with increased methylation, which is in line with pre-

vious studies (H€asler et al., 2012). We next investigated the rep-
(C) Log2-fold change (y axis) of DEGs between controls and each of the COVID

decreased (blue) expression, and point size represents statistical significance (a

parisons in which the genes is significantly differentially expressed. The numbers

bottom of the plot, respectively.

(D) Heatmap of top 500 longitudinal DEGs across COVID-19 pseudotimes (pseu

shown for comparison on the left and right ends of the heatmap, respectively. The

are hierarchically clustered by using their adjacency scores as distance.

See also Figure S2.
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resentation of DMP-DEG pairs in the co-expression modules

M1–M10. Rank-based correlation analysis identified DMP-DEG

pairs in all modules, and there was a significant overrepresenta-

tion in M3 and M8 (Figures S5C and S5D). Gene ontology (GO)

term enrichment analysis of DMP-DEG pairs showed an enrich-

ment of innate-immunity-related terms in the DEGs with

increased expression (e.g., TNF and IL-6 signaling and Toll-like

receptor [TLR] pathway), and also identified gene sets related

to platelet function and metabolic processes (ATP metabolism

and autophagy) (Figure 4I). DMP-DEG pair genes, which were

either increased in the inflammatory phase (pseudotimes 1–4)

or decreased in late convalescence (pseudotimes 5 and 6)

were mapped to scRNA-seq data, identifying larger cell-type-

specific clusters of DMP-DEG pairs for PBs, monocytes, and

MKs (Figures S5E and S5F).

Plasmablast and B Cell Changes across the COVID-19
Disease Trajectory
Given that our findings pointed to changes of the B cell compart-

ment along the disease trajectory of COVID-19, we next investi-

gated the B cell lineage in greater detail (Figure 5A). We first ex-

tracted 22,190 cells identified as part of the B cell lineage from

scRNA-seq data in cohort 1. UMAP embedding identified two

distinct large clusters reflecting bona fide B cells, which included

11,509 memory B cells, 3,993 naive B cells, 383 transitional

B cells, and 6,295 PBs (Figure 5B). PBs were largely expanded

during COVID-19 with highest levels in the hyperinflammatory

phase (Figure 5C). Multicolor flow cytometry confirmed high

amounts of circulating CD27hiCD20� cells in the fraction of

CD19+ cells, which dropped along the disease convalescence.

Likewise, the early relative decrease of naive (CD20+CD27�)
and memory B cell (CD20+CD27+) amounts normalized at later

time points (Figure 5D). We also identified a large fraction of

HLA-DR+CD138+ double-positive PBs in the inflammatory phase

(pseudotimes 1–4). Whereas CD138+ cells were only abundant in

the active disease and not in the convalescence phase, 82%–

98% of all CD27hiCD20� cells remained HLA-DR+ (Figure S6F).

Of note, because PBs are notoriously sensitive to manipulation,

we recognized that the handling procedures for scRNA-seq, also

for cohort 2, diminished the amounts of intact PBs compared to

flow-cytometry data, whereas the longitudinal dynamics of

increased PB numbers was retained between the two methods.

We could distinguish a smaller cluster of PBs, which

expressed genes associated with neutrophils (e.g., ELANE,

MPO, and CAMP) (Figure 5E). Unlike in the previous study

(Wilk et al., 2020), we also found such cells in healthy subjects,

albeit at lower frequency (Figure 5C). Using monocle3 (Qiu

et al., 2017), we highlighted the cellular trajectory of transitional

B cells into naive and memory B cells, with a separate memory

B cell cluster being most likely CD45RB� cells (Glass et al.,
-19 pseudotimes (x axis). Color discriminates genes with increased (red) or

djusted p value). The transparency of the points denotes the number of com-

of genes with increased and decreased expression are written at the top and

dotimes 1, 3, 4, 5, and 6). Gene expression in controls and pseudotime 2 are

row-wise z-scores of the normalized counts are plotted in the heatmap. Genes



M1

M2

M3

M4

M5

M6

M7

M8

M9

M10
0 1 2 3 4 5 6 7 0

50
0

1,
00

0
1,

50
0

Number of genes

−0.2
−0.1

0
0.1
0.2

A B C

D

H

Eigengene

GO: aminoglycan catabolic process
GO: platelet activation

GO: mitochondrial translation
GO: positive regulation of leukocyte migration

GO: cytoplasmic translation
KEGG: ribosome

Hallmark: heme metabolism
GO: endomembrane system organization

GO: vesicle organization
Hallmark: protein secretion

GO: activation of MAPKK activity
GO: polysaccharide metabolic process

KEGG: toll like receptor signaling pathway
GO: antimicrobial humoral response
Hallmark: TNFα signaling via NFKβ

KEGG: insulin signaling pathway
GO: positive regulation of locomotion

GO: exocytosis
GO: myeloid leukocyte mediated immunity

Hallmark: IL6 JAK STAT3 signaling
GO: response to virus

Hallmark: interferon gamma response
Hallmark: interferon alpha response

Hallmark: G2M checkpoint
GO: B cell mediated immunity

GO: immunoglobulin production
GO: FC receptor mediated stimulatory signaling pathway

GO: mitotic nuclear division
GO: cell cycle dna replication

GO: lymphocyte mediated immunity

M1 M2 M3 M4 M5 M6 M7 M8
M10

10-3

10-4

10-5

10-6

FDRNES
2.5
3.0
3.5
4.0

10-2

*

*

*

*

*

*

*

*

*

*

*

*

*

***

**

**

**

**

**

** **

**

**

***

*** ***

***

Mon
oc

yte
s

Gran
ulo

cy
tes

Eryt
hro

id 
ce

lls

NK ce
lls

ProL
ym

ph

CD4+  T ce
lls

CD8+  T ce
lls DC

B ce
lls PB

Prec
urs

ors MK

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

**

**

**

**

** **

**

**

** **

**

**

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*** ***

*** *** ***

***

Ordi
na

l s
ca

le

Tim
ep

oin
t fr

om
 on

se
t

Hea
rt r

ate

Thro
mbo

po
eti

n

 D
−D

im
ers

Whit
e b

loo
d c

ell
s

Neu
tro

ph
ils

Ly
mph

oc
yte

s

Hem
ato

kri
t

Plat
ele

t
CRP

IL−
6

Fe
rrit

in

Gluc
os

e

Tro
po

nin
 T

an
ti S

ARS−C
oV

−2
 Ig

A

an
ti S

ARS−C
oV

−2
 Ig

G

Pseudotime 

Critical
Complicated

Moderate/earlyconvalescence
Late convalescence
Recovery/pre-discharge
Long-term follow-up

Incremental
2
3

4
5
6
7

1
0 Healthy

-0.500.51 -1
Spearman‘s Rho

-0.500.51 -1
Spearman‘s Rho

D
M

P
 in

te
rs

ec
tio

ns

Hypermethylated
Hypomethylated

0

20,000

40,000

0 v
s 1

0 v
s 2

0 v
s 3

0 v
s 4

0 v
s 5

0 v
s 6

N
um

be
r o

f s
ite

s

Between category comparison

1 2 3 4 5 6

Differential methylation analysis

DMPs

LOLA

Integration workflow

GO term analysis

Module comparison

 DEGs 
TSS

Gene expression-methylation intensity correlation

Differentially methylated positions identification

TSS

TSS

EZH2
GATA−2
c−Fos
CTCF
SMC3
JunD
IKZF1
BATF
BCL11A
NFIC

CEBPB
c−Fos
p300
STAT3
SMC3
Rad21
EZH2
SUZ12
NRSF
CtBP2

CEBPB
p300
c−Fos
STAT3
c−Jun
BATF
BCL11A
NFIC
RUNX3

CEBPB
p300
c−Fos
STAT3
GATA−2
EBF1
BCL11A
BATF
NFIC

0
1
2
3
4
5

CEBPB
p300
c−Fos
STAT3
GATA−2
BATF
BCL11A
RUNX3
NFIC

CEBPB
p300
c−Fos
STAT3
GATA−2
BATF
BCL11A
NFIC
ATF2

Odds ratio

H
yp

er

H
yp

er

H
yp

er

Hy
po

H
yp

o

H
yp

o

H
yp

er

H
yp

er

H
yp

er

Hy
po

Hy
po

Hy
po

Acute-phase response
Pegulation of interleukin-6 production
Positive regulation of toll-like receptor signaling pathway
Positive regulation of interleukin-8 secretion
Regulation of autophagy
Positive regulation of cell differentiation
Cellular response to cytokine stimulus
Regulation of angiogenesis
Platelet degranulation
Regulation of tumor necrosis factor production
Interleukin - 1 beta production
Innate immune response
Negative regulation of inflammatory response
T cell receptor signaling pathway
Negative regulation of ATP metabolic process
Positive regulation of interferon-gamma production

Inc
rea

se
d

Dec
rea

se
d

10-2.510-3.010-3.5

p-value

0.3 0.4 0.5 0.6 0.7
Gene ratio

Expression in COVID-19

15,000

10,000

5,000

0

5
4
3
2
1

6

15
,2

00
11

,4
80

6,
04

5
5,

03
3

2,
85

8
2,

37
7

1,
38

0
1,

02
5

1,
39

9
87

5
40

5
98 70

8

E

GF

I

Pseudotime 1 Pseudotime 2 Pseudotime 3

Pseudotime 4 Pseudotime 5 Pseudotime 6

Pseudotime

(legend on next page)

ll
Article

Immunity 53, 1296–1314, December 15, 2020 1303



ll
Article
2020) (Figure 5F). We could retrace the progression of PBs,

which did not cluster on the basis of immunoglobulin classes

but rather on the basis of disease state, with cells from hyperin-

flammatory phases being more distant from the root of the tra-

jectory (Figures S6A and S6B). Neutrophil-like PB cells were

not continuously linked to the PB trajectory (Figure 5F).

We next analyzed the BCR repertoire in the different B cell

compartments by using heavy-chain bulk- and scBCR-seq (Fig-

ures S6D, S6E, and S6G–S6P). In the bulk dataset, we identified

all together 596,882 unique BCR CDR3 heavy-chain sequences,

whereas for scBCR-seq we had information referring to 14,785

cells. Diversity analysis showed a heightened clonality, which

sharply increased at early time points and then gradually

decreased in the convalescent pseudotimes until normalization

in follow-up (Figures S6D and S6E). Bulk BCR identified an

expansion of IgA+ and IgG+ cells (Figures S5G and S5I) in both

memory B cells and PBs (Figures S5H and S5J). Increased

IGHA1 and IGHG1 expression was reached earlier in PBs than

in memory B cells. Expanded IgA+ and IgG+ PBs were confirmed

in the scBCR-seq data (Figures S5K and S5N). Analysis of immu-

noglobulin heavy-chain variable region (IGHV) family subunits

(Figures S5L, S5M, S5O, and S5P) showed a preponderance

of specific V regions in COVID-19 patients comparedwith in con-

trols, e.g., IGHV3-30 and IGHV3-23were overrepresented in PBs

and neutrophil-like cells during disease. In summary, we

observed an increase in B cell clonality in COVID-19, and there

was an increase of memory B cells and PBs, dominated by the

IgA and IgG isotypes and a skewed use of the IGHV gene early

during the disease course.

We next analyzed the longitudinal gene expression patterns of

the 6,295 PBs (Figure 5G). The incremental inflammatory phase

of COVID-19 patients was characterized by transcripts related to

endoplasmic reticulum (ER) stress and protein folding (e.g.,

XBP1) and cell proliferation (e.g., PIM2 and S100A4). Type I

IFN response genes (IFI27, IFI6, and IFITM1) were present in

the PBs until late in the disease (up to pseudotime 5), yet such

genes were absent from PBs in critically ill patients (pseudo-

time 2). Throughout disease, we also identified an increase in

SLC1A4 expression, a potential upstream regulator of metabolic

changes (Figure 5I). High IL-16 expression, which supports
Figure 4. Co-expression Analysis of Differentially Expressed Genes an

(A) Group eigengene heatmap of co-expression modules constructed by using al

within each pseudotime are plotted. The number of genes is plotted as a bar plo

(B) Correlation heatmap showing Spearman’s rank correlation coefficients bet

scRNA-seq data (columns). *p < 0.05, ** p < 0.01, and *** p < 0.001 in Spearman

(C) Correlation heatmap showing Spearman’s rank correlation coefficients betwe

0.05, **p < 0.01, and ***p < 0.001 in Spearman’s correlation. Color intensity corre

(D) Dot plot showing the gene set enrichment analysis (GSEA) of gene co-expre

clopedia of Genes and Genomes (KEGG) gene sets. Size of the dots is proportion

false discovery rate (FDR). Selected top terms are visualized.

(E) Schematic workflow of the analysis performed on the whole-blood EPIC arra

(F) Number of significantly DMPs between controls and each of the COVID-19 p

(blue) positions in COVID-19 samples compared with those from controls.

(G) DMP comparisons between top 30,000 DMPs at each pseudotime. Vertical ba

(right) indicated as connected dots (bottom). Only selected overlaps are visualize

(H) Heatmap showing the significant enrichment, quantified by odds ratio, of TFB

are visualized.

(I) Dot plot showing GO terms enriched in DMP-DEG pairs. Size of the dots is p

enrichment. Selected top terms are visualized.

See also Figures S2, S3, and S4 and Table S3.

1304 Immunity 53, 1296–1314, December 15, 2020
migration of CD4+ T cells and circulating blood dendritic cells

(DCs) into lymphoid organs during the initiation of a humoral im-

mune response (Kaser et al., 2000), was a feature of long-term

recovery PBs (Figure 5G). GO enrichment analysis identified

increased unfolded protein response and mitochondrial ATP

synthesis during active disease (Figure 5H). These findings

were also corroborated in an independent cohort (cohort 2) of

patients with mild and severe COVID-19 by using another

scRNA-seq technology (Schulte-Schrepping et al., 2020). The

2,263 PBs extracted from this dataset confirmed a strong in-

crease of PBs in severe versus mild COVID-19 (30% versus

8% of entire B cell lineage) as well as increased expression of

CD38, PIM2, IFI6, XBP1, and SLC1A4 and similarly enriched

GO terms (Fisher test, p = 1.80 3 10�5 for unfolded protein

response and p = 2.50 3 10�8 for mitochondrial ATP synthesis).

PBs can modulate immune responses by serving as a nutrient

sink (Vijay et al., 2020). Thus, we used constraint-based model-

ling to reconstruct the metabolic state of individual cells from

scRNA-seq data (Joshi et al., 2020; Pacheco and Sauter,

2018). PBs from inflammatory states displayed a high metabolic

activity, which was reduced only upon recovery, whereas mem-

ory and naive B cells displayed no significant differences in over-

all metabolic activity between disease states (Figure S7L).

Increasedmetabolic processes in PBswere oxidative phosphor-

ylation, glyoxylate and dicarboxylate metabolism, NAD synthe-

sis, and an increase of various amino acid metabolic pathways

(including glycine, serine, alanine, threonine, valine, leucine,

and isoleucine). Glycolysis was predicted to have a low activity

state in inflammatory disease phases, whereas it was highly

active at clinical recovery (pseudotime 6) (Figure 5J). Altogether,

the analysis identified the broad activation of PBs and suggested

a strong immunometabolic shift of the cells toward amino acid

metabolism, which might contribute to the immunopathology

seen in severe COVID-19.

Elevated Megakaryocyte Amounts as a Feature of the
Systemic Inflammatory Response to COVID-19
Systemic inflammatory responses are known to consume plate-

lets, which exert broad immune and inflammatory functions in

addition to their well-established hemostatic role (Semple
d Integration with Changes in Methylation

l pairwise and longitudinal DEGs. The average eigengene values of all samples

t (right).

ween gene co-expression modules (rows) and cell-specific proportion from

’s correlation. Color intensity corresponds to correlation coefficient.

en gene co-expression modules (rows) and clinical parameters (columns). *p <

sponds to correlation coefficient.

ssion modules against GO (Biological Processes), Hallmark, and Kyoto Ency-

al to the normalized enrichment score (NES), and the color corresponds to the

y data and its integration with bulk RNA-seq data.

seudotimes. Colors discriminate hypermethylated (red) and hypomethylated

r plots indicate the number of specific DMPs (left) shared between time points

d.

S in the DMPs identified at different COVID-19 pseudotimes. Selected top TFs

roportional to the gene ratio and the color corresponds to the p value of the



Figure 5. B Cell Compartment Analysis Identifies Plasmablast Changes across the COVID-19 Disease Trajectory

(A) Schematic workflow.

(B) B cell compartment subtypes represented as a UMAP. In total, 22,190 cells are depicted. Memory B cells (MB) (dark red), naive B cells (N) (red), transitional B

cells (trans) (orange), and plasmablasts (PB) (blue).

(legend continued on next page)
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et al., 2011; Yeaman, 2014). Pulmonary and cerebral embolism is

an important contributor to morbidity and mortality in COVID-19

(Liao et al., 2020). Given that we had observed a transient in-

crease of circulating MKs, the cellular source of platelets (Fig-

ure 2B), in the single-cell data and identified co-expression mod-

ules (M3 and M4) related to platelet counts and D-dimer levels,

we hypothesized that altered presence and function of MKs

might be a distinct feature of COVID-19. We thus performed

sub-clustering of 6,512 cells identified as MKs and their respec-

tive hematopoietic stem cell precursors (HSCs) and MK-

Erythroid precursors (MEPs) by using the k-nearest neighbor

method (Figures 6A and S7A). The cells clustered into 2 distinct

subgroups, 5,870 identified as bona fide MKs and another

smaller cluster containing all HSCs and MEPs (Figures 6B,

S7B, and S7C). The relatively low number of cell precursors

complicated the comparison between individual pseudotimes

(Figures S7D–S7G). However, we could discern a significant in-

crease of HSCs and MEPs at the convalescence state in com-

parison with healthy controls (Figure S7J).

By focusing exclusively on MKs, we found there was a clear

separation between samples belonging to healthy controls and

patients with active COVID-19 (Figure 6C), particularly cells

from complicated disease phases form distinct subclusters

from cells of healthy and long-term recovery disease phases

(Figures 6D and 6E). Strong increase in PKM transcript amounts

(PKM2), encoding a pyruvate kinase that is involved in ATP for-

mation, interacts with HIF1A and promotes its activity, was

observed in critical patients (pseudotime 2). In this group, high

expression of FCER1G, encoding the common FcR g-chain

adaptor responsible for integrin (ITGA2-GP6)-mediated platelet

adhesion was also present (Figure 6E). GO enrichment analysis

identified broad terms related to immune responses, type I IFN

response, and platelet aggregation to be altered along the dis-

ease trajectory (Figure 6G).

Transiently decreased transcripts comprised of ODC1 (orni-

thine decarboxylase), the rate-limiting enzyme for polyamine syn-

thesis (Kanerva et al., 2008), and TGFB1 (Figure 6F). IFITM3, IFI27,

and IFITM2 had increased expression in the inflammatory pseu-

dotimes 1, 2, 3, and 4, indicating a lasting IFN response

throughout the disease trajectory in MKs. Furthermore, we vali-
(C) B cell compartment pseudotimes represented as a UMAP.

(D) Flow-cytometry analysis of B cell subtypes. CD19+ B cells were stained for CD

MB, and CD20+CD27� cells as N. Proportions of each cell type among CD19+ B c

connected by patient. (n = 7 individuals).

(E) PB-specific UMAP highlighted neutrophil-like cells (NL). Smaller UMAPs cor

neutrophil-like markers (ELANE, MPO, and CAMP).

(F) Cell trajectory analysis of B cell compartment. Cell trajectory was calculated

differentiated into 2 branches: B cells naive and memory branch (gray line, culm

orange).

(G) Dot plot for pseudotime signature genes in PBs. Genes selected on the basi

criminates genes with increased (red) or decreased (blue) expression, and poin

ing gene.

(H) GO enrichment analysis for genes with increased expression during disease tr

the p value of the enrichment. Selected top terms are visualized.

(I) Gene expression of genes of interest in B cell subtypes. Genes of interest selec

plot depicting B cell subtypes expression, center violin plot based on pseudotim

[white], mild disease [light gray], and severe disease [dark gray]).

(J) Metabolic pathways enriched in B cell compartment subtypes. Top 20 active

PBs are shown. For each B cell subtype, significant differences in metabolic activ

found per pathway is displayed as color intensity.

See also Figure S6L.
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dated our findings in an independent cohort of mild and severe

COVID-19 (Schulte-Schrepping et al., 2020), which confirmed

not only higher numbers of MKs in severe patients (Figure 6H),

but also confirmed increased expression of IFITM3,PKM, ITGA2B

(also known as CD41), and IFITM2, and decreased expression of

ODC1 and TGFB1 in severely ill patients (Figure 6F, bottom).

Metabolic modeling identified an increased metabolic activity

of MKs along the disease trajectory compared with that in

healthy controls, albeit at a lower level than in PBs (Figure 6I).

Notable predicted processes were related to energy metabolism

(pyruvate metabolism, glycolysis, and reactive oxygen species

[ROS] detoxification) (Figures 6J and 6I). Themetabolicmodel in-

ferred a pronounced increase of glycolytic flux toward lactate, an

induction of the methylglyoxal pathway (Kalapos, 2008) and a

decrease of spermidine-polyamine products known to inhibit

platelet aggregation (de la Peña et al., 2000).

Association of Co-expression Modules with Clinical
Outcome in a Cohort of Severely Ill COVID-19 Patients
Lastly, we focused on the potential importance of the obtained

signatures in a clinical context in a longitudinal cohort of 40 me-

chanically ventilated, critically ill COVID-19 patients from Rad-

boud University Medical Center (UMC) in Nijmegen (cohort 3)

(Table S4).

Bulk RNA sequencing data in this cohort were obtained at two

time points early upon admission to the ICU. We used matched

sample pairs with similar increasing inflammatory activity

changes from survivors (n = 33) and non-survivors (n = 7) and

interrogated the change of expression amounts of module genes

(M1–M10, as defined in theGerman longitudinal cohort [cohort 1]

initially shown in Figure 4A) between the two time points (Fig-

ure 7A). The first sample was obtained in median 3 days after

ICU admission, the median period between the time points

was 2 days without systematic differences between surviving

and non-surviving patients. The second time point of non-survi-

vors varied between 4–35 days before death. Three modules

were significantly regulated in this longitudinal comparison. M2

transcripts related to failing type I IFN response were signifi-

cantly decreased in both survivors and non-survivors, corrobo-

rating the association of IFN dysregulation and severe disease
20 and CD27. CD20�CD27high B cells classified as PB, CD20+CD27+ cells as

ells is relative to the disease onset, colored by corresponding pseudotime, and

responding to expression of PB markers (CD27, CD38, and TNFRSF17) and

by using Monocle3. The analysis rooted on transitional B cells (purple) and

inating in yellow) and an over imposed PB branch (black line, culminating in

s of the increased expression of the ten most characteristic genes. Color dis-

t size represents the number of cells per group expressing the correspond-

ajectory. Dot size is proportional to the gene ratio and the color corresponds to

ted on the basis of their high expression in PB or NL. For each gene, top violin

e, and bottom violin plot based on the expression of cohort 2 (healthy control

metabolic pathways for context-specific metabolic networks reconstructed in

ity were determined by using a Kruskal-Wallis test. Number of reaction counts
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Figure 6. Elevated Megakaryocyte Levels as a Feature of COVID-19

(A) Schematic workflow.

(B) MKs and their precursors as a UMAP. In total, 6,512 cells are depicted. MKs (green), HSCs (pink), and MEPs (yellow) are shown.

(C) MKs pseudotimes represented as a UMAP. In total, 5,870 cells are depicted.

(legend continued on next page)
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(Blanco-Melo et al., 2020; Hadjadj et al., 2020). M4, indicative of

MKs in the peripheral blood as well as elevated D-dimer levels

and M7 transcripts, associated with erythroid differentiation

and MKs, were significantly increased only in COVID-19 non-

survivors when comparing the change between sampling at

ICU admission and the follow-up time point 2 days later

(Figure 7B).

In a reverse approach, we asked which transcripts displayed

longitudinally different expression patterns between the two

time points in survivors versus non-survivors. We found that

whereas in survivors only 3 transcripts were regulated, 182 tran-

scripts were significantly different in non-survivors (Figure 7C).

Of these transcripts, 130 were contained in the previously

defined temporal co-expression modules from cohort 1 with a

significant enrichment of transcripts related to M2, M4, and

M7. Cell-type-specific expression patterns of these fatality-

associated transcripts (average expression value per cell type,

derived from scRNaseq cohort 1) showed that the signature for

M2 genes marked a broad array of cell types, such as mono-

cytes, granulocytes, NK cells, proliferative lymphocytes, and

CD8+ T cells, M3 and M4 genes were mostly specific for mono-

cytes, with few highly expressed transcripts attributed to MKs. A

large proportion of M7 genes painted the erythroid lineage, a

separate cluster was expressed specifically in MKs, e.g.,

PBX1, TRIM58, and PDZK1IP1 (Figure 7D).

Lastly, we quantified the differential regulation of TFs over time

in survivors versus non-survivors via a moderated t test using

limma (Ritchie et al., 2015). The analysis identified 16 TFs that

were differentially regulated in non-survivors only and 7 TFs in

survivors (Figure 7E). Pathway analysis (REACTOME) revealed

significant enrichment of the terms ‘‘MK development and

platelet production’’ (p = 0.0001) and ‘‘TRAF6-mediated induc-

tion of pro-inflammatory cytokines’’ (p = 0.001) in the non-survi-

vor TFs.

DISCUSSION

The clinically heterogeneous disease presentation renders indi-

vidual molecular dynamics of the hematopoietic and immune

cell compartments system in response to COVID-19 an impor-

tant topic with regard to understanding the pivot points of the

disease. Our longitudinal analysis provided a chronological

rank order to changes observed in prior cross-sectional studies.

We observed an early and lasting depletion of NK cells and lym-

phopenia of the CD4+ T cell compartment. Our data corrobo-
(D) MKs across COVID-19 disease trajectory. For each UMAP, pseudotime-spec

(E) Dot plot for disease trajectory signature genes in MKs. Genes selected on the

criminates genes with increased (red) or decreased (blue) expression, and point siz

(F) Expression of genes of interest in MKs. Top violin plot based on pseudotime an

(white), mild disease (light gray), and severe disease (dark gray).

(G) GO enrichment analysis for genes with increased expression during disease tra

value of the enrichment. Selected top terms are visualized.

(H) Cohort 2 MK proportions grouped by disease severity. Healthy control (white),

p value are based on linear mixed model.

(I) Metabolic pathways enriched in MKs. Top differentially active metabolic path

nificant differences in metabolic activity were determined by using a Kruskal-Wall

(J) Pyruvate metabolism in MKs. Number of pyruvate metabolic pathway active r

Number of models per pseudotime were denoted as n above each column.

See also Figure S6L.
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rated a sustained increase and shift of the monocytic compart-

ment (Schulte-Schrepping et al., 2020; Wilk et al., 2020).

Interestingly, we found in our DNAm data that hypomethylated

positions were highly enriched in cis of transcripts with increased

expression related to positive regulation of TNF secretion, IL-1b

release, and innate immune signaling. Vice versa, transcripts

with decreased expression comprised T cell receptor signaling

and negative regulation of ATP metabolism, indicating a poten-

tial long-term regulation of the immunological misfiring (Lee

et al., 2020; Lucas et al., 2020) by epigenetic processes. We

observed a transient increase of PBs and a relative decrease

of memory and naive B cells, which coincides with inflammatory

severity and normalizes with convalescence (De Biasi et al.,

2020; Kuri-Cervantes et al., 2020; Stephens and McElrath,

2020; Mathew et al., 2020). Similar to other studies, the changes

were not correlated with levels, but preceded the appearance of

SARS-CoV-2-recognizing IgG antibodies (Kuri-Cervantes et al.,

2020; Woodruff et al., 2020). The expression of CD138 on a large

fraction of PBs during the disease supports the theory that these

cells are non-specifically mobilized from the bone marrow or

other tissues. Of note, we found that the COVID-19 PBs were

predicted to be highly metabolically active in a systems biology

modeling approach (Joshi et al., 2020). The observed changes

suggest a role of PBs as a nutrient sink, which was already

observed in extrafollicular PBs as a hallmark of a systemic in-

flammatory response in severe malaria (Vijay et al., 2020). The

predicted lower energy availability at the peak of COVID-19

might indicate excessive shuttling of glucose into antibody

glycosylation, which might contribute to metabolic exhaustion

of the cells (Corcoran and Nutt, 2016; Lam et al., 2016) and/or

altered glycosylation patterns of antibodies, which were linked

to severe COVID-19 (Hoepel et al., 2020; Larsen et al., 2020).

Our longitudinal approach identified two other cellular features

induced by COVID-19, which were unrecognized in previous

studies. First, we found a significant increase of MKs, which car-

ried a strong type I IFN signature. The change was associated

with two longitudinal co-expression modules from the bulk

RNA sequencing data (M3 and M4). Both modules were posi-

tively correlated with serum levels of D-dimers, suggesting a

link to the inflammation-induced pro-coagulative state as a

potentially fatal complication in COVID-19 patients. One of the

top transcripts with increased expression in MKs was IFITM3,

which confers antiviral activity in MKs and platelets (Campbell

et al., 2019). Metabolic modeling suggested that in the hyperin-

flammatory states, a shift toward higher rates of pyruvate
ific cells were highlighted by color.

basis of the expression amount of the ten most characteristic genes. Color dis-

e represents the number of cells per group expressing the corresponding gene.

d bottom violin plot based on cohort 2 by disease classification; healthy control

jectory. Dot size is proportional to gene ratio and the color corresponds to the p

mild disease (light gray) and severe disease (dark gray) were depicted. AIC and

ways for context-specific metabolic networks reconstructed are shown. Sig-

is test. Number of reaction counts per pathway are displayed as color intensity.

eactions by pseudotime were depicted. p value based on Kruskal-Wallis test.
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metabolism and glycolysis occurs, which sensitizes platelets to-

ward activation and aggregation (Nayak et al., 2019).

Although thrombopenia has been observed as a clinical corre-

late of critical COVID-19 (metanalysis in Lippi et al., 2020), it is

unlikely that direct infection of MKs as seen in Dengue fever is

responsible for this alteration. We found no evidence of either

ACE2 expression in MKs or any virus-associated reads in the

cell population (data not shown). The observed increase of circu-

lating precursors including MEPs argues for an influence of

COVID-19, which could not only represent a bystander response

to increased platelet consumption but might rather reflect

inflammation-induced emergency megakaryopoiesis (Haas

et al., 2015). We did not observe a direct correlation of MK levels

with neither platelet counts nor D-Dimers, whichmight be limited

by the small number of scRNaseq datasets. A continuous pres-

ence of type I IFN signals, as seen in our dataset, might addition-

ally increase of the aggregation potential of platelets (Leppkes

et al., 2020;Middleton et al., 2020). In line with this, theMK-asso-

ciated module M4 is strongly correlated with D-Dimer levels in

the larger bulk dataset from cohort 1.

The second cellular feature was primarily observed in the

bulk RNA-seq data and was related to the co-expression

module M7. We saw a biphasic upregulation of a transcript

group that comprises canonical components of erythropoi-

esis, which are most likely related to the presence of reticulo-

cytes. GATA-1 TF binding motifs linked to hypoxia-induced

stress erythropoiesis (Zhang et al., 2012) were significantly en-

riched in the module. We thus reasoned that this feature re-

flects a canonical response to hypoxia because it is present

in critically ill patients and at a later stage when patients are

weaned of supplemental oxygen. Post-hypoxia polycythaemia

and the presence of different erythroid progenitors in the cir-

culation has been studied as a response mechanism of the

bone marrow to acute hypoxic insults and critical illness for

decades (Loeffler et al., 1984; Peschle et al., 1977). Mobiliza-

tion of erythroid progenitor cells and their presence in the cir-

culation has been linked to augmented immune responses

(Serebrovskaya et al., 2011). Although we did not directly pro-

file erythrocytes in the scRNA-seq data because of red blood

cell lysis and size and feature filtering steps in the data pro-

cessing, we found evidence for the increased presence of

committed erythroid-progenitor-like cells in the scRNA-seq

data in two of our patients at the stage of oxygen-weaning.

From the gene content and the number of cells identified, it

is unlikely that these cells represented reticulocytes. Together,

the results indicate a profound reaction of the erythroid line-

age to COVID-19 at different phases of the disease. These
Figure 7. Clinical Significance of Co-expression Modules in a Longitud
(A) Schematic workflow.

(B) Module eigengene comparisons between the two sampled time points in survi

distance and *p < 0.05 (Mann Whitney tests).

(C) Volcano plot depicting log2-fold changes and FDR-adjusted p values betwee

corresponding co-expression modules. Darker colors represent significantly DEG

(D) Heatmap showing the average expression of DEGs identified in non-surviv

expression in severe stages of the disease (pseudotimes 1, 2, and 3) is shown. R

hierarchically clustered for each module separately.

(E) Volcano plot depicting the differential TF activity over time in non-survivors (righ

(p < 0.1) are marked in red.

See also Table S4.
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features of the computed disease trajectory were linked to

clinical outcome in a larger retrospective cohort of 40 me-

chanically ventilated COVID-19 patients. We could show that

two modules from cohort 1, M4 (related to MK numbers in

cohort 1) and M7 (indicative of erythropoiesis in cohort 1),

were significantly correlated with a fatal outcome in the inde-

pendent cohort. Decrease in expression of the M2 module

(associated with hypomorphic type I IFN in cohort 1) in a

broad array of cell types including monocytes, NK cells,

CD8+ T cells, and PBs was present in both survivors and

non-survivors, corroborating the observation of failing type I

IFN in severe COVID-19, but questioning its clear relation to

fatal outcome. Our results clearly suggest that regulatory

events in megakaryocytic and erythroid cells might act as

pivotal components of an unfavorable course of COVID-19,

which mandates further prospective exploration.

Limitations of Study
Limitations of our study are given by the relatively low sample

size of the initial two-center cohort (cohort 1), which we aimed

to compensate by two independent validation cohorts. The initial

findings, which point to functional alterations of cellular features,

mandate prospective validation and currently can only be inter-

preted in light of mechanistic findings in other systemic inflam-

matory disorders. We saw no evidence for a correlation of PB

numbers with delayed development of SARS-CoV-2-recog-

nizing antibodies, which is in line with another study (Kuri-Cer-

vantes et al., 2020). However, an interference of the broad PB

activation with other specific B cell reactions, such as affinity

maturation of neutralizing antibodies or memory formation, as

in severe malaria (Vijay et al., 2020) should not be excluded.

Metabolic hyperactivation of PBs will have to be confirmed by

other methods, yet from the comparison of the models between

subpopulations of the B cell lineage, the observed pattern in PBs

does not appear as a general immunometabolic consequence of

COVID-19. Likewise, the presence, altered function, and inferred

metabolic skewing of MKs and other hematopoietic precursors

(e.g., granulocytes-macrophage progenitors [GMPs]) has to be

confirmed in larger cohorts and by orthogonal methods (e.g.,

FACS and proliferation assays). Such studies should definitely

also take long-term consequences of microvascular complica-

tions (e.g., neurological deficits) into account. Our study further-

more suggests several cytokines (e.g., IL-10 and GDF-15 [Myhre

et al., 2020]) as markers of severe COVID-19 trajectories. Large

prospective, longitudinal biomarker trials are mandated to come

up with clinically actionable predictors of severe COVID-19

trajectories.
inal Cohort of Severe COVID-19 Patients

vors and non-survivors for M2, M4 andM7. Error bars depict 1.5 of interquartile

n the two sampled time points in non-survivors. Genes are color-coded by the

s.

ors in different cell-types of cohort 1 (from scRNA-seq data). The average

ow-wise z-scores of the average gene counts are plotted in the heatmap and

t) versus survivors (left) versus the�log10 transformed p value. Significant TFs
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L., Avendaño-Ortiz, J., Maroun-Eid, C., Martı́n-Quirós, A., Martı́nez-Gallo, M.,

Ruiz-Sanmartı́n, A., et al. (2019). Inflammatory cytokines and organ dysfunc-

tion associate with the aberrant DNA methylome of monocytes in sepsis.

Genome Med. 11, 66.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Lucas, C., Wong, P., Klein, J., Castro, T.B.R., Silva, J., Sundaram, M.,

Ellingson, M.K., Mao, T., Oh, J.E., Israelow, B., et al.; Yale IMPACT Team

(2020). Longitudinal analyses reveal immunological misfiring in severe

COVID-19. Nature 584, 463–469.

Manne, B.K., Denorme, F., Middleton, E.A., Portier, I., Rowley, J.W., Stubben,

C.J., Petrey, A.C., Tolley, N.D., Guo, L., Cody, M.J., et al. (2020). Platelet Gene

Expression and Function in COVID-19 Patients. Blood. https://doi.org/10.

1182/blood.2020007214.

Mathew, D., Giles, J.R., Baxter, A.E., Oldridge, D.A., Greenplate, A.R., Wu,

J.E., Alanio, C., Kuri-Cervantes, L., Pampena, M.B., D’Andrea, K., et al.;

UPenn COVID Processing Unit (2020). Deep immune profiling of COVID-19 pa-

tients reveals distinct immunotypes with therapeutic implications. Science

369, eabc8511.

Meyerholz, D.K., and McCray, P.B., Jr. (2020). Illuminating COVID-19 lung dis-

ease through autopsy studies. EBioMedicine 57, 102865.

Middleton, E.A., He, X.-Y., Denorme, F., Campbell, R.A., Ng, D., Salvatore,

S.P., Mostyka, M., Baxter-Stoltzfus, A., Borczuk, A.C., and Loda, M. (2020).

Neutrophil Extracellular Traps (NETs) Contribute to Immunothrombosis in

COVID-19 Acute Respiratory Distress Syndrome. Blood. https://doi.org/10.

1182/blood.2020007008.

M€uller, F., Scherer, M., Assenov, Y., Lutsik, P., Walter, J., Lengauer, T., and

Bock, C. (2019). RnBeads 2.0: comprehensive analysis of DNA methylation

data. Genome Biol. 20, 55.

Myhre, P.L., Prebensen, C., Strand, H., Røysland, R., Jonassen, C.M.,

Rangberg, A., Sørensen, V., Søvik, S., Røsjø, H., Svensson, M., Berdal, J.E.,

and Omland, T. (2020). Growth Differentiation Factor-15 Provides Prognostic

Information Superior to Established Cardiovascular and Inflammatory

Biomarkers in Unselected Patients Hospitalized with COVID-19. Circulation.

https://doi.org/10.1161/circulationaha.120.050360.

Nayak, M.K., Ghatge, M., Dhanesha, N., Flora, G.D., Jain, M., Rodriguez, O.,

Markan, K., Potthoff, M., Lentz, S.R., and Chauhan, A.K. (2019). Targeting

Metabolic Enzyme Pyruvate Kinase M2: A Novel Strategy to Inhibit Platelet

Function and Arterial Thrombosis (DC: American Society of Hematology

Washington).

Ni, L., Ye, F., Cheng, M.-L., Feng, Y., Deng, Y.-Q., Zhao, H., Wei, P., Ge, J.,

Gou, M., Li, X., et al. (2020). Detection of SARS-CoV-2-specific humoral and

cellular immunity in COVID-19 convalescent individuals. Immunity 52,

971–977.e3.
Immunity 53, 1296–1314, December 15, 2020 1313

https://doi.org/10.1101/2020.07.13.190140
https://doi.org/10.1101/2020.07.13.190140
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref37
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref37
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref37
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref38
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref38
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref38
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref39
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref39
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref39
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref40
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref40
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref40
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref41
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref41
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref41
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref41
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref42
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref42
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref42
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref42
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref43
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref43
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref43
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref43
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref44
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref44
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref44
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref44
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref44
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref44
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref44
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref44
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref46
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref46
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref46
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref46
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref47
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref47
https://doi.org/10.1101/2020.05.18.099507
https://doi.org/10.7326/M20-2566
https://doi.org/10.7326/M20-2566
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref50
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref50
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref50
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref51
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref51
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref51
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref51
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref52
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref52
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref52
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref52
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref53
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref53
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref53
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref54
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref54
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref54
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref55
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref55
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref55
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref56
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref56
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref56
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref57
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref57
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref57
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref58
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref58
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref58
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref59
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref59
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref59
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref59
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref59
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref60
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref60
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref61
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref61
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref61
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref61
https://doi.org/10.1182/blood.2020007214
https://doi.org/10.1182/blood.2020007214
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref63
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref63
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref63
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref63
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref63
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref64
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref64
https://doi.org/10.1182/blood.2020007008
https://doi.org/10.1182/blood.2020007008
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref66
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref66
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref66
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref66
https://doi.org/10.1161/circulationaha.120.050360
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref69
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref69
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref69
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref69
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref69
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref70
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref70
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref70
http://refhub.elsevier.com/S1074-7613(20)30504-5/sref70


ll
Article
Noronha, A., Modamio, J., Jarosz, Y., Guerard, E., Sompairac, N., Preciat, G.,
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Cohort 1 scRNA-seq and scBCR-seq processed data This paper FastGenomics

https://github.com/Systems-

Immunology-IKMB/COVIDOMICs/

tree/main/scRNAseq/Prop_

Celltypes_github.csv

Cohort 2 data Schulte-Schrepping et al., 2020 https://dx.doi.org/10.1016/j.

cell.2020.08.001

Supplemental Tables This paper https://doi.org/10.17632/

7686ww5z33.2

Software and Algorithms

XPonent Software Luminex v3.1

FlowJo https://www.flowjo.com v10

Prism https://www.graphpad.com v8

RNA-seq pipeline https://github.com/nf-core/rnaseq N/A

Trim Galore https://github.com/

FelixKrueger/TrimGalore

v0.4.4

STAR Dobin et al., 2013 v2.5.2b

featureCounts Liao et al., 2014 v1.5.2

DESeq2 (Bioconductor package) Love et al., 2014

http://bioconductor.org/packages/

release/bioc/html/DESeq2.html

v1.20.0

ImpulseDE2 (Bioconductor package) Fischer et al., 2018

http://bioconductor.org/packages/

release/bioc/html/ImpulseDE2.html

v1.4.0

R https://cran.r-project.org v3.6.3

WGCNA (R package) Langfelder and Horvath, 2008 v1.69

MiXCR Bolotin et al., 2015 v.3.0.12

vegan (R package) https://cran.r-project.org/web/

packages/vegan/index.html

v1.5-6

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

tcR (R package) https://cran.r-project.org/web/packages/

tcR/vignettes/tcrvignette.html

v2.3.2

RnBeads (Bioconductor package) Assenov et al., 2014

https://rnbeads.org/

v1.12.1

GSEA (desktop application) https://www.gsea-msigdb.

org/gsea/

v4.0.3

topGO (Bioconductor package) https://bioconductor.org/packages/

release/bioc/html/topGO.html

v2.32.0, v2.38.2

LOLA (Bioconductor package) Sheffield and Bock, 2016 v1.14.0

CellRanger 10x genomics v3.1.0

CellRanger VDJ function 10x genomics v3.1.1

Seurat (R package) Butler et al., 2018 v3.1.5

SingleR (R package) Aran et al., 2019 v1.0.6

monocle3 Qiu et al., 2017 v3

MAST Finak et al., 2015 v.1.16.0

Sybil (R package) Gelius-Dietrich et al., 2013 v2.1.5

sybilSBML (R package) Gelius-Dietrich et al., 2013 v3.0.5

Recon 2.2 https://github.com/varnerlab/

Recon-2.2-Model

v2.2

FASTCORE algorithm/COBRA Toolbox Vlassis et al., 2014

https://opencobra.github.io/

cobratoolbox/stable/modules/

dataIntegration/transcriptomics/

FASTCORE/index.html

v.3.0

coin (R package) https://cran.r-project.org/web/

packages/coin/index.html

v1.3-1

viper (R package) Alvarez et al., 2016 v1.22.0

OmnipathR (R package) https://github.com/saezlab/

OmnipathR

v1.2.1

CARNIVAL https://bioconductor.org/packages/

release/bioc/html/CARNIVAL.html

v1.0.1

Limma Ritchie et al., 2015 v3.44.3
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Philip

Rosenstiel, p.rosenstiel@mucosa.de

Material Availability
This study did not generate unique reagents.

Data and Code Availability
The bulk RNA-seq and BCR-seq data generated during this study is available in GEO database (GSE161777).

The Illumina EPIC Array data generated during this study is available in GEO database (GSE161678).

The raw scRNA-seq data and scBCR-seq data generated during this study is available in EGA (Accession number to be confirmed).

The processed scRNA-seq and scBCR-seq data generated during this study is available in FastGenomics (https://beta.

fastgenomics.org/p/565003).

Additional processed data is available at GitHub (https://github.com/Systems-Immunology-IKMB/COVIDOMICS).

Additional Supplemental Items are available from Mendeley Data at https://doi.org/10.17632/7686ww5z33.2.

The custom codes used in this study are available in https://github.com/Systems-Immunology-IKMB/COVIDOMICs. Please note

that there is a diverse set of codes depending on the OMICs layer in question: bulk RNA-seq, Methylation, scRNaseq, BCR, Meta-

bolic modeling, TF enrichment and Data integration.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients and specimen collection (cohort 1)
14 patients from two independent University hospitals (Cologne, Kiel) were recruited for the longitudinal multi-Omics study. Eligibility

criteria included age R18 years and admission to the respective hospitals (either normal ward or ICU) with a positive SARS-CoV-2

nasopharyngeal swab by RT-PCR. Sex, age and additional demographic information, aswell as patient comorbidities can be found in

Table S1. This study did not particularly focused on impact of sex on patient outcome due to the limit number of individuals; larger

cohorts have been used to study the influence of sex upon SARS-CoV-2 infection. Five patients were co-enrolled in an ongoing clin-

ical trial (remdesivir) at UKSH. Enrolment for longitudinal molecular phenotyping occurred between 1st April 2020 and 6th May 2020

(seven patients at the University Medical Center Schleswig-Holstein, Campus Kiel (UKSH) and seven patients at the University Hos-

pital Cologne (UKK), with the last sample taken on 20th May 2020). One patient with a mild disease course was recruited after his

recovery to serve as an additional recovery control. The patients consented to the sampling of biomaterials, analytic processing

of the biomaterials and genetic analysis, the study was approved by the independent ethical review board of Kiel University (ref

no�: D 466/20) and Cologne (identifier: 20-1295). Eight healthy donors were included as controls at a single time point in the frame-

work of the DZHK study (ethics vote ref no�: D 441/16). While the patients were in inpatient health care, the sampling schemewas day

0 (at admission), day 2, day 7, day 10, and day 13. At each sampling day, blood was collected in PAXgene tubes, CPT tubes, EDTA

and serum tubes (except from day 101: no CPT tubes were taken). Clinical parameters were retrieved from the electronic patients

record systems or from written discharge letters from transferred patients by the COVID-19 clinical consultants (T.B., J.R.) and clin-

ical research fellows (F.T. and P.K.).

To describe the heterogenous disease trajectories over time, a modifiedWHO ordinal scale (WHO, 2020), which also considers the

behavior of several inflammatory markers (serum CRP, serum IL-6 and ferritin) was used (Table S2) to classify patients along their

disease course (Figures 1B and 1C) enabling the interrogation of molecular states associated with transition between phases

(e.g., complicated to early convalescent). Phases were defined as pseudotimes in accordance with WHO and the LEOSS register

(https://leoss.net) to depict the longitudinal course of the disease: incremental (pseudotime 1, where clinical symptoms and inflam-

matory markers were increasing, ICU or non-ICU), critical (pseudotime 2, ICU, mechanically ventilated with signs of ARDS), compli-

cated (pseudotime 3, state with severe signs of a systemic inflammatory response, ICU, high-flow oxygen, intubation readiness),

moderate or early convalescent (pseudotime 4, supplemental oxygen, significant signs of systemic inflammation), late convalescent

(pseudotime 5, intermittent supplemental oxygen, minor signs of inflammation), recovery/pre-discharge (pseudotime 6, no supple-

mental oxygen, absent inflammation markers) and long-term follow-up (pseudotime 7, at least two weeks after hospital discharge)

(Table S2). Note that pseudotimes 2 and 3 do not directly reflect the chronological order, but can also represent peak levels, i.e., a

given patient might have gone from 1 to 3 without intubation/mechanical ventilation.

Validation cohorts
For validation of cellular findings from our prospective cohorts, data from two independent cohorts were analyzed:

The scRNA-seq data from18patients admitted to theUniversity Hospital Bonn (Schulte-Schrepping et al., 2020) (cohort 2), andRNA-

seq data from 40 SARS-CoV-2-positive patients admitted to the Intensive Care Unit of the Radboud university medical center in Nijme-

gen (cohort 3). Age, sex, and patient outcome information included in Table S4. COVID-19 was diagnosed by a positive SARS-CoV-2

RT-PCR test in nasopharyngeal and throat swabs and/or by typical chest CT scan findings. Within cohort 3, seven patients deceased.

Blood was collected in PAXgene tubes. The frozen tubes were shipped to Bonn University for mRNA sequencing. Sampling in cohort 3

was carried out in accordance with the applicable rules concerning the review of research ethics committees and informed consent in

the Netherlands. All patients or legal representatives were informed about the study details and could decline to participate.

METHOD DETAILS

ELISA
Serum cytokines were analyzed using a ‘‘Human Magnetic Luminex assay’’ (Bio-techne, Minneapolis, Minnesota, US) with 22 ana-

lytes: APRIL, BAFF, CCL2, CCL3, CD40L, CD138, CXCL9, CXCL10, IL-1b, IL-2, IL-4 IL-6, IL-10, IL-12, IL-13, IL-17, IL-18, IL-21, IL-

33, IFN-a, IFN-g, and TNF. Frozen patient serum samples were thawed and diluted before the experiment with an equal amount of

dilution buffer and the experiment was performed according to themanufacturer’s instructions. All samples weremeasured on a Life-

match Fluoroanalyzer (Tepnel Life Science PLC, Wythenshawe, UK) equipped with XPonent 3.1 Software (Luminex Corporation,

Austin, Texas, US). Serum TPO was quantified by ELISA using Human Thrombopoietin Quantikine ELISA Kit (R&D Systems, Minne-

apolis, Minnesota, US) according to manufacturer’s protocol.

Anti-SARS-CoV-2 specific antibodies
Anti-SARS-CoV-2-specific IgA and IgG was quantified using commercial ELISA kits (EUROIMMUN, L€ubeck, Germany).

PAXgene Blood RNA Isolation and TruSeq� messenger RNA (mRNA) sequencing
Blood (2.5 mL) was taken from each patient into a PAXgene Blood RNA Tube, containing a patented RNA stabilizer reagent compo-

sition. RNA was automated isolated in QIAGEN’s QIAcube using the PAXgene Blood miRNA Kit from QIAGEN PreAnalytiX. RNA
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sequencing libraries were prepared according to the Illumina TruSeq�messenger (mRNA) sequencing protocol (TruSeq� RNA Seq

Library Prep Kit v2). The resulting libraries were sequenced on the NovaSeq 6000 (2 3 50 bp, S2 chemistry).

DNA isolation and methylation profiling
Blood (2.7mL) was taken from each patient into an Ethylenediaminetetraacetic acid (EDTA) monovette (Sarstedt) to decelerate blood

coagulation. The monovette was centrifuged for 15 min at 3000 rpm and the buffy coat was frozen in micronic tubes at �80�C. DNA
was extracted using the QIAamp DNA Blood Mini Kit (QIAGEN) according to manufacturer’s protocol with a QIACube (QIAGEN). The

Infiniumª MethylationEPIC BeadChip was used to measure the DNA methylation levels. The Infiniumª MethylationEPIC BeadChip

targets the following regions: CpG islands, CpG sites, open chromatin, transcription factor binding sites, enhancer and mRNA pro-

moter regions. The EPIC arrays were processed according to Illumina recommendations.

Bulk BCR sequencing
Bulk BCR libraries were prepared starting from 100 ng of total RNA isolated from PAXGene tubes. Library construction protocol was

performed as previously described (Bashford-Rogers et al., 2019). In brief, primers for the constant (C) regions of the BCRwere used

during cDNA synthesis. Product was then amplified via PCR using a multiplex primer set for the variable (V) regions using the Real-

Time PCR library amplification kit from KAPA Biosystems. Libraries were sequenced on Illumina MiSeq machine 2 3 300 bp.

Experimental virus mRNA detection
SARS-CoV-2-specific viral RNA from the RNA extracts from the PAXGene tubes was quantified by RT-PCR using the RealStar�
SARS-CoV-2 RT-PCR Kit RUO (altona diagnostics, Hamburg, Germany). The two amplicons were in the E gene and in the S glyco-

protein in Spike protein 2 gene.

Isolation of peripheral blood mononuclear cell (PBMC)
Blood (2 3 8 mL) was collected using venipuncture technique and processed within maximum 30 min. PBMCs were isolated using

the BD vacutainer� cell preparation tube (CPT) with sodium citrate according to themanufacturer’s protocol. Briefly, CPT tubeswere

centrifuged at 1,650 3 g for 20 min at room temperature. PBMCs were collected and washed two times with phosphate-buffered

saline (PBS) and then resuspended in PBS. Half of the suspension was washed and resuspended in flow cytometry washing buffer

(containing fetal bovine serum, EDTA and sodium azide in PBS) and prepared for flow cytometry within 3-5 h. The rest of the suspen-

sion was washed once in PBS and the pellet was resuspended in resuspension medium (Roswell Park Memorial Institute (RPMI) +

40% fetal bovine serum (FBS)), followed by freezing medium (30%DMSO in medium containing 40%FCS) according the 103Chro-

mium Demonstrated Protocol (Fresh Frozen Human Peripheral Blood Mononuclear Cells for Single-Cell ribonucleic acid (RNA)

Sequencing, Document CG00039 Rev D). PBMCs were stored at�80�C and thawed when needed also according to the 103 Chro-

mium Demonstrated Protocol (Document CG00039 Rev D). To prevent batch effects, all samples from different time points from one

patient were thawed and sequenced together.

Flow cytometry
After preparation of freshly isolated PBMCs in flow cytometry buffer, PBMCs were stained with fluorescent labeled antibodies and

measured on a MACSQuant 16 flow cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany). B cell subsets were stained using

antibodies against CD19 (clone REA675, Miltenyi), CD20 (clone REA780, Miltenyi), CD27 (clone M-T271, Biolegend, San Diego, Cal-

ifornia, US), CD138 (clone BB4/MI15, Biolegend), HLA-DR (clone REA332, Miltenyi), IgD (clone REA740, Miltenyi), IgM (clone MHM-

88, Biolegend), IgA (clone M24A, Merck Millipore), CD95 (clone DX2, Biolegend) as well as CD3 (clone OKT3, Biolegend) and CD14

(clone M5E2, Biolegend) for the dump channel. Definition of B cell populations: naive B cells: CD19+CD20+CD27-; memory B cells:

CD19+CD20+CD27+; Plasmablasts and plasma cells: CD19+CD20-CD27hi).

Immunohistochemistry staining
Tissue material was obtained in the autopsy procedure of the deceased patient 002 and from an age- and gender-matched patient

(control), who had suffered from pulmonary adenocarcinoma and died from bronchopneumonia. SARS-CoV-2-testing was negative

repeatedly in the control patient. Immunostaining was done on formalin-fixed and paraffin-embedded tissue sections with the Bond

Max Leica immunostainer using the Bond Polymer Refine Detection Kit. Antigen retrieval was carried out with the Leica ER1-Bond

Epitope Retrieval Solution 1 (IFITM3) or the Leica ER2-Bond Epitope Retrieval Solution 2 (TREML1)(all Leica Biosystems, Wetzlar,

Germany). Histological slides were then immunostained anti-IFITM3 and anti-TREML1 antibodies and counterstained with

hematoxylin.

Single-cell RNA sequencing (scRNA-seq)
Single-cell libraries were generated using the Chromium Next GEM Single Cell 50 Library & Gel bead Kit v1.1 according to the man-

ufacturer’s user guide targeting 20,000 cells per sample. The libraries were sequenced on an Illumina NovaSeq 6000 (23 100 bp, S4

chemistry) to generate > 500 million reads per library. Additionally, the Chromium Single Cell V(D)J Enrichment Kit for human B cells

were applied together with the Chromium Single Cell 50 Library Construction Kit. Those resulting libraries were sequenced on an Il-

lumina NovaSeq 6000 (2 3 150 bp, S4 chemistry) to generate > 50 million reads per library.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Bulk RNA-seq data analysis
An in-house RNA-seq pipeline was used to map and align the sequenced data (https://github.com/nf-core/rnaseq). Adapters and

low-quality bases from the RNA-seq reads were removed using Trim Galore (version 0.4.4), which is a wrapper tool for Cutadapt

and FastQC. Reads that were shorter than 35 bp after trimming were discarded. The filtered reads were mapped to the human

genome (GRCh38, gencode version 25) using STAR aligner (version 2.5.2b) (Dobin et al., 2013). featureCounts (version 1.5.2) was

used to estimate the expression counts of the genes. The expression counts were normalized across samples using the DESeq

normalization method.

Differential expression analysis
Differentially expressed genes between healthy controls and each of the COVID pseudotime samples were identified using the

Bioconductor package DESeq2 (version 1.20.0). Genes with FDR adjusted p value of less than 0.05, log fold change greater

than 0.5 or less than�0.5 and average expression counts of more than 100 were regarded as differentially expressed (DEGs). Lon-

gitudinal differential expression analysis of the COVID samples was performed by applying the case-only analysis from the Bio-

conductor package ImpulseDE2 (version 1.4.0). Pseudotimes 1, 3, 4, 5, and 6 were used as single time points of a time-course

experiment and the patient IDs were regarded as batch effects in order to perform a paired analysis. To identify the transcripts

regulated longitudinally in survivors and non-survivors from the Nijmegen cohort, differentially expressed genes between in the

two selected time points were identified using DESeq2 for survivors and non-survivors separately. To perform a paired analysis,

patient ID was used as batch effect.

Co-expression analysis
Modules of co-expressed genes were identified using the WGCNA package for R (version 1.69). All differentially expressed genes

identified from the pairwise and longitudinal analysis (6,318 genes in total) were used to generate the gene co-expression modules.

First, pairwise gene correlations were calculated based on the log transformed normalized expression counts across all samples. A

signed adjacency matrix was constructed by applying a soft threshold function with a power of 14. The Topology Overlap Matrix

(TOM) constructed using the adjacency matrix was used to construct a gene tree by hierarchical clustering. Genes were then split

into modules based on the gene tree by using the function cutreeDynamic with the minimum module size set to 15. Modules that

were closely related were then merged using the function mergeCloseModules with parameter cutHeight set to 0.45.

To associate gene co-expression modules with clinical parameters and cell type fractions and to visualize the expression profile of

the genes in a module, the module eigengene values for the samples were calculated. Spearman’s rank correlation coefficients were

calculated between the module eigengenes and different clinical parameters and cell type fractions.

DNA methylation data analysis
DNA methylation data were analyzed using the Bioconductor package RnBeads (version 1.12.1). Sites that overlapped with SNPs

and had unreliable measurements were filtered resulting in the removal of 17,371 sites and 19,745 probes. 2,977 Context-specific

probes, 18,976 probes on the sex chromosomes, and 4 probes with missing values were also removed. In total 41,702 out of

866,895 probeswere filtered. The signal intensity values were normalized using the dasenmethod. Differentially methylated positions

(DMPs) between healthy controls and each of the COVID-19 pseudotime samples as well as between sequential COVID-19 pseu-

dotime samples were identified using the automatically selected rank cutoff of RnBeads.

Functional enrichment analysis
Gene set enrichment analysis (GSEA) was conducted for the co-expressionmodules using GSEA desktop application (version 4.0.3).

Pre-ranked analyses against Hallmark, KEGG and GO (Biological Processes) genes sets were conducted for each of the modules by

ranking all genes by the module membership score. FDR of 0.05 was used as the significance threshold.

All gene ontology enrichment analyses were conducted using the Bioconductor package topGO (version 2.32.0), with all ex-

pressed genes as the universe set. In the topGO analysis, the Fisher.elim p value, calculated using the weight algorithm, of 0.05

was used as the significance threshold.

Transcription factor binding sites (TFBS) enriched in the promoter regions of the co-expression module genes were identified by

conducting enrichment analysis using the Bioconductor package LOLA (version 1.14.0). Promoter regions were defined as the region

between 1,500 bp upstream to 500 bp downstream of the transcription start site.

Predicted transcription factor binding sites (TFBS) enriched in DMPs were identified by conducting enrichment analysis using the

Bioconductor package LOLA (version 1.14.0).

DNA methylation-transcriptome integrated analysis
For the integrated analysis of gene expression with DNAmethylation, we first identified DMPs located 5,000 bp upstream and down-

stream of the transcription start sites of DEGs. Spearman’s rank correlation coefficient between the normalized expression count of

each DEG and the methylation intensity (b values) of its corresponding DMPs were calculated. To test the statistical significance of

the correlations, we calculated the false discovery rate (FDR) using a permutation approach.
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Bulk BCR analysis
Sequencing reads were aligned to BCR gene reference and clonotypes were identified and grouped using the software MiXCR (Bo-

lotin et al., 2015). Relative proportions of IGH classes were calculated. Alpha diversity measures were calculated using the R pack-

ages vegan and tcR (versions 1.5-6 and 2.3.2).

Computational virus mRNA detection
To quantify the amount of virus present in the blood of COVID-19 patients, reads fromwhole blood RNA-seq data were first aligned to

the human reference genome (GRCh38) using STARwith default parameters. The reads that did not map to the human genomewere

then aligned to the SARS-CoV-2 reference genome (NC_045512.2) using STAR with slightly relaxed parameters (–outFilterScoreMi-

nOverLread 0.2–outFilterMatchNminOverLread 0.2–outFilterMatchNmin 0–outFilterMismatchNmax 4). The reads that aligned to the

SARS-CoV-2 genome with at least 40 consecutive matches were then aligned locally to the human genome using the Smith-

Waterman algorithm (Smith and Waterman, 1981) in order to filter any reads of human origin. The reads that aligned locally to the

human genome or were composed largely of homopolymers were filtered and the remaining reads were considered as viral reads.

Data analysis for ELISA
Standard curves and cytokine concentrations were calculated using linear regression in Microsoft Excel GraphPad Prism (Graphpad

Software Inc, San Diego, US).

Data analysis for Flow cytometry data
Analyses were performed using FlowJo v10 (FlowJo LLC, Beckton Dickinson, Ashland, Oregon, US) and Graphpad Prism 8 (Graph-

Pad Software, San Diego, California USA).

scRNA-seq data quality control and data analysis
The sequences were processed using cell ranger v3.1.0 (10 3 Genomics). Each sample was mapped to GRCh38 Homo sapiens

reference genome, in order to produce their respective count matrices. Raw feature-barcode matrixes were filtered using Seurat

package (version 3.1.5) in R environment (Butler et al., 2018; Stuart et al., 2019); low quality cells that were potentially disrupted

or doublets cells were removed from the analysis using number of features (number of reads mapping to gene between

[200;5000]) or percentage of mitochondria (lower than 25%) (Figure S1E). We used a broad threshold in order to encompass cells

from a variety of cell-types.

Each filtered sample matrix was then merged into a single object containing 358,930 cells with overall reads mapping to 22,519

human genes. The merge object was normalized and scaled using LogNormalized() and ScaleData() functions respectively. Principal

component analysis was performed utilizing the top 2,000 variable genes. We identified the clusters using the standard k-nearest

neighbor method based on 80 dimensions with a 0.2 resolution. In total 37 clusters were displayed as a Uniform Manifold Approx-

imation and Projection (UMAP).

scRNA-seq signature genes
Cluster cell types were identified by their corresponding gene signatures using theWilcoxon rank sum, with a cut-off based on genes

expressed inmore than 25%of the cluster cells and exhibiting a 0.25-fold difference between clusters. Clusters of interest were iden-

tified based on marker genes (Figure S1C); In general, monocytes (CD14, ITGAM, S100A8 and A100A9), granulocytes (FCGR3B),

erythroid cells (HBA1, HBA2 and HBB), NK cells (GNLY, NCAM1), proliferative lymphocytes (MKI67 and TUBA1B), CD4+ T cells

(CD3G, CD4 and CCR7), CD8+ T cells (CD3G and CD8A), dendritic cells (PLD4, IL3RA and LILRA4), B cells (CD19), plasmablasts

(CD27,CD38 andMZB1), megakaryocytes (ITGA2B, TUBB1 andGP9) and cell precursors (CD34, ITGA4 and TUBA1A), such as, he-

matopoietic stem cells (HSCs), megakaryocyte-erythroid progenitor cells (MEPs), common myeloid progenitors (CMPs) and granu-

locytes-macrophage progenitors (GMPs). To confirm our findings, we used SingleR (version 1.0.6) Bioconductor package that as-

signs each individual cell to a known cell type based on transcriptome reference datasets (NovershternHematopoieticData and

BlueprintEncodeData reference datasets) (Aran et al., 2019). Cell type proportions were quantified per sample and grouped based

on pseudotimes. We compared cell type proportions of healthy controls against patients using a Mann-Whitney non-parametric test

and measured cell proportion changes between pseudotimes by comparing a linearlinear mixed model with pseudotime (proportion

of cell type�pseudotime +[1jpatientID]) and compared it against a reduce model without pseudotime (proportion of cell type +[1-

jpatientID]) by the means of an ANOVA (Figure 2F). We found most cell types to be impacted by disease trajectory, with only prolif-

erative lymphocytes and cell precursors not having a significant difference between pseudotimes. Furthermore, we correlated cell

type proportion with the clinical parameters available for each sample using spearman correlation (Figure 2G).

Cell type specific analysis
The clusters identified as cell types of interest—B cell compartment, megakaryocytes, and cell precursors were pulled from the

merged object. Each cell type of interest was re-clustered and analyzed separately. B cell compartment and cell precursors were

re-clustered using 80 PCs, while megakaryocytes and their respective precursors (HSCs and MEPs) were re-cluster using 60

PCs. B cell compartment clusters were assigned based on expression of marker genes, with memory B cell expressing CD73/

NT5E, naive B cells expressing IGHD and CD185/CXCR5, transitional B cells expressing CD9, plasmablasts expressing CD27
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and CD38) and neutrophil-like cell expressing ELANE, MPO andCAMP (Glass et al., 2020). We presented the B cell compartment as

a cell trajectory analysis using monocle3 (Qiu et al., 2017). Trajectories were calculated and the cells displayed based on monocle3

pseudotime approach rooted on the previously identified transitional B cells. Plasmablasts (with neutrophil-like cells included),

megakaryocytes and cell precursors signature genes for the individual disease groups were selected based on genes expressed

in more than 25% and 0.25-fold difference between pseudotimes. Differentially expressed genes between healthy controls and

each of the COVID pseudotimes was identified using MAST (Finak et al., 2015) and GO enrichment analysis was performed with

TopGO package for R (version 2.38.1) (Alexa et al., 2006) and GO terms of interest selected based on fisher classic test statistic

(p value < 0.05).

To validate our findings, we performed a parallel analysis from an independent cohort (cohort 2) of mild and severe COVID-19 pa-

tients using another scRNA-seq technology (Rhapsody BD) (Schulte-Schrepping et al., 2020). Similarly, we identified plasmablasts

and megakaryocytes, identified differences in cell proportions and tested if genes of interest were expressed differently based on

their disease classification (control, mild COVID-19 or severe COVID-19 patients).

single cell BCRseq (scBCR-seq) analysis
BCR sequences were processed using cellranger v3.0.1 vdj function. Relative proportions of IGH classes were calculated. Alpha di-

versity measures were calculated using the R packages vegan and tcR (versions 1.5-6 and 2.3.2). scBCR-seq information was

merged with B cell compartment containing both B cells and plasmablasts using barcode information. BCR information was merged

with scRNA-seq expression, thus, we were able to discern IG class information per cell type and displayed it in the form of a UMAP or

monocle3 cell trajectory.

Metabolic modeling
Bloodmetabolites originating from the HumanMetabolomeDatabase (HMDB) (Wishart et al., 2018); specifically, an advanced search

of blood metabolites from healthy adults was initially conducted in March 2019. In the same time period, a list of all human metab-

olites (Brunk et al., 2018) was downloaded from Virtual Metabolic Human (VMH) database (Noronha et al., 2019). The latter contains

the HMDB indices of the compounds, which enabled the merging of the two databases into one (Spring 2020). Compounds were

removed from the database (e.g., drug-related ones or without FooDB IDs [https://foodb.ca/]) and the metabolites nomenclature

was altered to be compatible with an adapted version of the model Recon 2.2 (Swainston et al., 2016). All values were transformed

tomM to correspondwithmean values of theHMDBdatabase (cut-off of values > 10�6).Water was set to 55,000mM, and pHwas set

to 7.4. All calculations were conducted with the R packages sybil (version 2.1.5) (Gelius-Dietrich et al., 2013) and sybilSBML (version

3.0.5) (Gelius-Dietrich et al., 2013) along with their dependencies.

Reconstruction of tissue-specific metabolic models from bulk sequencing data
For the reconstruction of metabolic models from bulk sequencing data we used a previously described two-step approach that first

discretizes gene expression based on differential gene expression analysis and subsequently reconstructs metabolic models based

on gene expression states (Gebauer et al., 2016; Yang et al., 2019). Differentially expressed genes between each pairwise set of

COVID pseudotimes were determined via the DESeq2 algorithm with pseudotime as the main independent variable. Wherever

possible, i.e., when models reached full rank, we included the donor identifier as a covariable to control for paired samples with

similar genetic background in the data. The significance cut-off used for optimizing independent filtering was adjusted to a = 0.05

before differentially expressed genes were extracted from the tests. For each gene, based on the directionality of changes in

gene expression activity between conditions and the significance of changes, we determined a binary activity (on or off) if a gene

had at least one case of significant change in activity (adjusted p value < 0.05) between any pair of conditions.

Subsequently, we used the binary gene activity as an input into the iMAT approach (Zur et al., 2010) on a generic metabolic model

of humans (Recon 2.2) (Swainston et al., 2016) constrained with the serum metabolic environment. In order to test method-inherent

uncertainties in the reconstructed context-specific metabolic network, the model reconstruction procedure was repeated fifty times

while leaving out gene activity data for 5% of the genes each time.

Reconstruction of cell-specific metabolic models from single-cell sequencing data
Reconstructions of cell-specific metabolic models were created by integrating single-cell transcriptomics with a human genome-

scale metabolic network (Swainston et al., 2016) conditioned with the serum metabolic environment. We employed a two-step

approach, in which StanDep (Joshi et al., 2020) first identifies a core reaction list across cell types. Second, the FASTCORE algorithm

(Pacheco and Sauter, 2018) in the COBRA Toolbox v.3.0 (Heirendt et al., 2019) then builds context-specificmodels defined by sets of

active core reactions in the extracted model. scRNA counts from patient, megakaryocytes, plasmablasts, memory B cells and naive

B cells were used as input for StanDep. Normalized counts were converted into TPM-values, and ENSEMBL gene names were map-

ped to Recon 2.2 (Cunningham et al., 2019; Swainston et al., 2016). For StanDep, expression data from identified core genes across

cell types were used to calculate enzyme type and expression within the model. Enzyme expressions were log10 transformed and

counted as a binary matrix (rows representing enzymes and columns as bins) to identify the minimum andmaximum enzyme expres-

sion values. A complete linkage metric for hierarchical clustering with Euclidean distance was used to cluster (number of clusters =

40) genes based on gene expression. Assembled core reaction matrices were defined and input into FASTCORE to reconstruct

context-specific metabolic models. Based on an updated version of Recon 2.2 simulated in the serum metabolic environment, a
e8 Immunity 53, 1296–1314.e1–e9, December 15, 2020

https://foodb.ca/


ll
Article
consistent model was generated using FASTCORE’s FASTcc algorithm in MATLAB. With this consistent model, the assembled core

reaction matrices, and additional optional core reactions, such as the biomass objective function from Recon 2.2, an input file was

generated for every cell-specific model comprising at least 30 core reactions. FASTCORE processed these input files, together with

the consistent Recon 2.2 model, and the default value 10�4 for ε to generate a list of all required reactions for each cell-specific meta-

bolic model. With these lists, new metabolic models were curated and optimized for the biomass objective function and/or the viral

biomass objective function.

Identification of disease-specific metabolic pathways
Tissue- and cell-specific models were stratified by cell type (megakaryocytes, plasmablasts, memory B cells, and naive B cells) and

annotated with clinical metadata (COVID-19 pseudotime) according to donor and sampling time points. Reactions per pathway and

cell were counted for a total of 82 metabolic pathways that were identified in the models. For each of the four model types, pathways

were filtered out if reaction counts were zero across all models of that type. Differential pathway activity was determined for each

pathway by comparing reaction counts across all eight pseudotimes via Kruskal-Wallis test as implemented in the R-package

coin (parameters: two-sided test, unpaired, average-scores for ties, and without continuity correction). Resulting probability values

were corrected for multiple testing via the Benjamini and Hochberg method. Significantly differential active pathways across disease

states (pseudotimes) were determined via this method for all four model types separately with an FDR cut-off of <0.05. For the heat-

map representation of B cell subtypes, the top 20 pathways that were identified as significantly differential active in all three model

types were selected and clustered by the mean reaction counts of plasmablast models.

Transcription factor activity analysis
Putative transcription factor activity from RNA-seq data were assessed per pseudotime against healthy controls using the human

gene set resource DoRothEA v1, which provides a curated collection of transcription factor and target genes interactions (the reg-

ulon) from different sources (Garcia-Alonso et al., 2019). Only interactions with high, likely, and medium confidence (levels A, B, and

C) were considered. Regulons were statistically evaluated using the R package viper (v1.22.0; row-wise t tests) and regulons having

at least 15 expressed gene targets were considered (Alvarez et al., 2016). Identification of upstream regulatory signaling pathways

from downstream gene expression was performed on t-statistic values from viper against the Omnipath interaction database

(R package OmnipathR version 1.2.1) applying CARNIVAL (version 1.0.1 with IBM Cplex solver as network optimizer) (Liu et al.,

2019). For the resulting network, only edges with an inferred weight > 50 (on a scale from 1 to 100) were considered. The similarity

between the transcription factor activity of cohort 1 and cohort 3 was accessed using Pearson correlation. The significance of the

correlation was confirmed by a bootstrapping approach. We permuted gene names row wise 1,000 times and correlated each

time the inferred TF activity between the original and permuted gene expression. The resulting distribution of correlation values

was fitted to a skewedGaussian normal distribution, finding a standard deviation of 0.08.The significance in the differential regulation

of transcription factors over time in the non-survivor versus the survivor groups of cohort 3 was quantified via amoderated t test using

limma (Ritchie et al., 2015), while accounting for patient correlation using a block design and limma’s duplicateCorrelation function.
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