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Abstract: Motion-contaminated T1-weighted (T1w) magnetic resonance imaging (MRI) results in mises-
timates of brain structure. Because conventional T1w scans are not collected with direct measures of
head motion, a practical alternative is needed to identify potential motion-induced bias in measures of
brain anatomy. Head movements during functional MRI (fMRI) scanning of 266 healthy adults (20–89
years) were analyzed to reveal stable features of in-scanner head motion. The magnitude of head
motion increased with age and exhibited within-participant stability across different fMRI scans. fMRI
head motion was then related to measurements of both quality control (QC) and brain anatomy
derived from a T1w structural image from the same scan session. A procedure was adopted to “flag”
individuals exhibiting excessive head movement during fMRI or poor T1w quality rating. The flagging
procedure reliably reduced the influence of head motion on estimates of gray matter thickness across
the cortical surface. Moreover, T1w images from flagged participants exhibited reduced estimates of
gray matter thickness and volume in comparison to age- and gender-matched samples, resulting in
inflated effect sizes in the relationships between regional anatomical measures and age. Gray matter
thickness differences were noted in numerous regions previously reported to undergo prominent atro-
phy with age. Recommendations are provided for mitigating this potential confound, and highlight
how the procedure may lead to more accurate measurement and comparison of anatomical features.
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INTRODUCTION

Accurate neuroimaging measurements of brain structure
are essential for anatomical characterization, between-
modality image registration, and functional localization.
Structural magnetic resonance imaging (MRI) can provide
high-resolution measurements of gray and white matter
anatomy that are often the focus of within- and between-
participant comparisons of aging [see Dickerson et al., 2009;
Fjell et al., 2009; Fotenos et al., 2005], development [e.g.,
Tamnes et al., 2010], clinical disorders [e.g., Cannon et al.,
2015; Dickerson et al., 2009; Kempton et al., 2011], and thera-
peutic intervention [e.g., Bearden et al., 2008; Dazzan et al.,
2005]. In practice, structural MRI scans are readily analyzed
with convenient, automated image segmentation tools that
derive measurements from an individual’s regional neuro-
anatomy (e.g., thickness, surface area, volume), often imple-
mented with freely available software packages [e.g.,
FreeSurfer [FS], VBM8, FSL-VBM; Ashburner and Friston,
2000; Dale et al., 1999; Fischl et al., 1999a; Smith et al., 2004]
that have been externally validated with manual tracing and
post-mortem analyses [Cardinale et al., 2014; Kennedy et al.,
2009; Kuperberg et al., 2003; Rosas et al., 2002; Salat et al.,
2004; Sanchez-Benavides et al., 2010].

A combination of objective precision and ease of rapid
quantification makes the automatic measurement of anatomy
a practical method for studying brain morphometry in
healthy and diseased populations. The performance of many
segmentation algorithms relies on features of image intensity,
probabilistic matching to tissue-type priors, and local spatial
relationships between expected brain structures. Consequent-
ly, the accuracy of measures extracted from structural MRI is
largely contingent on initial image quality, which is sensitive
to multiple sources of variability. For example, differences at
the participant level [e.g., gray and white matter intensity
contrast; Westlye et al., 2009], and instrument-related noise
[e.g., image gradient distortions; Jovicich et al., 2006] may
both significantly influence estimates of brain structure [also
see Gronenschild et al., 2012; Han et al., 2006].

In line with the above, in-scanner head motion during
MRI has been observed to induce structured and often
visually detectable artifacts in brain images [e.g., ringing,
blurring; Bellon et al., 1986; Wood and Henkelman, 1985;
Zaitsev et al., 2015]. Substantial emphasis has been placed
on characterizing how motion-induced artifacts affect
echo-planar imaging (EPI): both in functional MRI [fMRI;
Power et al., 2014; Satterthwaite et al., 2012; Siegel et al.,
2014; Van Dijk et al., 2012; Zeng et al., 2014] and diffusion
weighted imaging [DWI; Koldewyn et al., 2014; Thomas
et al., 2014; Yendiki et al., 2013]. There has been less focus
on characterizing how spurious motion-related biases
impact high-resolution T1-weighted (T1w) images. This
has been due, in part, to limitations in acquiring direct
estimates of head motion during T1w sequences. A recent
study showed that measures of brain structure from T1w
scans contaminated by experimentally induced motion
were reliably different from uncontaminated scans of the

same individuals [Reuter et al., 2015]. Specifically,
instructed patterns of head motion during structural MRI
resulted in underestimates of gray matter volume and
thickness in healthy young adults. While that report did
not detail how the degree of instructed movements related
to the natural variation in the types and magnitudes of
motion observed across individuals, many cross-cohort
studies contrast individuals who are likely to differ in
their degree of motion during MRI [e.g., older vs. younger
subjects, children with autism spectrum disorders vs.
healthy controls; Chan et al., 2014; Koldewyn et al., 2014;
Yendiki et al., 2013]. As a result, the variability in partici-
pant motion could systematically bias analyses of structur-
al differences [e.g., Alexander-Bloch et al., 2016].

Without employing procedures that prospectively cor-
rect or remove head motion-induced artifacts from ana-
tomical scans [e.g., PROPELLER, PROMO, volumetric
navigators, Pipe, 1999; Tisdall et al., 2012, 2016; White
et al., 2010], biases due to variability in head motion are
likely to confound studies of brain structure in addition to
any processing steps or statistical analyses that rely on
accurate measurements of brain anatomy (e.g., localization
of functional activations, surface-mapping, registration of
functional and anatomical images between participants).
Accordingly, until quantification and correction tools are
further developed and sufficiently adopted for T1w MRI, a
practical alternative is necessary in order to advance the
interpretation of anatomical measurements. One method
for identifying scans with potential motion contamination
is to visually inspect structural scans for artifacts and
screen them out [as done in Reuter et al., 2015]. While this
visual inspection technique is commonplace in structural
neuroimaging, it has inherent limitations intrinsic to many
subjective procedures including the presupposition that all
forms of motion-related bias are detectable by visual
inspection and the possibility that subjective quality
assessments may exhibit high inter- and within-rater vari-
ability [e.g., Mantyla et al., 1997; Scheltens et al., 1997]. To
overcome some of these preceding limitations, we propose
some intuitive hypotheses: (1) participants who move
more in one scan of a given scan session will move more
in other scans collected during the same session, (2) scans
that acquire movement estimates may be used to flag
structural scans that lack direct estimates of motion but
contain motion-induced artifacts, (3) many of the anatomi-
cal scans flagged by high movement may not otherwise be
identified by visual inspection alone, (4) flagging potential-
ly problematic scans can help mitigate the effects of move-
ment on brain morphometry, (5) the anatomical scans
flagged for movement and poor experimenter-defined
image quality will exhibit systematically biased estimates
of brain structure, and (6) removing flagged scans from an
estimation sample will influence the measurement of brain
structure.

How might we begin to test these predictions? In addi-
tion to T1w structural data, many study designs acquire
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functional scans (e.g., task-evoked, resting-state) for which
frame-to-frame motion estimates are routinely derived. The
primary objective of this report was to determine whether
the measurements of head motion quantified during these
functional scans (e.g., frame-by-frame displacements [FD])
might benefit the identification of structural brain scans that
contain motion-related bias. Specifically, we predicted that
FD accurately summarizes individual differences in scanner
motion such that one’s relative rank within the distribution
of average FD values is consistent across fMRI scans. We
hypothesized that this relationship would extend to T1w
acquisitions whereby increasing FD would be associated
with reduced QC ratings of T1w scan quality. Lastly, we
predicted that elevated average FD and low QC ratings
could be combined to flag subsets of participants whose
T1w structural scans are most likely susceptible to motion-
related bias. In addition to determining whether the
movement-related features noted above exist, we intended
to measure the impact of motion-related bias on the mea-
surement accuracy of anatomical differences (e.g., regional
thickness) detected over the healthy adult lifespan.

We analyzed data from 266 healthy adult participants,
age 20–89, in order to (1) examine the correlation of indi-
viduals’ tendency to move during scans where head
motion is currently measureable (e.g., fMRI), (2) test how
well the motion estimates from these independent scans
complement the subjective quality control (QC) ratings of
T1w anatomical scan quality, and (3) determine whether
removing scans “flagged” by a combination of QC ratings
and consistently elevated FD alters the measured effects of
both aging and motion on brain morphometry. The cur-
rent dataset allowed extensive measurement of head
motion across several EPI scans with differing task-
demands in a single session using the same scanner and
scanning protocol. Furthermore, alongside careful estima-
tion of each individual’s anatomy (e.g., semi-automated FS
processing), the dataset provided a well-balanced sam-
pling of the healthy adult lifespan (e.g., at least 30 individ-
uals in each decade of age between 20 and 90 years) with
substantial variance in average magnitude of head motion
for quantifying individual differences. Crucially, given the
purposes of this investigation, accurate quantification of
individual variability in movement and anatomy could be
considered jointly in an extensive dataset where age-
related observations could be systematically assessed.

METHODS

Participants

The present sample is a subset of healthy adult partici-
pants (n 5 266) aged 20–89 years (M 5 54.5, SD 5 20.4, 169
female) enrolled in the Dallas Lifespan Brain Study
(DLBS). This subsample includes at least 30 participants in
each decade of the sampled age range and represents indi-
viduals who performed the complete series of seven fMRI

runs [e.g., Chan et al., 2014; Kennedy et al., 2015; Park
et al., 2012, 2013; see Fig. 1]. Critically, this inclusion crite-
rion allowed extensive measurement of participant in-
scanner head motion across a variety of task categories
with differing behavioral demands (e.g., scans including
“active” behavioral response demands versus scans requir-
ing no overt behavioral responses).

Participants were recruited from the Dallas-Fort Worth
community and provided written consent before participa-
tion. All study procedures were reviewed and approved by
the Institutional Review Boards of The University of Texas
at Dallas and The University of Texas Southwestern Medical
Center. All participants were native English-speaking and
right-handed with no self-reported history of neurological
or psychiatric disorders. Participants with Mini-Mental State
Examination (MMSE) scores below 26, a history of chemo-
therapy in the past five years, a coronary bypass, major sub-
stance abuse, disorders of the immune system, loss of
consciousness for more than 10 minutes, or any MRI safety
contraindications were excluded during the recruitment
phase. All participants had normal or corrected-to-normal
visual acuity of 20/30 or better on a Snellen eye chart.

Experimental Design and MR Acquisition

The DLBS includes data collected with a number of
imaging modalities and extensive cognitive and neuropsy-
chological testing across a large age range of individuals.
During the MRI session, a T1w structural MRI scan and
seven fMRI scans were collected using a Philips Achieva
3.0T scanner (Table I). In short, this involved: a sagittal
magnetization-prepared rapid gradient echo (MPRAGE)
three-dimensional T1w anatomical scan (TR 5 8.1 ms,
TE 5 3.7 ms, TI 5 1,100 ms, flip-angle 5 128, shot inter-
val 5 2,100 ms, FOV 5 204 3 256 mm, 160 sagittal slices
with 1 mm3 voxels, and scan duration 5 3 min and 57 s),
and seven Blood Oxygenation Level Dependent (BOLD)
acquisitions (all functional runs: TR 5 2000 ms, TE 5 25
ms, flip-angle 5 808, FOV 5 220 mm 3 220 mm, 43 inter-
leaved axial slices per volume, 3.5/0 mm (slice-thickness/
gap) in-plane resolution 5 3.4 3 3.4 mm).

TABLE I. MRI scan information

Run name N Acquisition
Frames

collected Task type

VV1 266 BOLD 202 Passive
VV2 266 BOLD 202 Passive
Words 266 BOLD 231 Active/Button-press
Scenes1 266 BOLD 171 Active/Button-press
Scenes2 265 BOLD 171 Active/Button-press
Scenes3 266 BOLD 171 Active/Button-press
T1-weighted* 266 MPRAGE 1 N/A
Rest 266 BOLD 154 Passive

*T1-weighted scan is followed by a mid-session break where par-
ticipants exit scanner.
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The MRI protocol is depicted in Figure 1. The seven
BOLD runs comprised four task categories (“VV,”
“words,” “scenes,” and “rest”; Table I) collected in this
order: two runs of a passive viewing ventral-visual stream
localizer task (“VV1” and “VV2” scans; 202 frames each), a
semantic classification task (e.g., “living”/“nonliving”
judgment; “words” scan; 231 frames), three runs of an
incidental encoding task (e.g., “water”/“no water” judg-
ment of outdoor scenes; “scenes1,” “scenes2,” and
“scenes3” scans; 171 frames each), and a single resting-
state scan (“rest” scan; 154 frames). The T1w scan was col-
lected immediately after the third run of the incidental
encoding task (scenes3) for all participants. Following the
T1w acquisition, participants exited the magnet for a short
break before returning for their resting-state fMRI scans.
One participant did not provide complete data for their
scenes2 scan (see Table I), but was retained in the sample
as they contributed sufficient functional and structural
data to estimate the effects presented in this report.
Experimenters verified that participants complied with all
scan instructions via verbal confirmation (see Supporting
Information for extended fMRI task instructions).

Data Preprocessing

fMRI preprocessing

BOLD images were preprocessed to reduce known arti-
facts. Five “dummy” volumes were first discarded from

the beginning of each functional run to allow the MR sig-
nal to reach steady state. Pre-processing involved: (i) cor-
rection of slice intensity differences attributable to the
interleaved acquisition within each TR, and (ii) motion
correction for head movement within and across runs.
Motion correction was performed with SPM8’s realign-
ment procedure, which applies a least squares approach to
perform a six-parameter (three translational and three
rotational) rigid-body transformation for every functional
frame to a reference image [Friston et al., 1995]. Realign-
ment was performed within-participants for each run by
estimating the transformation matrix of every functional
frame relative to the very first volume collected in the
applicable task category (e.g., all frames from VV1 and
VV2 scans were realigned to the very first frame of the
VV1 run, whereas every frame of the words scan was real-
igned to the first frame in the words scan).

Head motion estimates

In-scanner head motion for each functional run was
quantified with frame-by-frame displacement (FD) as in
Power et al. [2012]. In short, for a given fMRI run the six
realignment parameters estimated from SPM8 (three trans-
lations in mm and three rotations in radians) indexed the
absolute displacement of the participant’s head at each TR
relative to the first EPI frame collected for the task. First,
rotational estimates were converted from radians to mm
displacements relative to a sphere with a radius of 50 mm

Figure 1.

MRI scanning protocol. The Dallas Lifespan Brain Study data acquisi-

tion protocol included a T1w anatomical (T1) scan and seven func-

tional MRI (BOLD) scans. Healthy adult participants (n 5 266, 20–89

years) were each imaged in a single session on the same MRI scan-

ner. Acquiring seven fMRI runs allowed thorough examination of the

variation in average head movement (i.e., frame-by-frame displace-

ments [FD]) within and between individuals (see text and Table I for

scan information). Conversely, T1w quality control (QC) was per-

formed using researcher-defined quality ratings. While all data were

collected in a single imaging session, participants took a brief mid-

session break, (i.e., 10–15 min) exiting the scanner following the

T1w acquisition. Of the BOLD scans, “VV” and “words” employed

block design whereas “scenes” and “rest” were event-related

designs. “Words” and “scenes” tasks involved active behavioral

responses in response to stimulus delivery (i.e., button-press), while

“VV” and “rest” scans involved passive viewing of visually presented

stimuli. Combining estimates of EPI head motion from various fMRI

scans with T1w QC ratings allowed close inspection of potential

motion-related bias in estimates of anatomy. [Color figure can be

viewed at wileyonlinelibrary.com.]
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(approximate distance from cerebral cortex to center of
head). The resulting six-dimensional time-series was dif-
ferentiated in order to index the relative displacement of
the participant’s head in each dimension for each EPI
frame relative to its immediately preceding frame across
the task. FD was calculated as the sum of the absolute val-
ues of the six differentiated realignment parameters at
each frame of a scan (i.e., total movement for each frame
was summarized as a positive displacement value).

Average frame-by-frame displacements ( �FD) were calcu-
lated for each individual within each of their task scans
and are distinguished by subscripts throughout this report
(Fig. 1). Task �FD, which indexed the amount of motion
occurring across a given task, was calculated for each par-
ticipant as the average of the their �FDs across individual
runs of the same task (e.g., �FDVV was the average of
�FDVV1 and �FDVV2). Task �FDs were further collapsed into
�FDall2task (average �FD across all four task types). Averag-

ing independent task �FDs also minimized possible biasing
as a function of the number frames collected in a given
run or the number of runs contributing to a given task.

T1-weighted image quality control (QC) ratings

All T1w scans were visually checked and rated for scan
quality by two researchers (N.S. and P.A.). Raters evaluat-
ed images for both motion-related artifacts [e.g., ringing,
blurring, ghosting, and striping; Bellon et al., 1986; Wood
and Henkelman, 1985; Zaitsev et al., 2015] and artifacts
related to other general properties of brain image quality,
such as head coverage, radiofrequency noise, gradient dis-
tortions, signal inhomogeneity, wrapping, and susceptibili-
ty artifacts [Bennett et al., 1996; Ericsson et al., 1988; Pusey
et al., 1986; Sled and Pike, 1998; Vargas et al., 2009]. As in
Reuter et al., raters attributed an overall qualitative quality
control (QC) assessment of scan quality to each individu-
al’s structural image on a three-category scale (“pass,”
“warn,” or “fail”) according, in part, to previously docu-
mented criteria [Reuter et al., 2015, http://cbs.fas.harvard.
edu/science/core-facilities/neuroimaging/information-
investigators/qc]. We include a description of the criteria
we used in the supplementary section of this report and
also provide extensive documentation so that other
researchers may adopt similar screening procedures (see
below and Supporting Information).

Morphometric estimates

Estimates of brain morphometry were quantified with the
default image-processing pipeline of FreeSurfer v5.3 [FS;
Dale et al., 1999; Fischl et al., 1999a], which provided volu-
metric segmentation and surface-based cortical reconstruc-
tion of individuals’ anatomical data. This involved brain
extraction using a hybrid watershed/surface deformation
procedure, volumetric segmentation, tessellation-based gen-
eration of white matter (WM), and pial surfaces, inflation of
the surfaces to a sphere, and surface shape-based spherical

registration of each individual’s “native” surface renderings
to the FsAverage atlas [Dale and Sereno, 1993; Fischl et al.,
1999b,; Segonne et al., 2004, 2005].

Whereas segmentation provided general measures of
volumetric anatomy (e.g., gray matter [GM] volume, white
matter [WM] volume, subcortical GM volume), surface
reconstructions allowed estimates of GM thickness and
surface area. Surface area was calculated as the sum of tes-
sellated areas at each location (i.e., vertex) over the full
cortical GM-WM boundary in an individual’s “native” sur-
face representation. Cortical GM thickness was calculated
as the distance between the GM-WM boundary (“white”
surface) and the outer cortical surface (“pial” surface) at
each point across the cortical mantle. This surface-based
thickness estimation is not restricted to voxel resolution of
the original T1w image and can detect sub-millimeter dif-
ferences between groups [Fischl and Dale, 2000] validated
with both histology and manual tracing [Rosas et al., 2002;
Kuperberg et al., 2003].

FS processing has been demonstrated to have high
test–retest reliability in identifying and measuring various
aspects of brain anatomy across scanner manufacturers
and field strengths [Dickerson et al., 2008; Han et al., 2006;
Jovicich et al., 2006; Morey et al., 2010; Reuter et al., 2012].
However, it is important to point out that the FS process-
ing pipeline requires careful inspection of processed out-
puts to ensure that segmentations and reconstructions are
spatially accurate and anatomically correct. At times, man-
ual intervention is required to correct errors related to
inaccuracies in the Talairach atlas transformation, insuffi-
cient removal of non-brain tissue (e.g., dura mater along
superior aspects of cortex), inclusions of vessels or other
tissue that neighbor the cortex (e.g., often near temporal,
orbitofrontal or posterior occipital locations), and field
inhomogeneities or inadequate intensity normalization that
obscure the GM-WM boundary. In datasets of aging and/
or clinical populations, manual intervention is particularly
important because of possible true anatomical abnormali-
ties (e.g., atrophy-induced uncertainty in tissue-type
boundaries, white matter hyper-intensities imaged with
fluid-attenuated inversion recovery, enlarged ventricles)
that may be resolved inappropriately by the default FS
pipeline.

Through an iterative process, FS data for each individual
included in this report was visually inspected, edited for
inaccuracies (with re-checking and re-editing, as needed),
and verified by an independent researcher. All researchers
involved in editing were instructed from the official Free-
Surfer Wiki and editing tutorials (http://freesurfer.net/
fswiki/FreeSurferWiki; https://surfer.nmr.mgh.harvard.
edu/fswiki/FreeSurferBeginnersGuide), an in-house guide
to our laboratory’s FS editing procedures, and in-person
training sessions with a more experienced researcher. We
have posted an up-to-date “live” manual of in-house
FreeSurfer processing procedures to our laboratory web-
page (http://vitallongevity.utdallas.edu/cnl/publications)
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so that other researchers may follow the recommendations
and editing procedures we highlight in the manuscript, and
as they are continually refined. Details of the editing proce-
dure and instructions are also included in the supplementary
section of this report (Supporting Information). Particular
attention was paid in fixing poor skull removal, correcting
improperly segmented WM, applying control points to
improve tissue classification near the GM-WM boundary,
and ameliorating persistent defects in surface reconstruction.

In addition to the manual editing noted above, each par-
ticipant’s intracranial volume (ICV) was manually traced
[see Kennedy et al., 2009] and used to correct for all statis-
tical effects related to volumetric measures of brain struc-
ture. A number of studies have suggested that head size
(e.g., ICV) covaries with gray and white matter volume
and cortical surface area, but generally not with GM thick-
ness [Im et al., 2008; Pakkenberg and Gundersen, 1997];
accordingly, participant gender was used instead of ICV
as a nuisance variable for statistical analyses of GM thick-
ness [Barnes et al., 2010]. The results of this report
remained qualitatively similar when using both covariates
in statistical models. Recent evidence also suggests that FS
pipeline outputs may differ based on FS version, worksta-
tion and operating system [Gronenschild et al., 2012]; all
processing in this study was performed using FreeSurfer
v5.3 on a single Enterprise Linux (CentOS 6.6) server.

Surface-based thickness maps were generated by first
bringing the fsaverage-registered left and right hemisphere
anatomical surfaces into register with each other using
deformation maps from a landmark-based registration of
the left and right fsaverage surfaces to a hybrid left–right
fsaverage surface [fs_LR; Van Essen et al., 2012a] and
resampled to a resolution of 163,842 vertices per hemi-
sphere (164k fs_LR) using Caret tools [Van Essen et al.,
2001]. Each individual’s “native” FS-generated left and
right hemisphere surfaces were deformed to the left and
right 164k fs_LR surface meshes using single deformation
maps, allowing for minimal resampling of anatomical
data. Vertex-wise thickness estimates for each participant
were deformed from “native” FS-derived surfaces to 164k
fs_LR space with the same deformation maps used in the
original registration. Individuals’ cortical thickness maps
were smoothed with a 15 mm kernel (full width-half maxi-
mum, [FWHM]) within the surface representations of each
of the two hemispheres. This smoothing parameter was
adopted so as to be comparable to previous surface-based
reports examining measurements of cortical thickness [e.g.,
Fjell et al., 2009; Reuter et al., 2015].

Statistical Analysis

Within-session stability of fMRI head motion

We first tested whether a participant’s average head
motion ( �FD) was strongly correlated across scans collected
within the same session. The associations between all pairs
of scan �FD were quantified using Spearman’s rank-order

correlation coefficients (Spearman’s rho) because measures
of �FD were significantly non-normal (skewed right and
leptokurtic) and relationships among the �FDs of various
runs exhibited heteroscedasticity (see Supporting Informa-
tion). However, the results of this report remained qualita-
tively similar when using Pearson’s correlations. The scan
�FD values measured across participants were correlated

between each pair of scans using a significance threshold
of P< 0.05 after Bonferroni correction for 21 simultaneous
comparisons. The significance of each pair-wise correlation
(e.g., �FDscan1 vs: �FDscan2 across participants) was further
confirmed with a permutation test using the following ran-
domization procedure: (1) the vector of �FDscan1 values
(one value for each participant) measured during one scan
was randomly reordered without replacement resulting in
�FD

scan1’
, (2) the correlation was measured between

�FD
scan1’

and the intact (not reordered) vector of �FDscan2

values measured during a second scan, and (3) steps 1
and 2 were performed 100,000 times to generate a null dis-
tribution of correlation coefficients for comparison with
the actual measured value.

Relationship of fMRI head motion and

visually-detected T1w artifacts

To examine if increasing fMRI head motion could be
used to detect increasing T1w artifacts, we tested whether
�FDall2task differed systematically across the categories of

T1w image quality ratings. We computed the nonparamet-
ric Kruskal–Wallis H-test of �FDall2task as predicted by QC
ratings, where the group-differences in �FDall2task were fur-
ther analyzed using Wilcoxon rank-sum tests with a signif-
icance threshold of P< 0.05 after Bonferroni correction for
three simultaneous comparisons. To determine whether
the correspondence of QC ratings and �FDall2task was driv-
en by collinearity with age, we computed an analysis of
covariance (ANCOVA) model of the independent effects
of participant age (continuous) and QC ratings (categori-
cal) on the dependent variable �FDall2task.

Distinct variance from fMRI head motion

versus QC ratings

To test the overlap in participants flagged by �FDall2task

(provisional cutoff of 1.5SD> sample mean �FDall2task) ver-
sus those flagged by QC ratings we calculated the sensitiv-
ity and specificity of the “fail” QC categorization on
detecting individuals flagged as having elevated
�FDall2task. Sensitivity measured the proportion of partici-

pants flagged by FDall-task (i.e., �FDall2task greater than
1.5SD above the sample mean) that were correctly identi-
fied by quality ratings of “fail,” whereas specificity quanti-
fied the proportion of participants not flagged by FDall-
task (i.e., �FDall2task less than 1.5SD above sample mean)
correctly identified with quality ratings of either “pass” or
“warn.” This analysis was complemented with a permuta-
tion test to quantify the likelihood that the actual
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measured values of sensitivity and specificity were due to
chance alone (i.e., significance): 100,000 groups of 17 par-
ticipants (number of QC “fails”) were randomly resampled
without replacement from the full set of 266 participants,
from which null sensitivity and specificity distributions
were calculated by comparing each resampled group of 17
against the 18 high- �FDall2task participants.

We hypothesized that �FDall2task and QC ratings would
predict independent variance in FreeSurfer-derived esti-
mates of GM thickness. To test this hypothesis, two
ANCOVA models were constructed to compare �FDall2task

and QC ratings to one another and to morphometry
derived from FreeSurfer. The first ANCOVA model calcu-
lated the variation in GM thickness estimates (dependent
variable) predicted by the independent effects of partici-
pant age (continuous), �FDall2task (continuous), and QC rat-
ings (categorical) with gender (categorical) used as a
covariate. The effect size (partial eta-squared) of age on
thickness was calculated before and after controlling for
�FDall2task and QC ratings; to determine if the change in

effect size was greater than that expected by chance, the
actual difference in effect size was compared with a null
distribution of differences in effect sizes derived by per-
muting �FDall2task and QC ratings across participants in
1,000 iterations. The above ANCOVA model was calculat-
ed twice: once including the full participant sample and
once after removing scans flagged by a combination of QC
ratings and �FDall2task. ANCOVA models were conducted
with all interactions terms included (using type III sum of
squares); main effects of independent variables were
recomputed without controlling for interaction terms if no
significant interactions were detected.

Reductions in motion-related bias after flagging

Next, it was crucial to test how our flagging procedure
impacted the effect of motion on thickness values mea-
sured across the cortical surface. We calculated vertex-
wise full-partial correlations of thickness and �FDall2task

(controlling for age and gender) before and after removing
the flagged scans. The vertex-wise map obtained after
removing flagged scans was compared with the 95% confi-
dence interval from 1,000 re-sampled control groups of the
same size as the retained sample (n 5 235); each control
group was built by randomly removing 1 participant from
the 10 retained individuals closest in age and of the same
gender as each participant in the flagged group. The true
shift in the associations between thickness and �FDall2task

was considered significant if the cumulative distribution
function fell outside that of the estimated 95% confidence
interval.

Systematically biased morphometry in flagged scans

It was crucial to determine whether those participants
suspected of having motion-related bias in their T1w
structural scans (i.e., flagged by either elevated �FDall2task

or a QC rating of “fail”) exhibited systematic differences
in FreeSurfer-based thickness relative to demographically
similar individuals. We performed a bootstrap resampling
analyses to create 100,000 age- and gender-matched con-
trol samples and compared the resulting distribution of
mean GM thickness values with that of the flagged group.
Each control sample was generated by randomly selecting
(with replacement) one participant from the ten retained
individuals closest in age and of the same gender as each
member of the flagged group. We then calculated the
probability of measuring the observed group mean thick-
ness for the flagged participants relative to the null distri-
butions of 100,000 group means built from the resampling
procedure. The analysis of GM thickness was followed up
with a surface-based comparison of thickness values for
the flagged group against a randomly selected boot-
strapped control sample. Vertex-wise two-sample t-tests
were performed for the two hemispheres independently
and controlled for False Discovery Rate (FDR) at a P< 0.05
significance threshold.

Regional effect sizes of age on morphometry before

and after flagging

Lastly, we tested whether removing the 31 flagged scans
altered the measured effects of age on average whole-
brain and regional estimates of GM thickness. The vari-
ance of average whole-brain GM thickness and its correla-
tion with participant age were compared both in the full
sample (n 5 266) and after removing the flagged scans
(n 5 235) by Bartlett’s test for unequal variances and a z-
test for correlation differences, respectively. Additionally,
we examined the regional influences of the flagging proce-
dure by calculating two vertex-wise correlation maps of
age and thickness, once before and once after removing
flagged participants from the estimation sample. The
vertex-wise correlation maps were first compared by a
two-sample Kolmogorov–Smirnov goodness of fit test to
assess whether the overall distribution of effect sizes
across the cortical surface had been altered. Then, we con-
trasted the average correlational effect sizes before and
after flagging (z-value difference in Fisher z-transformed r-
values) in regions of interest based on the Destrieux ana-
tomical parcellation [Destrieux et al., 2010].

Computation and Visualization

Several software packages were used in the preparation
of data for this manuscript. Motion estimates were derived
using Statistical Parametric Mapping (SPM8, Wellcome
Trust Center for Neuroimaging, London, United King-
dom), and statistical analyses were performed in R (3.1.3,
R Foundation for Statistical Computing, Vienna, Austria)
and MATLAB [2013a, The MathWorks, Natick, MA].
Graphical depictions were created using the R-package,
ggplot2 [Ginestet, 2011]. Volumetric images were
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visualized with FSL tools (Oxford Centre for Functional
MRI of the Brain, Oxford, United Kingdom), while
surface-based processing was performed using FreeSurfer
[v5.3, Dale et al., 1999; Fischl et al., 1999a] and Connec-
tome Workbench [v0.83, Marcus et al., 2011].

RESULTS

If the naturally occurring in-scanner head displacements
are determined to be stable for a participant across their
scan session, measures of head motion from functional
scans, from which movement estimates are obtainable,
might provide an objective method for flagging and
removing potentially problematic structural data. Accord-
ingly, we first sought to determine whether individual dif-
ferences in the magnitude of �FD were stable across a
single scan session.

Participant Rank in Head Motion is Stable Across

Scans Within a Session

For all seven functional scans, the pair-wise correlations
between all pairs of scan �FD were very high and positive
(all rs> 0.70, all Ps< 0.001 after Bonferonni correction for
21 simultaneous comparisons; Fig. 2) despite a main effect
of scan order on magnitude of �FD (F(6, 1,854) 5 5.86,
P< 0.001). Permutation tests confirmed that all measured
correlation values were extremely unlikely to be due to
chance alone (all Ps< 0.001), with no randomly resampled
control group showing a correlation that exceeded the
measured values. Altogether, participants were consistent-
ly ranked by their �FD across the scanning session despite
differences in task demands, time-lags between scans, and
even breaks where they exited the scanner (i.e., between
scenes3 and rest scans). Given the highly significant
within-participant relationship in run-to-run �FD, a partici-
pant’s average �FD across all scans may reliably quantify
the motion-related bias expected in that individual’s other
scans.

Average Frame-by-Frame Displacement Tracks

Rater-Defined T1-Weighted Image Quality

Given the significant associations between the average
head displacements across functional scans, the stability of
average fMRI motion estimates may extend to T1w images
and be used to infer the presence of problematic T1w
structural scans. To test this hypothesis, we first analyzed
the inter-rater reliability and distribution of experimenter-
defined QC ratings of T1w scans, and then compared �FD
to the subjective categorizations.

T1-weighted image quality ratings

Despite the use of standard criteria and considerable expe-
rience with rating (see Supporting Information), inter-rater

reliability was moderate (Cohen’s j 5 0.482, 95%
CI 5 0.367–0.600, P< 0.001) with all inter-rater disagreements
occurring for scans given QC ratings of adjacent categories
(i.e., no instances where one rater marked a scan as “fail”
when rated “pass” by the other). Table II indicates that raters
had difficulty in dissociating levels of poorer T1w quality
(41.2% overlap in “fail” ratings, 38.7% overlap in “warn” rat-
ings), whereas comparatively better consistency was
observed for scans rated “pass” (75.9% overlap). We empha-
size that the sizable cross-rater variability suggests that the
range of possible T1w artifacts may not be well represented
by the category distinctions of subjective raters and reinfor-
ces the motivation to identify more quantitative approaches.

To exercise caution in flagging problematic anatomical
data, the lower of the two valuations (more stringent)
from the raters determined the final category label given
to each scan (e.g., one rating of “warn” and another rating
of “pass” resulted in a final label of “warn”). Ultimately,
161 T1w scans were labeled “pass” (60.5%), 88 labeled
“warn” (33.1%), and 17 labeled “fail” (6.4%). This distribu-
tion revealed that while the majority of scans were labeled
as relatively reasonable quality, a non-trivial portion
(6.4%) was flagged for potential problems. Critically, the
majority of the “fail” scans here derive from participants
in later adulthood (16/17 from participants over 50 years
of age; see Table II), highlighting a potentially age-related
bias in T1w ratings. It is worth noting that the distribution

Figure 2.

Measures of in-scanner head motion are stable within individuals

across scans. Individual variability in �FD is highly correlated across

each pair of fMRI scans within a scanning session (all Ps< 0.001 rela-

tive to 100,000 permutated control samples after Bonferroni cor-

rection for 21 pair-wise comparisons). Despite the robust scan-to-

scan relationships, the cross-correlation matrix appears to exhibit

some heterogeneity (r’s range from 0.70 to 0.90). [Color figure can

be viewed at wileyonlinelibrary.com.]
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of image ratings for the young adults in this study (20–34
years of age) does not differ statistically from the distribu-
tion of ratings for young adults from Reuter et al. [2015;
i.e., relative to the study’s “still” condition]. However, the
existence of cohort-based differences in the distribution of
QC ratings (e.g., statistical difference in the rating distribu-
tions of younger and older adults; Table II) might render
our analysis of anatomical differences between individuals
of different ages susceptible to misestimation, a point we
return to in a subsequent section.

T1-weighted image quality ratings and

EPI head motion

We hypothesized that individuals with higher �FD during
fMRI scans tend to have greater motion-induced artifacts in
their T1w images (Fig. 3). A Kruskal–Wallis H-test confirmed
that increased �FDall2task was significantly associated with
poorer T1w scan quality: X2(2) 5 57.41, P< 0.001 (median
“pass” FDall-task 5 0.10 mm, median “warn” FDall-
task 5 0.15 mm, median “fail” FDall-task 5 0.17 mm). Pair-
wise Wilcoxon rank-sum tests (Bonferroni corrected for three
simultaneous comparisons; see Fig. 4, bar plot) indicated that
scans rated as “pass” were associated with significantly lower
�FDall2task than scans labeled “warn” (U 5 3667, P< 0.001,

z 5 26.29, g2 5 0.16) or “fail” (U 5 302, P< 0.001, z 5 25.28,
g2 5 0.16). Along these lines, scans labeled as “fail” were

associated with nominally higher �FDall2task than those
labeled “warn” (U 5 510, P 5 0.117, z 5 22.07, g2 5 0.04).

Despite the strong relationship between poorer quality
ratings and increasing �FDall2task, it remained possible that
the relationship between these two variables was con-
founded by a mutual relationship with age. Consistent
with this possibility, older age groups exhibited a larger
proportion of poorer quality ratings (see Table II) and
increasing age significantly correlated with increasing
�FDall2task (r 5 0.44, P< 0.001; Fig. 4). An ANCOVA of
�FDall2task (dependent variable) was computed including

QC rating as a between-subject factor and participant age
as a continuous predictor (F(5, 260) 5 24.95, P< 0.001, adj.
R2 5 0.311). With no detectable interaction between quality
and age (F(2, 260) 5 1.21, P 5 0.301), we recomputed the
main effects of QC ratings and age on �FDall2task without
controlling for interactions. The main effect of rater-
defined quality on �FDall2task was significant (F(2,
260) 5 23.23, P< 0.001) independent of a main effect of age
(F(1, 260) 5 28.26, P< 0.001).

Elevated �FD and Poor QC Ratings Predict

Independent Variance in Potential

Motion-Related Bias

Although T1w quality assessments and �FDall2task

covary, these two measures may capture non-overlapping

TABLE II. T1-weighted image QC ratings

QC ratings “Pass” “Warn” “Fail”

Generalized
assessment
criteria

“Noise/artifacts are
either undetectable or faintly

detectable; overall visual
image quality unaffected”

“Moderate spatially-contained
noise/artifacts present in

multiple image slices;
overall visual image

quality mildly affected”

“Severe noise/artifacts
pervasive, present

throughout majority of
image; resulting

data may be unusable”
N
(Rater 1)

187 71 8

N
(Rater 2)

186 64 16

% Overlap 75.9% 37.8% 41.2%
N
(Composite)

161 88 17

Age range
(Mean, SD)

20–88 years
(M 5 48.2, SD 5 18.9)

22–89 years
(M 5 62.4, SD 5 19.3)

30–86 years
(M 5 72.7, SD 5 14.0)

% of total sample 60.53% 33.08% 6.39%
NYA

(Total 5 64)
52 11 1 X2 versus expected

counts based on NYA*
NME

(Total 5 53)
39 14 0 X2(2) 5 2.20, P 5 0.332

NML

(Total 5 52)
34 15 3 X2(2) 5 4.19, P 5 0.123

NOA

(Total 5 97)
36 48 13 X2(2) 5 30.93, P< 0.001

*Each X2 test was performed using an expected proportion of ratings based on the YA cohort. The sample sizes of ME and ML differ
substantially from OA, which may accentuate differences in the resulting X2 statistic.
YA, younger adults (20–34 years); ME, middle early adults (35–49 years); ML, middle late adults (50–64 years); OA, older adults (65–89 years).
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aspects of the motion-related bias present in T1w data.
This would not be entirely surprising: the QC ratings
assess the visual severity of the artifacts but are inherently
subjective, while average FD from fMRI provides an inde-
pendent (indirect) measure of one’s tendency to move

during a T1w scan. To address this question, we tested the
overlap in participants given a QC rating of “fail” and
those identified as high movers according to �FDall2task.

�FD and QC ratings flag distinct sub-samples

Participants with �FDall2task greater than 1.5SD above the
sample mean were flagged as “higher” motion outliers,
identifying the most non-compliant participants in terms
of fMRI head movement (n 5 18). A sensitivity-specificity
analysis was performed on the capacity for visual quality
assessments to identify individuals characterized as being
higher movers according to �FD (Fig. 5A). Although the
resulting specificity (0.95) appeared numerically high, sen-
sitivity (0.22) appeared very low. The results of permuta-
tion testing suggested that the measured sensitivity was
statistically significant (P 5 0.018), although the specificity
failed to reach significance (P 5 0.065). It is critical to point
out that although this result indicates that T1w quality rat-
ings identify scans from high movers better than chance
(e.g., sensitivity), data screening with ratings alone would
fail to flag over 75% of high- �FD participants in the final
sample. Conversely, the majority of participants in the
“fail” quality category would not be flagged solely on the
basis of having elevated �FDall2task. These observations
highlight and reinforce the need to use both measures to

Figure 3.

Anatomical scans qualitatively reveal shared and unshared varia-

tion between quality ratings and EPI head motion. T1w images

drawn from older adults (over 70 years of age) are arranged in

a 2 3 2 matrix to highlight that quality ratings and �FD are relat-

ed, but provide non-overlapping characterizations of motion-

related artifacts. An excess of salient rater-detected artifacts

results in a T1w quality assessment of “fail,” which visibly distin-

guishes the two T1w images on the right side of this diagram

from the “pass” images on the left. On the other hand, when

artifacts are not subjectively detected or are faintly present (i.e.,

“pass”), it is unknown whether the T1w scans of a participant

with a tendency to move (1.5SD> the group average
�FDall2task) during fMRI contains more motion-related bias than

that of a person who is less prone to head motion (compare

high-movement “pass” vs. low-movement “pass”). Importantly,

however, it is clear that an increased tendency to move exacer-

bates image contamination when artifacts are visually detectable

(compare high-movement “fail” vs. low-movement “fail”). A pri-

mary concern is that structural images from high-motion partici-

pants could contain substantial motion-related bias but be

retained in a sample when quality ratings are used without other

considerations.

Figure 4.

Greater EPI head motion is associated with poorer visual quality

ratings independent of age. Increasing age is associated with

increasing average head motion ( �FD) over the healthy adult life-

span (r 5 0.44, P< 0.001). Data points are color-coded by the

corresponding rater-defined quality score in the scatterplot to

illustrate that that decreasing T1w image quality ratings corre-

late with individuals’ tendency to move during fMRI. For depic-

tion purposes, separate least-squares regression lines are shown

on the scatterplot for the individual quality categorizations to

illustrate the age-invariant main effect of QC ratings on
�FDall2task. The accompanying bar plot (inset) verifies that for

each descending level of quality, average EPI head motion is sig-

nificantly greater. Significance levels for Wilcoxon rank-sum tests: -T
for uncorrected P< 0.05; *** for Bonferroni corrected P< 0.001.

r Motion-Related Artifacts in Structural Brain Images r

r 481 r



adequately flag the dataset for possible motion-related
bias.

Flagging Participants with Elevated �FD and Poor

QC Ratings Reveals Biased Estimates of

Morphometry

What is the impact of including motion-contaminated
anatomical scans on measurements of brain morphometry?
The findings presented thus far suggest that we have two
metrics, QC ratings and �FDall2task, for identifying poten-
tially problematic T1w scans. Next, we set out to deter-
mine whether and how the potential motion-related bias
highlighted in the flagged participants impacts estimates
of morphometry derived from the T1w scans.

Cortical thickness covaries with �FD and QC rat-

ings independent of age

We constructed an ANCOVA model with QC ratings,
�FDall2task, and age as predictors of GM thickness (depen-

dent variable) with gender included as a nuisance vari-
able. There were no detectable interactions between the
independent variables in this model (all Ps> 0.501), so the
individual main effects of the predictors were assessed
without controlling for their interactions. The model fit

was significant (F(23, 242) 5 21.14, P< 0.001, adj.
R2 5 0.636) and there was a significant main effect of
increasing age on decreased thickness estimates (F(1,
242) 5 212.98, P< 0.001). In addition, both the main effect
of visual QC ratings (F(2, 242) 5 10.74, P< 0.001) and the
main effect of �FDall2task (F(1, 242) 5 4.33, P 5 0.038) on
thickness values were significant, independent of one
another, age and gender. Of note, while the effect of age
on thickness remained significant after controlling for QC
ratings and �FDall2task, its effect size (partial eta-squared)
was reduced from 0.59 (without controlling for QC and
�FDall2task) to 0.47 (significant reduction: P 5 0.001); we

return to this point in a later section. Importantly, the
above ANCOVA was re-calculated after removing scans
flagged by QC ratings and �FDall2task (F(15, 219) 5 23.59,
P< 0.001, R2 5 0.591) and the significant main effects of
QC ratings (F(2, 219) 5 10.66, P 5 0.001) and �FDall2task (F(1,
219) 5 6.09, P 5 0.014) persisted independent of a signifi-
cant main effect of age on decreasing average whole-brain
thickness (F(1, 219) 5 190.62, P< 0.001).

To better understand the variability in GM thickness
estimates predicted by these two measures of motion-
related bias, regression models were constructed by first
controlling for the effects of age, gender, and one of the
two measures (i.e., partial correlations). In the model con-
trolling for age, gender and �FDall2task, decreasing GM
thickness was significantly related to poorer QC ratings

Figure 5.

Quality ratings and EPI head motion contribute partially inde-

pendent sources of potential bias-related variance. (a) A histo-

gram of �FDall2task illustrates that visual quality ratings miss

over 75% of high-movement participants (low sensitivity). Since

flagging participants with elevated �FDall2task (in the present

case 1.5SD above sample mean, depicted by red dotted line)

similarly misses a number of “fail” images, these two methods of

data screening likely need to be considered together to better

control for potential motion-related bias. (b) Lower (poorer)

visual quality ratings are significantly associated with decreased

thickness estimates after controlling for participant age, gender

and �FDall2task. Data points that are flagged by a quality rating

of “fail” are colored orange to highlight that the lowest T1w

quality ratings result in decreased thickness estimates indepen-

dent of regressed variables. (c) Increasing �FDall2task is signifi-

cantly associated with reduced estimates of thickness after

controlling for age, gender, and quality ratings. High movers

flagged by EPI head motion (i.e., 1.5SD above sample mean) are

highlighted in orange to show that the highest movers tend to

have the lowest thickness estimates relative to their age, gender,

and T1w quality. [Color figure can be viewed at wileyonlineli-

brary.com.]
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(r 5 0.28, P< 0.001; Fig. 5B). Conversely, after removing
the effects for age, gender and QC ratings, decreasing GM
thickness was significantly associated with higher
�FDall2task (r 5 20.15, P 5 0.013; Fig. 5C). Critically, both of

these relationships remain after correcting for multiple
comparisons (Bonferroni correction for two tests at signifi-
cance threshold of P 5 0.05). We highlight that there is no
significant difference in the absolute effect sizes of these
two variables on GM thickness (z 5 1.52, P 5 0.129), pro-
viding additional evidence that both independent mea-
sures are important for flagging potentially problematic
T1w scans.

Flagging limits the effects of �FD on regional thick-

ness estimates by filtering biased anatomical scans

Given the observed relationships between our measures
of interest and average whole-brain thickness persisted
statistically after flagging, it was important to understand
the spatial distribution of the effects and whether our flag-
ging procedure may attenuate the potential motion-related
bias regionally. Data from a total of 31 individuals’ T1w
scans were flagged as potentially problematic for structur-
al estimation (i.e., total combining both rating “fails” and
�FDall2task 1.5SD above the sample mean). We calculated

the vertex-wise full-partial correlations of GM thickness
and �FDall2task while controlling for age and gender before
and after removing flagged scans from the estimation sam-
ple. After removing the 31 flagged scans, the distribution
of effect sizes was significantly reduced compared with
1,000 pseudo-randomly re-sampled groups of the same
size (Fig. 6A). Relative to the full sample, the flagging pro-
cedure appeared to reduce if not eliminate the effect of
�FDall2task across the vast majority of the cortical surface

(compare left and right in Fig. 6B). The regions where the
age- and gender-regressed relationships between �FDall2task

and GM thickness were eliminated by removing flagged
scans notably included the bilateral cingulate cortex, bilat-
eral lateral temporal cortex, and right lateral parietal
cortex.

To further characterize the impact of including poten-
tially problematic scans in a study sample we examined
the difference between the flagged group and unflagged
controls. A bootstrap procedure was used to create gen-
der- and age-matched control samples for the flagged
group. The average GM thickness of the flagged group
was consistently lower than that of control samples
(P< 0.001; Fig. 6C), with no control sample having less
average thickness than the flagged group. Echoing the
results of Reuter et al. [2015], data believed to be suscepti-
ble to motion-related bias resulted in thickness estimates
that were lower than could be expected by random vari-
ability in the population. As in Reuter et al., measures of
gray matter volume also showed a pattern of bias consis-
tent with these primary results (see Supporting
Information).

A vertex-wise two-sample t-test was used to compare
the cortical thickness of the flagged sample and a control
group identified in the bootstrapping procedure above
(i.e., age- and gender-matched to the flagged sample; see
Fig. 6D). Cortical regions exhibiting significantly reduced
GM thickness in the flagged sample were distributed
across hemispheres and cortical lobes. Bilaterally, these
regions included anterior and posterior cingulate, precu-
neus, anterior insula, dorsal and ventral medial prefrontal
cortex (PFC), superior frontal cortex, orbitofrontal cortex
(OFC), superior parietal lobule (SPL), lateral temporal cor-
tex, and the temporal poles. Reductions in thickness for
the flagged group were also present in the left inferior
frontal gyrus (IFG; e.g., pars triangularis, pars opercularis),
right supramarginal gyrus (SMG) and right angular gyrus
(AG). Consistent with the above finding that thickness was
reduced globally in the flagged images, no brain regions
in the flagged group were reliably greater than that of the
matched control sample.

Removing flagged scans attenuates the effects of age

on regional thickness estimates

Aging is accompanied by regionally specific changes in
cortical gray matter. Since age additionally relates to the
flagging metrics that are indicative of motion-related bias it
was important to describe how, if at all, flagging altered the
relationships between aging and regional thickness esti-
mates. The vertex-wise correlation between GM thickness
and age was measured before and after removing flagged
T1w scans. Given that our flagging procedure made a rela-
tively small perturbation to the overall sample size, flagging
did not appear to alter the variance of average whole-brain
GM thickness values (varbefore 5 0.0235; varafter 5 0.0204;
non-significant reduction: X2(1) 5 0.84, P 5 0.360), nor their
correlation with age (rbefore(265) 5 20.76, P< 0.001;
rafter(234) 5 20.74, P< 0.001; non-significant reduction:
z 5 20.43, P 5 0.667). Critically, however a two-sample Kol-
mogorov–Smirnov test confirmed that the vertex-wise dis-
tribution of correlations between age and GM thickness
exhibited a subtle but significant shift toward 0 after remov-
ing flagged participants (D 5 0.0896, P< 0.001; see Fig. 7A).
To illustrate the topography of regionally inflated effect
sizes we measured the difference in correlation of age and
GM thickness within the 148 anatomical parcels of
FreeSurfer-distributed Destrieux atlas [Destrieux et al.,
2010] before versus after removing flagged scans. When
removing flagged scans from the estimation sample, the
effect sizes of age and GM thickness were attenuated across
a majority of the cortex (86% of parcels), with the largest
reductions along the cortical midline (e.g., precuneus, cingu-
late cortex, calcarine sulcus), bilaterally in the lateral tempo-
ral lobes, and in the right insula and right lateral parietal
cortex (Fig. 7B,C).
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DISCUSSION

The present study revealed stable individual differences
in head motion across functional scans, which were fur-
ther correlated with QC ratings of T1w image quality.

Moreover, head motion estimates from fMRI scans were
shown to influence general estimates of individuals’ brain
structure, independent of the effects of age and rater-
defined quality. We adopted a procedure for “flagging”
T1w scans based on combined measures of excessive fMRI

Figure 6.

Flagging data using both EPI head motion and QC ratings limits

the effects of motion-related bias in gray matter thickness. (a)

The cumulative distribution function of vertex-wise GM thick-

ness vs. �FDall2task full-partial correlations (controlling for age

and gender) differs before (blue line) and after (red line) remov-

ing anatomical scans flagged by a combination of T1w quality

ratings (“fail” images) and elevated �FDall2task (1.5SD> sample

mean). The vertex-wise associations of GM thickness versus
�FDall2task after removing flagged scans are significantly reduced

relative to the 95% confidence interval (gray lines and shaded

area) measured from 1,000 randomly re-sampled control sam-

ples (each n 5 235) from which unflagged scans that are

demographically-matched to the flagged group were removed.

(b) Comparing the regional distribution of vertex-wise GM

thickness versus �FDall2task full-partial correlations (controlling

for age and gender; FDR-corrected) before and after removing

flagged scans (left vs. right P-value maps, respectively) indicates

that the significant relationships between head motion and thick-

ness are reduced, if not eliminated, across the majority of the

cortex. (c) The group of flagged participants (n 5 31) have

average whole-brain GM thickness estimates significantly lower

than bootstrapped age- and gender-matched samples. The global

bias highlights that reduced thickness estimates are likely to be

consistently derived for flagged images (vertical lines represents

95% confidence interval). (d) A vertex-wise t-test (FDR-cor-

rected) between the flagged group and a control sample indi-

cates that the motion-related bias in thickness estimates is

regionally patterned. All the detected differences in this compar-

ison occur in regions that exhibit significantly lower GM thick-

ness for the flagged group (flagged<matched controls).

Differences are prominent in association cortex and along the

cortical midline, particularly emphasized in brain regions

reported to undergo prominent atrophy with age (e.g., dorsal

medial PFC, posterior cingulate, temporal poles, OFC, lateral

temporal cortex, ventral medial PFC, anterior cingulate, anterior

insula, and left inferior frontal gyrus). L., left; R., right; Ant., anteri-

or; Post., posterior; Inf., inferior; Med., medial; Lat., lateral; Dors., dor-

sal; Vent., ventral; PFC, prefrontal cortex; OFC, orbitofrontal cortex;

PCC, posterior cingulate cortex. [Color figure can be viewed at

wileyonlinelibrary.com.]
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head movement and low QC rating. Examining the
flagged anatomical scans revealed that the regions most
prone to potential movement-related effects include many
reported to undergo prominent atrophy with age. Taken
together, the results suggest that natural in-scanner head
movements exert a potential confound on structural MRI
measurements when left uncontrolled. This take home
point is particularly relevant for studies comparing sub-
groups with high variability in head motion (e.g., older
adults, adolescents, clinical populations), and/or studies
examining multiple timepoints of data acquisition (i.e.,
longitudinal studies). In addition to describing the
movement-related observations we noted, we also offered
readers some initial recommendations to overcome this
potential source of bias in their own datasets.

A substantial body of research has focused on measur-
ing and controlling for participant head motion during
echo-planar imaging [Friston et al., 1995; Jenkinson and
Smith, 2001; Woods et al., 1992]. The nature of functional
acquisitions (e.g., a BOLD image collected every TR) pro-
vides an opportunity to directly measure head position

over the course of the scan. Since changes in head position
are calculable frame-to-frame in EPI, a variety of methods
have been developed to identify and account for motion-
related variance [e.g., frame censoring, regression; Jo et al.,
2013; Patel et al., 2014; Power et al., 2014; Satterthwaite
et al., 2013]. Likewise, the confound of motion artifacts
remains an ongoing problem for structural brain imaging,
where correction methods have not yet mitigated their
bias. In contrast to echo-planar imaging (e.g., fMRI, DWI),
typical T1w structural acquisitions generate a single image
over a several minute span without any direct estimations
of how head position changes over the course of the scan.
When direct measures have been available, one recent
study has shown alarming inaccuracy in estimates of gray
matter thickness and volume in the presence of head
movements [Reuter et al., 2015], albeit in a smaller prelimi-
nary experiment that prescribed that motion.

Given that head motion confounds such measurement
but is typically unavailable with T1w structural scans, we
are met with a key challenge: how can we ensure that
scans acquired without direct movement information are

Figure 7.

Regional effects of age-related cortical thinning are reduced

when removing flagged scans that are susceptible to potential

motion-related bias. (a) The cumulative distribution function of

vertex-wise age vs. GM thickness correlations differs before

(blue line) and after (red line) removing anatomical scans flagged

by T1w quality ratings and elevated �FDall2task. The subtle right-

ward shift in correlations (toward z(r) 5 0) indicates a significant

reduction in overall effect sizes when structural scans flagged

for potentially motion-related artifacts have been removed from

the estimation sample. (b) A scatter plot of the correlations

(Fisher’s z-transformed r-values) of anatomical parcel thickness

versus age before and after removing flagged scans reveals that

the majority of regional effect sizes are reduced (86% of parcels)

after scans susceptible to potential motion-related bias have

been filtered from the sample (diagonal line indicates no

difference). (c) A surface-based map illustrates that the differ-

ences in average correlation between age and GM thickness

occur variously across anatomical parcels (all relationships

remained negative; color-scale reflects the strength and direction

of correlation change after removing flagged scans). Reduced

age effects are prominent along the cortical midline (e.g., cingu-

late cortex, precuneus, calcarine sulcus), bilateral lateral tempo-

ral cortex, right lateral parietal, and right anterior insular

cortex, suggesting that these particular regions may be most

susceptible to misestimates of age-related cortical thinning when

motion-related bias is left uncontrolled. L., left; R., right; Ant.,

anterior; Ang., angular; Post., posterior; Inf., inferior; Med., medial;

Lat., lateral; Dors., dorsal; Vent., ventral; SPL, superior parietal lobule;

SMG, supramarginal gyrus; OFC, orbitofrontal cortex. [Color figure

can be viewed at wileyonlinelibrary.com.]
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not biased by potential motion-related artifacts? Although
continued development of prospective methods will
improve the way that future studies use structural imag-
ing to study anatomy [see Zaitsev et al., 2015], develop-
ment of such innovations is not applicable to a number of
extremely valuable legacy datasets and to many other on-
going large-scale data collection initiatives [e.g., ABIDE,
ADHD-200, ADNI, Betula, DLBS, FCON1000, HCP, HABS,
NIMH adolescents, PNC, SLS; ADHD-200-Consortium,
2012; Biswal et al., 2010; Chan et al., 2014; Dagley et al.,
2015; Di Martino et al., 2014; Giedd et al., 1999; Jack et al.,
2008; Nilsson et al., 1997, 2004; Park et al., 2012; Sat-
terthwaite et al., 2014; Schaie and Willis, 2010; Van Essen
et al., 2012b,]. While many studies have led efforts to cor-
rect the motion-related bias in EPI, less work has demon-
strated a suitable technique for mitigating the motion-
related bias on T1w imaging. To maximize data cleanli-
ness, the sensitivity and reliability of morphometric find-
ings, and predictive power/large sample size, a practical
alternative is necessary to retroactively control for the
motion-related biases in T1w measures of brain anatomy.

One recommendation has been to assess image quality
based on visual inspection, either removing problematic
scans or reacquiring higher quality data when practical
[Reuter et al., 2015]. However, a combination of intra- and
inter-rater variability and an under-characterized frame-
work for appraising MR image quality currently renders
this approach sub-optimal. We proposed an objective
method to supplement QC ratings wherein independent
scans that measure head motion in the same scan session
(e.g., EPI sequences) are leveraged to identify potentially
motion-contaminated T1w images. Critically, QC ratings
and �FD predicted non-overlapping variance in estimates
of brain structure, suggesting that the two measures com-
plement one-another in flagging potentially problematic
data points. Of note, T1w scans flagged by a combination
of �FD and QC ratings: (1) increased with increasing age,
and (2) exhibited considerably reduced global and regional
estimates of gray matter volume and thickness. Reductions
in gray matter volume and thickness are well documented
as a hallmark of healthy aging and cognitive decline
[DeKosky and Scheff, 1990; Dickerson et al., 2008, 2012;
Sowell et al., 2003]. We suggest that these effects may in
some cases be overestimated, particularly in certain brain
locations, by the inclusion of biased estimates from T1w
structural scans with motion artifacts. The present work
leveraged the variability in head motion and morphometry
in a healthy adult sample to show that: (1) independent
estimates of motion significantly predicted GM thickness
(independent of age and gender), and (2) motion slightly
but significantly biased thickness estimates in several
regions that are often highlighted to undergo cortical thin-
ning with increasing age [e.g., medial PFC, cingulate cor-
tex, precuneus, IFG and anterior insula, SMG, lateral
temporal cortex; Fjell et al., 2009; Lemaitre et al., 2012; Raz
et al., 2005; Salat et al., 2004; Storsve et al., 2014].

It is important to note that many of the age-associated
differences in morphometry found with T1w imaging are
robust neuroanatomical findings supported by more direct
methods of anatomical measurement [e.g., histological
studies of neuronal counts, cell density, and thickness;
Morrison and Hof, 1997; Pakkenberg and Gundersen,
1997; Terry et al., 1987]. We emphasize that the removal of
problematic T1w images in the present study did not
negate the strong overall pattern of cortical thinning typi-
cally observed across the healthy adult lifespan, but
instead highlight both where and how the effect size of
age on thickness may be susceptible to misestimation
when T1w scans with motion artifacts remain in a study
sample. The present method of removing “flagged” scans
from the estimation sample also reduced the association
between head motion and GM thickness, suggesting that
our flagging procedure may improve the accuracy of mor-
phometric findings by mitigating the motion-related bias.
Looking forward, we suspect that when automated and
semi-automated methods of morphometry (e.g., ANTs,
FSL, FreeSurfer) are used to compare populations where
movement differences are more prominent or samples are
smaller, the effects of head motion could be exacerbated
and may incorrectly influence the conclusions drawn from
the data [see Ducharme et al., 2016]. Moreover, it seems
likely that motion-related bias will limit other T1w image
processing steps that rely on accurate brain anatomy; for
instance, our preliminary observations suggest that T1w
scans flagged according to �FDall2task and QC ratings
exhibit reduced precision of within-modality registration
(see Supporting Information).

It is worth considering that fMRI motion here serves as
a proxy measure for the motion that occurs during struc-
tural scans. Given that T1w scanning may non-uniformly
encode motion artifacts (e.g., movements during the mid-
dle of an MPRAGE scan can cause greater artifacts than
motions near the start/end), more work is needed to eval-
uate how well fMRI motion estimates approximate the
presence of movement-induced artifacts in T1w images. In
addition to mean FD values, researchers may consider
using median or variance of motion to describe one’s ten-
dency to move during a scan session (e.g., to avoid bias
from abnormal motion spikes). In the current sample, our
findings were qualitatively unchanged when flagging with
median FD (see Supporting Information). Also, since dif-
ferent fMRI motion algorithms may vary in precision [e.g.,
Ardekani et al., 2001; Morgan et al., 2001] they may differ-
entially predict motion during T1w scans (e.g., SPM used
here); notably, calculating outputs from another common
motion algorithm (FSL’s MCFLIRT) revealed high consis-
tency of parameters ( �FDall2task between r(265) 5 0.99,
P< 0.001) and identified all but one of the scans flagged
here. Another possibility is that motion estimates from
subsets of scans that are temporally proximal and/or simi-
lar in task-demands to the T1w acquisition are best suited
for this prediction. For instance, the correlation matrix in
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Figure 2 suggests that the average movements in scans
separated by greater intervening scans are nominally less
correlated, particularly when participants exit the scanner
between tasks (e.g., between “scenes3” and “rest” scans).
While the current task-ordered scanning protocol limited
the interpretability of temporal and task effects, the highly
significant pair-wise relationships between individual rank
ordering in �FD across scans suggests that �FDall2task likely
quantifies an accurate cross-scan feature in individuals rel-
ative to a sample.

A recent study revealed a number of findings parallel to
those reported here while examining fMRI motion and
structural estimates in a large pediatric and young adult
sample [Alexander-Bloch et al., 2016]. Firstly, this previous
report demonstrated that fMRI head motion may be stable
across similar EPI scans. Second, the authors similarily
identified a motion-related bias in gray matter volume
estimates of a stringently screened study sample (with
visual QC). The present report not only confirms the prior
findings, but also furthers these observations in important
ways to demonstrate: (1) fMRI head motion might reflect a
relatively stable within-participant feature that persists
across task demands and even over brief intervals where
participants exit the scanner, (2) fMRI head motion and
visual QC ratings exhibit statistically independent biases
on multiple brain-wide measures of morphometry derived
with T1w images, and (3) flagging a relatively small num-
ber of T1w scans via a combination of fMRI head motion
and QC ratings may significantly reduce the effect of
motion-related bias in analyses of morphometry. Notably,
the significant continuous effect of fMRI motion parame-
ters on T1w measures of whole-brain and regional GM
thickness observed in the current report was undetectable
in the study be Alexander Bloch et al. [2016], possibly due
to relatively less variability in head motion estimates than
those found in the present adult lifespan dataset. Collec-
tively, there is strong evidence that that average fMRI
head motion measured within the same session is highly
correlated within-participant and may perform well as a
proxy measure for motion-related bias in scans without
more direct measures of head movement. Additional work
will be necessary to clarify precisely how motion-related
bias in T1w images varies and overlaps across these dis-
tinct study populations. Presently, we reiterate that future
studies aiming to characterize accurately the morphometry
of groups that differ in their tendency to move (e.g., youn-
ger vs. older adults, patients vs. controls) will be strength-
ened by considering whether their observed effects are
robust to the motion-related bias.

Though the discrepancy in �FD and QC ratings as well
as the similarity in head motion during EPI and T1w
structural scans warrant further study, the distinct influen-
ces of �FD and QC ratings reported here substantiate the
consideration of both measures when analyzing structural
MRI. The present findings indicate that the presence of
biases in anatomical scans may be partially controlled by a

combination of methods relying on rater-defined QC and
independent fMRI-based estimates of head motion. It is
important to point out that this strategy of “flagging”
structural images with potential bias is distinct from that
of correcting the image sequences themselves or using
motion estimates as covariates in statistical analyses.
Approaches that covary motion estimates may provide a
reasonable strategy for controlling motion-related biases
on structural estimates; however, until �FDall2task values
can be more closely related to motion-induced artifacts in
T1w scans it remains unclear whether using �FDall2task as a
statistical covariate can accurately remove the motion con-
found in morphometric analyses. Improving T1w acquisi-
tion techniques will surely advance future studies of brain
morphometry, however, improved QC and data screening
may be the most practical alternative for existing datasets
and ongoing data collection initiatives. Researchers must
bear in mind that aggressive screening procedures can be
inherently limited. For example, since high in-scanner
head motion and poor rater-defined T1w quality can be
strongly tied to variables of interest (e.g., aging, differences
in diseased populations), flagging these data points for
removal can result in sampling bias (i.e., only older adults
or individuals healthy enough to stay still in the scanner
will be studied). Notably, this inherent bias is not concep-
tually very different from the bias introduced by MRI eli-
gibility requirements in many studies (e.g., no history of
cardiovascular issues or head trauma) that already pre-
select a relatively healthy subpopulation. Experimenters
need to be continually mindful in this trade-off when
adopting data screening techniques for T1w images.

An intriguing possibility is that dissimilarities in the
propensity to move one’s head during an imaging session
is related to a trait-like feature [e.g., impulsivity, Kong
et al., 2014], and that this feature is a direct consequence
of the local or global differences in brain anatomy
highlighted here (e.g., Fig. 6). For instance, variation in the
tendency to move during MRI might reflect a broader phe-
notype that is triggered in part by certain patterns of corti-
cal thinning. One recent study reported that group-based
differences in the resting-state correlations of the default
mode network might distinguish high-motion scans of
high-moving individuals from high-motion scans of low-
moving individuals [Zeng et al., 2014]. While we cannot
rule out a comparable scenario here, given that excessive
motion has been shown to systematically bias structural
measures in within-subject longitudinal study designs
[Reuter et al., 2015], we suspect that the reduced morpho-
metric estimates found in the structural images flagged by
the present report are a consequence of excessive move-
ment during T1w scans rather than a cause. Still, addition-
al work will be needed to characterize a potential link
between gray matter morphometry and trait-like head
motion, particularly since a residual association between
head motion and thickness persists after removing flagged
scans; studying the extent to which head motion estimates
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are stable across multiple imaging sessions [see Reuter
et al., 2015; Van Dijk et al., 2012; Zeng et al., 2014; Zuo
et al., 2014] might help examine this possibility. To this
end, it remains essential to relate the stability of movement
patterns during fMRI to direct measures of head motion
during T1w scanning. Nonetheless, given the nature of the
noted biases we have reported, we maintain that within-
session head motion measurements (as used in this report)
can provide a critical data-flagging tool for removing
potential motion-related bias in structural imaging studies.

It is evident that motion-related artifacts in structural
MRI pose a potential limitation on measuring brain mor-
phometry. Though most MRI research protocols acquire
EPI images along with high-resolution structural scans, if
motion estimates from independent scans (e.g., fMRI,
DWI) are also unavailable, investigators would have to
rely exclusively on visual QC while accepting that some
residual motion-related bias is likely to limit their conclu-
sions. Moreover, without adequate control for motion-
related bias, structural imaging studies requiring highly
sensitive computational methods may be inherently limit-
ed (e.g., structural change in clinical trials). The present
results are based on FreeSurfer estimates of morphometry,
however the findings are likely to generalize to other
structural estimation algorithms as well (e.g., ANTs, FSL,
CIVET). As mentioned above, biased structural imaging
may impair within- and between-modality image registra-
tion, but also functional localization methods, and analyses
that require accurate mapping to anatomical surfaces
[McDonald et al., 2010; Wig et al., 2014], all of which often
rely on accurate characterization of brain anatomy. Such
problems with image registration may be exacerbated in
cross-cohort comparisons by warping T1w anatomical
scans to a template image with varying degrees of success
due to differences in motion-related artifacts. The implica-
tion of this naturally extends to other measurements based
on accurate estimates of brain anatomy including analysis
of structural covariance networks [e.g., Zielinski et al.,
2010; Montembeault et al., 2012], volume based morphom-
etry [e.g., Schmitter et al., 2015], tract-based spatial statis-
tics [e.g., fractional anisotropy, diffusivity; Smith et al.,
2006, 2007], and brain lesions imaged with FLAIR [e.g.,
white matter hyper-intensities, infarctions; Hajnal et al.,
1992; Brant-Zawadzki et al., 1996], among many others.

CONCLUSIONS

The present findings suggest that motion-related bias in
T1-weighted structural MRI may be retrospectively flagged
and removed, in part, via a combination of procedures rely-
ing on rater-defined visual QC ratings and estimates of
movement obtained from independent scans collected dur-
ing the same scanning session. The inclusion of head motion
estimates from other scans provides valuable information
that would be missed by visual inspection alone. Broadly,
the current findings may offer researchers a practical

framework for objectively identifying problematic data
points in other brain scans that also do not supply more
direct measures of head motion (e.g., FLAIR, MRA). The
observations highlighted warrant continued development
and implementation of both qualitative and quantitative QC
to improve the analysis of brain structure. The use of auto-
mated and semi-automated methods in preparing and ana-
lyzing brain data are instrumental to enhancing the ways
that researchers can examine functional and structural brain
organization. Nonetheless, biased estimates of gray matter
volume and thickness resulting from participant head
motion during data collection is a serious issue that places
important limits on the accuracy with which cross-cohort
anatomical differences and longitudinal change can be quan-
tified. For this reason, we emphasize the importance of con-
sidering both visual inspection and objective motion-related
QC when assessing brain structure with MRI.
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