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Background: Chronic kidney disease (CKD) involves complex immune dysregulation and altered gene expression profiles. This 
study investigates immune cell infiltration, differential gene expression, and pathway enrichment in CKD patients to identify key 
diagnostic biomarkers through machine learning methods.
Methods: We assessed immune cell infiltration and immune microenvironment scores using the xCell algorithm. Differentially 
expressed genes (DEGs) were identified using the limma package. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation 
Analysis (GSVA) were performed to evaluate pathway enrichment. Machine learning techniques (LASSO and Random Forest) 
pinpointed diagnostic genes. A nomogram model was constructed and validated for diagnostic prediction. Spearman correlation 
explored associations between key genes and immune cell recruitment.
Results: The CKD group exhibited significantly altered immune cell infiltration and increased immune microenvironment scores 
compared to the normal group. We identified 2335 DEGs, including 124 differentially expressed immune-related genes. GSEA 
highlighted significant enrichment of inflammatory and immune pathways in the high immune score (HIS) subgroup, while GSVA 
indicated upregulation of immune responses and metabolic processes in HIS. Machine learning identified four key diagnostic genes: 
RGS1, IL4I1, NR4A3, and SOCS3. Validation in an independent dataset (GSE96804) and clinical samples confirmed their diagnostic 
potential. The nomogram model integrating these genes demonstrated high predictive accuracy. Spearman correlation revealed positive 
associations between the key genes and various immune cells, indicating their roles in immune modulation and CKD pathogenesis.
Conclusion: This study provides a comprehensive analysis of immune alterations and gene expression profiles in CKD. The identified 
diagnostic genes and the constructed nomogram model offer potent tools for CKD diagnosis. The immunomodulatory roles of RGS1, 
IL4I1, NR4A3, and SOCS3 warrant further investigation as potential therapeutic targets in CKD.
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Introduction
Chronic kidney disease (CKD) is a progressive condition that poses a significant public health challenge worldwide, 
affecting millions of people and leading to high morbidity and mortality rates.1 CKD is characterized by the gradual loss 
of kidney function over time, which can eventually lead to end-stage renal disease, necessitating dialysis or kidney 
transplantation.2 The pathogenesis of CKD involves a complex interplay of genetic, environmental, and immunological 
factors.3 Recent studies have highlighted the crucial role of immune dysregulation and altered gene expression profiles in 
the progression of CKD.4 However, the specific mechanisms underlying these changes and their impact on disease 
progression remain poorly understood.

Numerous studies have explored the role of immune cells in CKD, demonstrating that immune cell infiltration and 
activation are key features of CKD pathology.5,6 For instance, T cells, and macrophages have been implicated in 
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promoting inflammation and fibrosis in the kidney, contributing to disease progression.7 Despite these advances, there 
remains a gap in understanding the comprehensive landscape of immune cell infiltration and its relationship with gene 
expression changes in CKD. Furthermore, the integration of bioinformatics and machine learning methodologies remains 
underutilized in identifying reliable diagnostic biomarkers in CKD. Prior studies have frequently suffered from inade-
quate utilization of bioinformatics and machine learning methodologies for the identification of reliable diagnostic 
biomarkers. Additionally, recent advancements in unsupervised deep learning approaches have shown promise in 
uncovering complex patterns in biomedical data.8–10 Machine learning techniques, such as the least absolute shrinkage 
and selection operator (LASSO) and Random Forest, have demonstrated significant potential in identifying key 
diagnostic genes and constructing predictive models in various diseases.11,12 Given the complex nature of CKD and 
the involvement of immune dysregulation, there is a pressing need for comprehensive studies that integrate bioinfor-
matics and machine learning approaches to unravel the intricate relationships between immune cell infiltration, gene 
expression alterations, and disease progression. Identifying key diagnostic biomarkers can not only enhance our under-
standing of CKD pathogenesis but also pave the way for the development of novel diagnostic and therapeutic strategies. 
This study aims to address these gaps by leveraging GEO datasets and advanced computational methods to provide 
a detailed analysis of the immune microenvironment in CKD.

The primary objective of this study is to investigate the alterations in the immune microenvironment and identify 
key diagnostic biomarkers in CKD using integrated bioinformatics and machine learning approaches. In this study, we 
utilized the xCell algorithm to evaluate immune cell infiltration and calculate immune microenvironment scores for 
CKD patients. Differential gene expression analysis was conducted using the limma package to identify DEGs between 
CKD patients and healthy controls. GSEA and GSVA were employed to determine the enrichment of biological 
pathways. Machine learning techniques, including LASSO and Random Forest, were applied to identify key diagnostic 
genes. A nomogram model was then constructed and validated for its diagnostic accuracy. Finally, Spearman 
correlation analysis was performed to investigate the relationships between the identified genes and various immune 
cells.

This study provides a comprehensive analysis of immune alterations and gene expression profiles in CKD, identifying 
critical diagnostic biomarkers and constructing a predictive model. The findings have significant implications for 
improving CKD diagnosis and understanding the immunomodulatory mechanisms underlying the disease. Moreover, 
the identified genes, RGS1, IL4I1, NR4A3, and SOCS3, present promising targets for future therapeutic interventions, 
potentially leading to better management and treatment of CKD.

Materials and Methods
Data Acquisition and Analysis
We retrieved two publicly available transcriptomic datasets from the Gene Expression Omnibus (GEO) database, namely 
GSE66494 and GSE96804. GSE66494 comprised 53 CKD samples and 8 normal samples obtained from kidney biopsy 
specimens, while GSE96804 consisted of 20 control samples and 41 samples of diabetic nephropathy obtained from 
glomerular specimens. The datasets were accessed via the GEO platform (https://www.ncbi.nlm.nih.gov/geo/). Before 
data analysis, we extracted and normalized the raw matrix files using the affy package in R. Probe IDs were converted to 
gene symbols based on the platform’s annotation file for each dataset. If multiple probes corresponded to a single gene 
symbol, the average expression value of these probes was considered as the gene expression level. This approach ensures 
consistency and reliability in the processed data for downstream analyses.

Immune Cell Infiltration Analysis
We employed the xCell algorithm to assess the proportions of immune cell subsets between the normal and CKD 
groups.13 The results were visualized using bar plots generated with the ggplot2 package. To compare the proportions of 
immune cell subsets between the normal and CKD groups, we used the Student’s t-test. The association between 
diagnostic genes and immune cells was assessed utilizing the ggplot2 package.
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Analysis of Differential Gene Expression
We employed the xCell algorithm to calculate immune microenvironment scores for each CKD sample. The GSE66494 
dataset, consisting of 53 CKD samples, was stratified into low immune microenvironment score (LIS) and high immune 
microenvironment score (HIS) subgroups based on the median immune microenvironment score.14 To identify genes 
associated with the immune microenvironment scores between the LIS and HIS subgroups, we used the limma package 
in R. The selection criteria for significant genes were an adjusted p-value (p.adj) < 0.05 and an absolute log2 fold change 
> 1.15 Similarly, we identified differentially expressed genes (DEGs) between normal and CKD groups using the limma 
package with the same selection criteria. Volcano plots were generated using the ggplot2 package to visualize the 
significant DEGs and IGs.

Gene Set Enrichment Analysis (GSEA)
We conducted GSEA using the “clusterProfiler” package to explore the potential mechanisms of IGs in CKD.16 The gene 
set “c2.cp.v7.2.symbols.gm” was utilized for this analysis. Gene sets with a p-value adjusted (p.adj) < 0.05 were 
considered to be significantly enriched. Results from the GSEA were visualized using the ggplot2 package.

Gene Set Variation Analysis (GSVA)
In order to improve the detection of subtle changes in pathways within each sample, we employed GSVA.17 GSVA 
analysis was conducted using the gene set “c2.cp.v7.2.symbols.gm” as the reference. The calculations for GSVA and 
subsequent analyses were performed using the tidyverse package.

Identification of Core Differentially Immune-Related Genes (DIGs)
We employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify immune microenvironment- 
associated modules. The soft-thresholding power was determined by calculating the maximum R² value. Subsequently, 
the adjacency matrix was converted into a topological overlap matrix. Utilizing hierarchical clustering analysis, 
a dendrogram was constructed, segmenting genes into distinct modules. The correlation coefficients and p-values 
between the identified modules and clinical traits were determined using the cor function. Within the most relevant 
modules, hub genes were determined based on module membership (MM) > 0.5 and gene significance (GS) > 0.5.18 We 
identified the intersecting gene subset among IGs, DEGs, and module hub genes. These overlapping genes were 
identified as DIGs.

Gene Signatures are Identified Through the Utilization of Both Random Forest (RF) 
and LASSO Methodologies
The glmnet package was utilized for performing LASSO regression. During this process, 10-fold cross-validation was 
employed to determine the optimal penalization parameters (lambda). This approach allows for the selection of a model 
that balances complexity and predictive performance by minimizing the mean squared error. LASSO, or Least Absolute 
Shrinkage and Selection Operator, enhances model interpretability by applying an L1 penalty, which shrinks the 
coefficients of less important variables to zero, thereby performing variable selection.19 The randomForest package 
was employed to build a random forest model. Initially, this model computed the mean error rate across all DEIGs. 
Subsequently, a separate random forest model was developed to assess the significance of each gene, based on the 
decrease in prediction accuracy. Genes that exhibited an importance score exceeding the threshold of 1 were recognized 
as central hub genes, and these genes are slated for inclusion in the refinement of future models.20 The identification of 
signature genes in the diagnosis of CKD involved determining the intersection genes between LASSO and RF 
techniques.

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis
Renal tissue samples were gathered from 16 individuals in total, comprising 8 healthy subjects and 8 individuals 
diagnosed with CKD. All participants provided their written informed consent before the samples were collected, 
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ensuring adherence to ethical guidelines. Additionally, the study’s procedures received the endorsement of the Ethics 
Committee at the Ningde Hospital of Traditional Chinese Medicine.

Kidney tissue specimens underwent RNA isolation through the application of TRIzol reagent (ThermoFisher 
Scientific, USA). For the purpose of conducting qRT-PCR assessments, the SYBR qPCR Master Mix (Bio-Rad) was 
used. The evaluation of the primary signature genes’ expression was carried out using the Roche LC480 Real-Time PCR 
System (Roche). For the normalization of mRNA levels, β-actin served as the reference gene. The comparative levels of 
mRNA expression were quantified through the application of the 2–ΔΔCt method.

Development and Evaluation of a Predictive Nomogram
To develop the nomogram, we employed the rms R package, which incorporated the signature genes.21 The diagnostic 
efficacy of the signature genes and the nomogram in detecting CKD was determined by constructing a Receiver 
Operating Characteristic (ROC) curve. Additionally, the precision of the model was gauged through Decision Curve 
Analysis (DCA) and the use of calibration curves.

Results
Enhanced Immune Microenvironment and Altered Gene Expression Profiles in 
Chronic Kidney Disease (CKD)
Using the xCell algorithm, we assessed the levels of immune cell infiltration between the normal group and patients with 
CKD. In Figure 1A, a significant increase in the infiltration levels of aDC (p < 0.05), basophils (p < 0.01), cDC (p < 0.001), 
DC (p < 0.01), iDC (p < 0.001), NKT cells (p < 0.001), pDC (p < 0.01), pro B cells (p < 0.05), Th2 cells (p < 0.001), Tregs (p 
< 0.001), fibroblasts (p < 0.001), and endothelial (p < 0.01) was observed in the CKD group compared to the normal group. 
Conversely, a significant reduction was noted for CD4+ Tcm (p < 0.001), CD8+ naive T-cells (p < 0.05), macrophages M2 
(p < 0.001), and Th1 cells (p < 0.001). No significant differences were detected for other immune cell types. Figure 1B 
illustrates a comparative evaluation of the immune microenvironment scores between the normal and CKD groups using the 
xCell algorithm. The CKD group demonstrated a markedly higher immune microenvironment score in comparison to the 
normal group (p < 0.01), indicating a pronounced alteration in the overall immune landscape in CKD. The DEGs between 
the normal and CKD groups were identified using the limma package. A total of 2335 DEGs were identified, applying 
a threshold of an adjusted p-value less than 0.05 and an absolute log2 fold change exceeding 1, as illustrated in Figure 1C. 
According to the median immune microenvironment score, 53 CKD patients were stratified into low (LIS) and high (HIS) 
immune microenvironment score subgroups. A comparative analysis of the identified subgroups revealed 620 immune- 
related genes (IGs) that met the criteria of an adjusted p-value < 0.05 and an absolute log2 fold change exceeding 1, as 
illustrated in Figure 1D. Through venny online analysis, 124 differentially expressed immune microenvironment-related 
genes were recognized. The protein-protein interaction (PPI) network of these DIGs is illustrated in Figure S1. This 
network illustrates the interconnected nature of these DIGs, suggesting key regulatory genes that may play significant roles 
in the immune response and progression of CKD. The detailed evaluation of immune cell infiltration and immune 
microenvironment scores highlights significant alterations in the immune profiles of CKD patients.

GSEA Between LIS and HIS Subgroups
GSEA was performed to identify significant pathways differentially enriched between the LIS and HIS in CKD patients. 
As shown in Figure 2, several pathways related to inflammatory responses and immune system function were signifi-
cantly enriched in the HIS subgroup (adjusted p-value < 0.05). These pathways include the Inflammatory Response 
Pathway, the Systemic Lupus Erythematosus Pathway, the Interleukin 10 Signaling pathway, the Extrafollicular B Cell 
Activation by Sarscov2, Primary Immunodeficiency, the PID Cd8 Tcr Pathway, and various cytokine and receptor 
interaction networks such as Interleukin 4 and Interleukin 13 Signaling, and Cytokine-Cytokine Receptor Interaction. 
These findings suggest a pronounced alteration in immune signaling and response mechanisms in the HIS subgroup 
relative to the LIS subgroup. Overall, the GSEA results emphasize the heightened immune and inflammatory activity in 
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patients with high immune microenvironment scores, reflecting the complex interplay between immune cells and 
signaling pathways in exacerbating CKD pathology.

GSVA Enrichment Analysis Between LIS and HIS Subgroups
GSVA was conducted to compare the enrichment of biological processes and pathways between the LIS and HIS in CKD 
patients. Figure 3A presents the differential enrichment of GO terms between LIS and HIS subgroups. Several GO terms 
were significantly upregulated in the HIS subgroup, including processes related to immune responses such as negative 
regulation of T-cell activation, positive regulation of regulatory T-cell differentiation, and regulation of B-cell differ-
entiation. Metabolic processes, including polyamine oxidase activity, tryptophan catabolic process, and amino acid 
catabolic process, were also upregulated in HIS. Conversely, a few GO terms were downregulated in the HIS subgroup, 
which included functions like smooth endoplasmic reticulum, intracellular receptor signaling pathway, etc. Figure 3B 
illustrates the differential enrichment of KEGG pathways between the LIS and HIS subgroups. Pathways significantly 
upregulated in the HIS subgroup included various metabolic pathways (eg, phenylalanine, tyrosine, and tryptophan 
biosynthesis, phenylalanine metabolism, and tyrosine metabolism) as well as cancer-related pathways (eg, Wnt signaling 
pathway, JAK-STAT signaling pathway, and pathways related to various cancers such as acute myeloid leukemia and 
small cell lung cancer). In contrast, several immune signaling pathways were downregulated in the HIS subgroup, 
including the B cell receptor signaling pathway, the T cell receptor signaling pathway, and Toll-like receptor signaling 

Figure 1 Integrated immunological and transcriptomic analysis reveals distinct immune cell infiltration and differential gene expression in CKD. (A) Comparison of immune 
cell infiltration levels between normal (green) and CKD (red) groups using the xCell algorithm. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ns: not significant. 
(B) Measurement of immune microenvironment scores between normal (green) and CKD (red) groups using the xCell algorithm. Statistical significance: **p < 0.01. (C) The 
volcano plot of DEGs identified using the limma package shows the comparison between normal and CKD groups. (D) Volcano plot comparing LIS and HIS within CKD 
patients.
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pathway. The GSVA results highlight robust immune and metabolic reprogramming in the HIS subgroup, with 
pronounced upregulation in immune and metabolic activities along with significant engagement in oncogenic pathways. 
These findings provide critical insights into the molecular distinctions between differing immune microenvironments 
within CKD patients.

Application of Machine Learning Methods for the Identification of Characteristic 
Genes
The heatmap displays the correlation coefficients between module eigengenes and immune scores (Figure S2). 
Modules are color-coded, with each row representing a different module and its corresponding correlation value. 
The yellow module exhibited the highest correlation with the immune microenvironment score as revealed by 
WGCNA analysis. Consequently, this led to the identification of 327 critical genes within this module, adhering to 
the criteria of MM > 0.5 and GS > 0.5. Then, we obtained 22 core DIGs through the Veen tool (Figure 4A). To 
pinpoint distinctive genes in patients with CKD, machine learning methods were deployed. The application of the 
LASSO technique revealed a set of six distinct genes, as depicted in Figure 4B. Concurrently, the employment of the 
RF algorithm discerned another set of six distinct genes, each exhibiting a relative significance exceeding the threshold 
of 1, as illustrated in Figure 4C. The intersecting set illustrated in the Venn diagram (Figure 4D) depicts the 
commonality among the six key genes pinpointed by the RF method and the six probable candidate genes determined 
through the LASSO technique. Within this shared subset, four genes (RGS1, IL4I1, NR4A3, and SOCS3) were singled 
out for ultimate validation.

In the GSE66494 dataset, the genes IL4I1 and SOCS3 were observed to have notably elevated expression in the group 
with CKD (p < 0.001). On the other hand, the expression of RGS1 and NR4A3 was reduced in the CKD group (p < 
0.001) (Figure 5A). Analysis of the Receiver Operating Characteristic (ROC) curves for these genes revealed that with an 
Area Under the Curve (AUC) exceeding 0.9, they possess substantial potential as diagnostic biomarkers (Figure 5B). 
Furthermore, we used an independent GSE96804 dataset (Figure 5C and D) and clinical samples (Figure 5E and F) to 
validate the analysis results, which were consistent with our findings.

Figure 2 GSEA identifies key immune and inflammatory pathways distinguishing LIS and HIS subgroups in CKD patients.
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Figure 3 GSVA reveals differential enrichment of biological processes and pathways in LIS and HIS subgroups. Enrichment analysis of GO (A) and KEGG (B) pathways using 
GSVA between LIS and HIS subgroups.
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Assessment of a Nomogram Model
To improve the precision of forecasting the progression of CKD, we have constructed a nomogram incorporating four 
key genes (Figure 6A). Evaluation of the model using the ROC curve analysis revealed a significant AUC value of 0.96, 
indicating high predictive performance (Figure 6B). The results from the calibration curve further substantiated the 

Figure 4 Identification of signature genes using machine learning methods. (A) A Venn diagram depicting the overlap of genes between DEGs, IGs, and those within the 
yellow module. (B) Choosing the right lambda parameter for a LASSO regression model. (C) In the random forest model, IL4I1, WFDC2, NR4A3, MDK, SOCS3, and RGS1 
genes exhibit a relative importance that exceeds 1. (D) The identification of four potential diagnostic genes was illustrated using the aforementioned two machine learning 
techniques, as depicted in the Venn diagram.
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nomogram model’s exceptional precision in predicting the prognosis for patients with CKD (Figure 6C). In addition, the 
analysis of the decision curve suggested that employing the nomogram model could be advantageous for individuals 
suffering from CKD (Figure 6D).

Figure 5 Verify the clinical diagnostic potential of signature genes. Expression levels (A) and diagnostic effectiveness (B) of signature genes in the GSE66494 dataset. 
Expression levels (C) and diagnostic effectiveness (D) of signature genes in the GSE96804 dataset. Expression levels (E) and diagnostic effectiveness (F) of signature genes in 
the clinical samples.*p < 0.05, **p < 0.01 and ***p < 0.001.
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The Association Between Four Diagnostic Biomarkers and the Recruitment of 
Immune Cells
Concurrently, the analysis using the Spearman correlation method revealed a positive association between the RGS1, 
IL4I1, NR4A3, and SOCS3 and various immune cells, including aDC, DC, CD8+ Tcm, CD8+ Tem, and Tgd cells 
(Figure 7). This correlation supported the significant role of these genes in the differentiation of these immune cell 
subtypes. Furthermore, the results of the GSEA indicated that the genes (RGS1, IL4I1, and SOCS3) may play a role in 
the development of CKD by modulating immune-related pathways, including T cell receptor signaling pathway, 
leukocyte transendothelial migration, and natural killer cell-mediated cytotoxicity (Figure S3). This suggests a broader 
immunomodulatory role for these genes beyond cell subtype differentiation, highlighting their multifaceted involvement 
in CKD pathogenesis.

Discussion
CKD is characterized by complex immune dysregulation and altered gene expression profiles. The immune microenvir-
onment plays a crucial role in the pathogenesis and progression of CKD, with immune cell infiltration and activation 
being key contributors to renal inflammation and fibrosis.22,23 Understanding the alterations in the immune microenvir-
onment and identifying related genes are essential for developing new diagnostic and therapeutic strategies for CKD. In 
this study, we employed a comprehensive bioinformatics approach to assess immune cell infiltration, differential gene 
expression, and pathway enrichment in CKD patients. Using the xCell algorithm, we observed significant changes in the 
immune cell composition and increased immune microenvironment scores in CKD samples compared to normal controls. 
These changes are indicative of heightened immune activity in CKD, which may drive chronic inflammation and 
subsequent renal damage. These findings align with previous studies that have reported enhanced immune cell infiltration 
in CKD, contributing to chronic inflammation and renal damage.24,25 The GSEA and GSVA analyses revealed significant 
enrichment of inflammatory and immune pathways, particularly in the HIS subgroup. This enrichment highlights the 

Figure 6 Assessment of a nomogram model. (A) A nomogram model was utilized to evaluate the likelihood of CKD development. (B) The ROC curve of the nomogram 
model was used to diagnose CKD. The calibration curve (C) and the DCA (D) are used to assess the predictive accuracy of the nomogram model.
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involvement of immune responses in CKD, suggesting that these pathways may be potential targets for therapeutic 
intervention. These results underscore the pivotal role of immune responses and metabolic processes in CKD pathogen-
esis, consistent with earlier reports highlighting the involvement of immune and metabolic dysregulation in renal 
diseases.26,27 Comparing our bioinformatics approach with other techniques such as WGCNA and machine learning, 
our method provides a broad overview of immune activity and gene expression changes.11 Integrating these techniques 
could further enhance our understanding of CKD pathogenesis.

One of the key contributions of our study is the integration of machine learning techniques to identify four diagnostic 
genes: RGS1, IL4I1, NR4A3, and SOCS3. These genes were validated in an independent dataset (GSE96804) and 
clinical samples, confirming their diagnostic potential. Among these genes, a regulator of G-Protein Signalling-1 (RGS1) 
enhances the activity of Gαi GTPase and functions to decrease the cellular response to prolonged chemokine 
stimulation.28,29 RGS1 exhibits a significant level of expression in various types of immune cells, such as monocytes, 
dendritic cells, natural killer cells, B cells, T cells, and B cells. This suggests that RGS1 plays a crucial role in the 
regulation of immune cell activity.30 Inhibition of RGS1 expression effectively suppressed the inflammatory response 
observed in both renal interstitial fibrosis cell cultures and mouse models. Consequently, targeting RGS1 could represent 
a promising therapeutic approach for the treatment of renal interstitial fibrosis.31 The gene known as Interleukin- 
4-induced gene 1 (IL4I1) was initially discovered in B splenocytes of mice that had been activated by interleukin 4.32 

Figure 7 The correlation between four crucial diagnostic biomarkers and the infiltration of immune cells. Correlation between infiltration of immune cells and the 
expression of (A) RGS1, (B) IL4I1, (C) NR4A3, and (D) SOCS3 genes. *p < 0.05, **p < 0.01, and ***p < 0.001; ns indicates no significant difference.
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Expression of IL4I1 has been described mainly in cells of the human immune system, with cells of myeloid origin 
showing the highest production, particularly after stimulation with inflammatory and T-helper type 1 stimulus.33,34 

Recent research has indicated that IL4I1 may serve as a promising biomarker and a target for therapy in oncological 
conditions.32 The elevated expression of IL4I1 in immune cells in CKD patients further supports its role as a marker of 
immune activation and potential therapeutic target. NR4A3 belongs to the nuclear receptor subfamily 4, playing a crucial 
role in the regulation of cell function and inflammatory responses.35 A current research finding indicates that the NR4A3 
gene is implicated in promoting inflammation during the progression of osteoarthritis.36 The involvement of NR4A3 in 
inflammation corroborates its potential role in contributing to the inflammatory environment in CKD. SOCS3 suppresses 
inflammatory responses and triggers the initial stage of immune defense across various mouse models.37 SOCS3 plays 
a role in inhibiting the M1 proinflammatory state, thus reducing the activity of inflammatory reactions within 
macrophages.38 Elevated levels of SOCS in peripheral blood mononuclear cells have been associated with a decline in 
kidney function.39 This suggests that SOCS3 might be a critical regulator in mitigating the inflammatory responses that 
exacerbate CKD.

In our study, we developed a predictive nomogram for CKD diagnosis utilizing these four key genes. The model 
demonstrated considerable prognostic efficacy, indicating its potential usefulness in clinical settings. To address real- 
world applicability, this model can aid in early diagnosis and risk stratification in clinical practice, allowing for prompt 
and personalized treatment strategies. Regular monitoring of these gene expressions can also help in tracking disease 
progression, thereby enhancing patient management. It is important to compare our results with other existing 
techniques. For instance, traditional biomarkers for CKD, such as serum creatinine and estimated glomerular filtration 
rate (eGFR), provide a general assessment of kidney function but lack specificity regarding underlying immune 
mechanisms.40 In contrast, our gene-based approach not only offers diagnostic accuracy but also sheds light on the 
immune dysregulation in CKD, providing a more comprehensive understanding of disease pathogenesis. Spearman 
correlation analysis revealed positive associations between the key diagnostic genes and various immune cells, 
indicating their roles in immune modulation and CKD pathogenesis. This finding is in line with previous research 
that has highlighted the complex interactions between immune cells and gene expression in CKD.41,42 These 
correlations suggest that the identified genes not only serve as biomarkers but also play active roles in shaping the 
immune landscape in CKD, potentially offering new avenues for therapeutic intervention. The immunomodulatory 
roles of RGS1, IL4I1, NR4A3, and SOCS3 suggest they may influence the immune landscape in CKD, contributing to 
disease progression.

Conclusions
In conclusion, our study provides a comprehensive analysis of immune alterations and gene expression profiles in CKD. 
The identified diagnostic genes and the constructed nomogram model offer potent tools for CKD diagnosis, with 
implications for both clinical practice and biomedical engineering. The insights gained from the roles of RGS1, IL4I1, 
NR4A3, and SOCS3 in immune modulation open avenues for the development of novel therapeutic strategies. The 
physical interactions and molecular mechanisms underlying the immunomodulatory roles of RGS1, IL4I1, NR4A3, and 
SOCS3 warrant further investigation as potential therapeutic targets in CKD. However, our study has limitations, such as 
dependence on bioinformatics predictions and the necessity for experimental validation in larger, more diverse groups. 
These issues may affect how we interpret the results and should be addressed in future research to enhance the clinical 
relevance of our findings.

Data Sharing Statement
All dataset in the present study are available in GSE66494 (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE66494) 
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